
CS 352 – Compilers: Principles and Practice
Final Examination, 05/02/05

Instructions: Read carefully through the whole exam first and plan your time. Note the
relative weight of each question and part (as a percentage ofthe score for the whole exam).
The total points is 100 (your grade will be the percentage of your answers that are correct).

This exam isclosed book, closed notes. You maynot refer to any book or other materials.

You havetwo hours to complete all four (4) questions. Write your answers on this paper (use
both sides if necessary).

Name:

Student Number:

Signature:

1. (Compiler phases; 10%) The MiniJava compiler you worked on this semester manipulates
several representations of a program as it is compiled. The initial input is a MiniJava source
program. For each of the following program representationsname the compiler passes (there
may be more than one!) that take that representation asinput:

(a) program source text

Answer:

scanning (lexical analysis)

(b) tokens

Answer:

parsing (syntactic analysis)

(c) abstract syntax trees (ASTs)

Answer:

type checking (semantic analysis)
translation

(d) intermediate codetrees

Answer:

canonicalization

(e) intermediate codestatements(ie, tuples)

Answer:

instruction selection (code generation)

(f) assembly language instructions

Answer:

control flow analysis

(g) control flow graph (CFG)

Answer:

data flow (liveness) analysis

(h) interference graph

Answer:

graph coloring register allocation

(i) colored interference graph + assembly language instructions

Answer:

code emission

2

2. (Runtime management; 25%) Consider the MiniJava programgiven below:

class Tree {
public static void main (String[] a)

throws java.io.IOException
{

Tree root = null;
for (Tree n = Tree.readint(); n != null; n = Tree.readint())

root = n.insert (root);
if (root != null) root.print ();
System.out.println("");

}

int value;
Tree left, right;
Tree insert(Tree root) {

if (root == null) return this;
if (this.value <= root.value)

root.left = this.insert (root.left);
else

root.right = this.insert(root.right);
return root;

}
void print() {

System.out.write(’(’);
if (this.left != null) this.left.print();
Tree.printint(this.value);
if (this.right != null) this.right.print();
System.out.write(’)’);

}

static Tree readint () throws java.io.IOException {
Tree result = null;
int buffer = System.in.read();
while (buffer == ’ ’)

buffer = System.in.read();
if (buffer >= ’0’ && buffer <= ’9’) {

result = new Tree();
result.value = 0;
while (buffer >= ’0’ && buffer <= ’9’) {

result.value = result.value * 10 + buffer - ’0’;
buffer = System.in.read();

}
}
return result;

}
static void printint(int i) {

if (i > 0) {
Tree.printint(i/10);
System.out.write(i-i/10*10+’0’);

}
}

}

3

(a) (5%) Given input:

45 33 24 22 22 10

what output does this program produce?

Answer:

It prints out:

((((((10)22)22)24)33)45)

4

(b) (20%) Assuming the same input, show a diagram of PowerPC stack framesat the point
whereprintint has returned toprint having printed out the string “10” to standard
output. Indicate whereall the local and heap variables are (assume all local variables
are stored in memory in the activation records, not in registers, and that all arguments
are passed in the stack, not in registers); show the value of all integer variables, as well
as variables containing references to the heap, and the object they refer to.

Answer:
STACK HEAP

+---------+
main: | a --+-------------------> array of String

| root --+--------------+---------------------> 45
| ... | | / \
+---------+ | +-----------------> 33 null

print: | this --+--------------+ | / \
| ... | | +-------------> 24 null
+---------+ | | / \

print: | this --+----------------+ | +---------> 22 null
| ... | | | / \
+---------+ | | +-----> 22 null

print: | this --+------------------+ | | / \
| ... | | | +-> 10 null
+---------+ | | |

print: | this --+--------------------+ | |
| ... | | |
+---------+ | |

print: | this --+----------------------+ |
| ... | |
+---------+ |

print: | this --+------------------------+
| ... |
+---------+

5

3. (IR trees, canonicalization, instruction selection; 25%) In this question you may assume that
the word size of the target machine is 4 bytes and that any result is returned in (PowerPC
register) temporaryr3. You may use named temporaries for each of the local variables
or formal parameters in the method (eg, parameterb would be allocated to temporaryb).
For unnamed intermediate results use numbered temporaries(t0, t1, etc.). Do not worry
about checking for run-time errors such as array index out ofbounds or null pointer
dereference.

Consider the following MiniJava program:

class A {

String name;

A init() { this.name = "A"; return this; }

String name() { return this.name; }

}

class B extends A {

String name;

B init() { super.init(); this.name = "B"; return this; }

String name() { return this.name; }

}

class Main {

static String Aname(A a) { return a.name(); }

static String Bname(B b) { return b.name(); }

public static void main (String[] args) {

A a = new A().init();

System.out.println(a.name);

System.out.println(Main.Aname(a));

B b = new B().init();

System.out.println(b.name);

System.out.println(Main.Bname(b));

a = b;

System.out.println(a.name);

System.out.println(Main.Aname(a));

}

}

6

(a) (5%) What output does this program produce?

