Question: Can | implement a compiler
by inserting code into the parser

e |f you are asked to write a robot controller, which is
indeed a compiler that interprets commands (with
parameters) from the console.

— Yes, very likely (because commands are independent)

e |f you are asked to write a general program language
compiler

— No, very likely insufficient, or at least highly inefficient.

The limitations of CFG

e Given the following grammar
S ::= Decl Stmt
Decl ::= Type id | Decl; Decl
Type ::=string | int
Stmt ::= Stmt; Stmt |
id=Exp | ...
Exp ::= Exp * Exp | id | num | char* | ...

e Does the corresponding parser accept the following programs?

string x; int x; int x;
int z; int z;
x=0;
x= “hello z=x+1; z=10/x;
world”;

z=x+1;

Limitations (continued)

e Many other things can not be decided by syntax
analysis
— Does the dimension of a reference match the declaration?
— |Is an array access out of bound?
— Where should a variable be stored (head, stack,...)

— When a variable is defined at S1 and then used at S2. We
have to make sure the same memory location is assigned
to the variable and the use sees the value of the definition

Semantics Analysis

 The reason of the limitations is that answering
those questions depends on values instead of

syntax.

* We need to analyze program semantics.

— Usually, this is done by traversing/analyzing program
representations.

e Examples of representations: AST, Control flow graph (CFG),
Program dependence graph (PDG), SSA (single static
assignment).

e Sample semantic analysis: type checking, code generation,
register allocation, dead code elimination, etc.

Type Checking

An important phase in compilation. The goal is to reduce runtime
errors.

— More specifically, we want to check that each expression has a correct
type.
Concepts

— Symbol tables (environments)

* We need to look up the declaration of a variable when we encounter it during
type checking.

— Bindings

— Scope

— Definition/ use

Two sub-phases

— Symbol table construction
— Type checking

Symbol Tables and Scopes

1 classE{ We have:
2 staticinta = 5; (a) A global symbol table for forward
3) references.
4 class N { (b) When type checking a class, we extend
5 static int b = 10; the symbol table to class level.
6 staticint a = E.a + D.d: (c) When type checking a method in the
o . . class, we further extend the symbol
7 public int start (int p, int bb) { table to method level
8 int a;
9
10 }
12 public boolean stop (int p) { 0 lob |=?
globa
13 return false; 9
14 } On='
15 }
16 class D { GN.start_?
17 staticint d = E.a + N.a; -9
18 public int foo () { GN.StOp— :

Hash Table Implementation

 Hash table
— Operations: hash(k), insert (k, v), lookup (k), delete(k)

— The keyword k is often the variable name, the v is often the type of
the variable (which could be a primitive type or a pointer)

— The benefits: quick look up, easy extension from an existing symbol
table to a new symbol table and easy recovery.

e The hash table representations of the previous o

Constructing Symbol Tables

Stmt ::= Stmt; Stmt |
DeclStmt |
AssignStmt |
ReturnStmt | ...

DeclStmt :: =int id | string id

AssignStmt ::=id = Exp

ReturnStmt ::= return

Exp ::= ...

Stack S;

public class visit(IntDeclStmt s) {
o.insert(s.id, INT);
S.add(s.id);

}

public class visit(StringDelStmt s) {
o.insert(s.id, STRING);
S.add(s.id);

}

public class visit(ReturnStmt s) {
while (1S.empty()) {

o.pop(S.pop());

}

}

An Example

For example, see how we update the symbol table for function foo() according
to the previous defined visitor

int a;

int foo () {
int b;
a=10;
string a;
a=10;
return;

Type Checking

The type checking process can be implemented through a visitor. Assume o
always represents the current symbol table.
The key is that we produce a type for EACH AST node during the traversal.

Stmt ::= Stmt; Stmt | public Type visit(CompositeStmt s) {
DeclStmt | s.sl.accept(this);
Assignstmt | s.sZ.accept(thls);
fstmt | ... } return void,;
public Type visit(StringDelStmt s) {
DeclStmt :: =int id | string id return void;}
public Type visit(AssignStmt s) {
AssignStmt ::= id = Exp Type t=s.s1l.accept(this);
if (t 1= o.lookup (s.id)) typeError();
IfStmt ::= if (Exp) { Stmt } } returnt;

public Type visit (PlusExpr e) {

Exp ::= Exp + Exp | Type tl=e.el.accept(this);

Exp — Exp | Type t2=e.e2.accept(this);

id | if (t1==t2==INT || t1==t2==STRING)
num | return t1

char* | ... else TypeError();

