
Basic Blocks and Traces

CS 352

Basic blocks and Traces

Issues:

• To simplify translation there are mismatches between tree code and
actual machine instructions:
1. CJUMP to two labels; machine conditionals fall through on false
2. ESEQ and CALL order evaluation of subtrees for side-effects –

constrains optimization
3. CALL as argument to another CALL causes interference between

register arguments

• Can rewrite equivalent trees without these cases:
– SEQ can only be subtree of another SEQ
– SEQs clustered at top of tree
– might as well turn into simple linear list of statements

• 3-stage transformation:
1. to linear list of canonical trees without SEQ/ESEQ
2. to basic blocks with no internal jumps or labels
3. to traces with every CJUMP immediately followed by false target

2

Canonical trees

1. No SEQ or ESEQ

2. CALL can only be subtree of EXP(. . .) or MOVE(TEMP t,. . .)

Transformations:
• lift ESEQs up tree until they can become SEQs
• turn SEQs into linear list

3

ESEQ(s1, ESEQ(s2, e)) = ESEQ(SEQ(s1,s2), e)
BINOP(op, ESEQ(s, e1), e2) = ESEQ(s, BINOP(op, e1, e2))

MEM(ESEQ(s, e1)) = ESEQ(s, MEM(e1))

JUMP(ESEQ(s, e1)) = SEQ(s, JUMP(e1))

CJUMP(op,
ESEQ(s, e1), e2, l1, l2)

= SEQ(s, CJUMP(op, e1, e2, l1, l2))

BINOP(op, e1, ESEQ(s, e2)) = ESEQ(MOVE(TEMP t, e1),
ESEQ(s,

BINOP(op, TEMP t, e2)))
CJUMP(op,

e1, ESEQ(s, e2), l1, l2)
= SEQ(MOVE(TEMP t, e1),

SEQ(s,
CJUMP(op, TEMP t, e2, l1, l2)))

MOVE(ESEQ(s, e1), e2) = SEQ(s, MOVE(e1, e2))
CALL(f , a) = ESEQ(MOVE(TEMP t, CALL(f , a)),

TEMP(t))

Taming conditional branches

1. Form basic blocks: sequence of statements always entered at the
beginning and exited at the end:

• first statement is a LABEL

• last statement is a JUMP or CJUMP

• contains no other LABELs, JUMPS or CJUMPs

2. Order blocks into trace:

• every CJUMP followed by false target

• JUMPs followed by target, if possible, to eliminate JUMP

4

Basic blocks

Control flow analysis discovers basic blocks and control flow between
them:

1. scan from beginning to end:

• LABEL l starts a new block and previous block ends (append
JUMP l if necessary)

• JUMP or CJUMP ends a block and starts next block (prepend new
LABEL if necessary)

2. prepend new LABELs to blocks with non-LABEL at beginning

3. append JUMP(NAME done) to last block

5

Traces

1. Pick an untraced block, the start of some trace
2. Follow a possible execution path, choosing false targets first
3. Repeat until all blocks are traced

Cleaning up:

• CJUMP followed by true target: switch targets, negate condition

• CJUMP(o, a, b, lt, l f) followed by neither lt nor l f :

1. create new l′f
2. rewrite as CJUMP(o, a, b, lt, l′f), LABEL l′f , JUMP l f

• JUMP l, LABEL l → LABEL l

6