Answer:

A

A

B

B

A

B

7

(b) (10%) Draw an intermediate code tree for each of the following methods:

i. (2%) Methodname in classA (ie, A.name).
Answer:

MOVE(TEMP r3, MEM(TEMP _this, 0))

ii. (2%) Methodname in classB (ie, B.name).
Answer:

MOVE(TEMP r3, MEM(TEMP _this, 4))

iii. (3%) MethodAname in classMain (ie, Main.Aname).
Answer:

MOVE(TEMP r3, CALL(MEM(MEM(TEMP _a, -4), 4), TEMP _a))

iv. (3%) MethodBname in classMain (ie, Main.Bname).
Answer:

MOVE(TEMP r3, CALL(MEM(MEM(TEMP _b, -4), 4), TEMP _b))

8

(c) (10%) For the following, generate PowerPC instructionsusing “maximal munch”, cir-
cling the tiles and numbering themin the order that they are “munched”(ie, the order
that instructions are emitted for the tile). Leave the temporary names in place (do not
assign registers).

i. (4%) Generate instructions for the tree of Question 3(b)ii.
Answer:

[2 = MOVE(TEMP r3, [1 = MEM(TEMP _this, 4)])]

1: lwz t0,4(_this)

2: mr r3,t0

ii. (6%) Generate instructions for the tree of Question 3(b)iv.
Answer:

[4 = MOVE(TEMP r3,

[3 = CALL([2 = MEM([1 = MEM(TEMP _b, -4)], 4)],

TEMP _b)])]

1: lwz t0,-4(_b)

2: lwz t1,4(t0)

3: mr r3,_b

mtctr t1

bctrl

4: mr r3,r3

9

4. (Control flow graphs, liveness analysis, register allocation; 40%) The following program
has been compiled for a machine with 2 registers:

• r1: a callee-save register

• r2: a caller-save argument/result register

s ← r1
a ← r2
i ← a
i ← i−1
if i < 0 goto L1

L0 : a ← i
r2← a
call f (user2,defr2)
i ← i−1
if i ≥ 0 goto L0

L1 : r1← s
return (user1,r2)

(a) (5%) Draw the control flow graph for this program, with nodes that are the program’s
basic blocks(ie, not individual instructions) and with edges representingthe flow of
control between the basic blocks.

Answer:
s := r1
a := r2
i := a
i := i - 1
if i < 0 goto L1 -----+

| |
v |

L0: a := i <-----------+ |
r2 := a | |
call f | |
i := i - 1 | |
if i >= 0 goto L0 --+ |

| |
v |

L1: r1 := s <-------------+
return

10

(b) (10%) Annotate eachinstructionwith the variables/registers live-out at that instruction.

Def Use LiveOut
s ← r1
a ← r2
i ← a
i ← i−1
if i < 0 goto L1

L0 : a ← i
r2← a
call f
i ← i−1
if i ≥ 0 goto L0

L1 : r1← s
return

Answer:

Def Use LiveOut
s ← r1 s r1 sr2
a ← r2 a r2 sar2
i ← a i a sir2
i ← i−1 i i sir2
if i < 0 goto L1 i sir2

L0 : a ← i a i sai
r2← a r2 a sir2
call f r2 r2 sir2
i ← i−1 i i sir2
if i ≥ 0 goto L0 i sir2

L1 : r1← s r1 s r1r2
return r1r2

11

(c) (10%) Fill in the following adjacency table representing the interference graph for the
program; an entry in the table should contain an× if the variable in the left column
interferes with the corresponding variable/register in the top row. Since machine reg-
isters are pre-colored, we choose to omit adjacency information for them. Naturally,
you must still record if a non-precolored node interferes with a pre-colored node; the
columns for pre-colored nodes are there for that purpose.

Also, record theunconstrainedmove-related nodes in the table by placing an◦ in any
empty entry where the variable in the left column is the source or target of any move
involving the variable/register in the top row.Remember that nodes that are move-
related should not interfere if their live ranges overlap only starting at the move
and neither is subsequently redefined.

r1 r2 s i a

s
i
a

Answer:

r1 r2 s i a

s ◦ × × ×

i × × ◦

a ◦ × ◦

12

(d) (15%) Show the steps of a coalescing graph-coloring register allocator as it assigns
registers to the variables in the program. Use theGeorge criterionfor coalescing nodes:
nodea can be coalesced with nodeb only if all significant-degree (ie, degree>= K)
neighbors ofa already interfere withb. Show the final program, noting any redundant
moves.

The flow diagram for iterated register coalescing is included here for your reference.

select

potential
spill

actual
 spill

build

conservative
 coalesce

simplify

freeze

SSA constant
 propagation

(optional)

sp
ill

s
do

ne

an
y

Answer:

i. Coalescea with r2 (or a with i) using George criterion (all ofa’s neigh-
bors already conflict withr2):

r1 r2a s i

s ◦ × ×

i × ×

ii. Cannot coalescessincei does not interfere withr1; cannot freezea since
it is high-degree; so potential spills (fewest uses/defs)

r1 r2a i

i ×

iii. Simplify i

13

iv. Selecti ≡ r1
r1 r2a i

i ×

v. No color fors⇒ actual spill.
Rewrite code, retaining coalescences from before spill:

Def Use LiveOut
M [locs]← r1 r1 r2
i← r2 i r2 ir2
i← i−1 i i i r2
if i < 0 goto L1 i ir2

L0 : r2← i r2 i ir2
call f r2 r2 ir2
i← i−1 i i i r2
if i ≥ 0 goto L0 i ir2

L1 : r1←M [locs] r1 r1r2
return r1r2

vi. New adjacency table:
r1 r2 i

i ×

vii. Simplify i

viii. Selecti ≡ r1

ix. Resulting code:
M [locs]← r1
r1← r2
r1← r1−1
if r1 < 0 goto L1

L0 : r2← r1
call f
r1← r1−1
if r1 ≥ 0 goto L0

L1 : r1←M [locs]
return

14

15

16

