The role of the parser

— IR

tokens
source____ _|
code scanner parser
errors
Parser

performs context-free syntax analysis
guides context-sensitive analysis
constructs an intermediate representation
produces meaningful error messages
attempts error correction

Syntax analysis

Context-free syntax is specified with a context-free grammar.

Formally, a CFG G is a 4-tuple (M, Vh, S P), where:

V; Is the set of terminal symbols in the grammar.
For our purposes, V4 is the set of tokens returned by the scanner.

Vh, the nonterminals, is a set of syntactic variables that denote sets of
(sub)strings occurring in the language.
These are used to impose a structure on the gramma.

S is a distinguished nonterminal (S V,) denoting the entire set of strings
inL(G).
This is sometimes called a goal symbol.

P is a finite set of productions specifying how terminals and non-terminals
can be combined to form strings in the language.

Each production must have a single non-terminal on its left hand side.

The setV =Vt UV, is called the vocabulary of G

Notation and terminology

e a.bcC...c V4

® A,B,C,... GVn

e UVW,...eV

e a,B,Y,... €V~

e UVW,...c\
If A— ythen adAB = ayf is a single-step derivation using A —y
Similarly, =* and =™ denote derivations of > 0 and > 1 steps
If S=" 3 then [is said to be a sentential form of G
L(G) ={we V| S=Tw}, we L(G) is called a sentence of G
Note, L(G) ={B V™| S="*B} NV

Why it is called "context free grammar”?

Syntax analysis

Grammars are often written in Backus-Naur form (BNF).

Example:

1| (goa) = (expn

;2; (expp = (expn(op)(expy
4 id

5| (op) = +

6 _

I *

8 /

This describes simple expressions over numbers and identifiers.

In a BNF for a grammar, we represent

1. non-terminals with angle brackets or capital letters
2. terminals with typewriter font or underline
3. productions as in the example

Scanning vs. parsing

Where do we draw the line?

teem = [a—zA—2z|([a—zA—2z]|[0—9])*
| O[[1—9][0—9

op = +|—[x*]|/

expr = (termop)*term

Regular expressions are used to classify:

e identifiers, numbers, keywords
e REs are more concise and simpler for tokens than a grammar
e more efficient scanners can be built from REs (DFAs) than grammars

Context-free grammars are used to count:

e brackets: (), begin...end, if...then...else
e Imparting structure: expressions

Syntactic analysis is complicated enough: grammar for C has around 200
productions. Factoring out lexical analysis as a separate phase makes
compiler more manageable.

Derivations

We can view the productions of a CFG as rewriting rules.

Using our example CFG:

Q
o
Q

=

4

R

(expn

(expr) (op) (expn)

(expn (op) (expn (op) (expn
(id,x) (op) (expn (op) (expr)
Eld X Xpr)(op) (expn
(id,
(id,

D

We have derived the sentence x + 2 x y.
We denote this (goal="* id + num * id.

Such a sequence of rewrites is a derivation or a parse.

The process of discovering a derivation is called parsing.

Derivations

At each step, we chose a non-terminal to replace.
This choice can lead to different derivations.

Two are of particular interest:

leftmost derivation o
the leftmost non-terminal is replaced at each step

rightmost derivation
the rightmost non-terminal is replaced at each step

The previous example was a leftmost derivation.

Rightmost derivation

For the string x + 2 * y:

(goal (

(expr)(op) (expn

(expr) (op)(id,y)

(expn = (id,y)

(expr) (op) (expn * (id,y)
(expn (op)(num2) x (id,y)
(exph + (num2) x (id,y)
(id,x) 4+ (num2) * (id,y)

A

Again, (goab=* id + num * id.

Precedence

(o2
@
\

? o

<id, x> <num 2>

Treewalk evaluation computes (x + 2) x y
— the “wrong” answer!

Should be x + (2 x y)

Precedence

These two derivations point out a problem with the grammar.

It has no notion of precedence, or implied order of evaluation.

To add precedence takes additional machinery:

1| (goa) = (expn

2| (exph = (expn+ (term)
3 | (expn — (term)
4 | (term)

5| (termy = (term)x (factor
6 | (term)/{factor)
7 | (facton

8 | (factony = num

9 | id

This grammar enforces a precedence on the derivation:

e terms must be derived from expressions
e forces the “correct” tree

10

Precedence

Now, for the string x + 2 * y:

(goal =

R A

<

(expn + (term)

(expn + (term) « (factor)
(expn + (term) = (id,y)
(exph + (factor) x (id,y)

((num2) x (id,y)
(term) + (num2) % (id,y)
(facton) + (num2) x (id,y)
<

Id,x) + (num2) * (id,y)

Again, (goah=" id + num * id, but this time, we build the desired tree.

11

Precedence

N
P

expr + @

*

@:@

<id, x> <num 2>

N

tor <id,y>

;
)
(@]

Treewalk evaluation computes x + (2 * y)

12

Ambiguity

If a grammar has more than one derivation for a single sentential form,
then it is ambiguous

Example:
(stmp = if (exphthen (Stmi
| if (expnthen (Stmbelse (stmi
| other stmts

Consider deriving the sentential form:
if Eq then if E> then §) else S

It has two derivations.
This ambiguity is purely grammatical.

It is a context-free ambiguity.

13

Parsing: the big picture

tokens
parser
grammar ————* —> parser
generator
code IR

Our goal is a flexible parser generator system

14

Top-down versus bottom-up

Top-down parsers

e start at the root of derivation tree and fill in
e picks a production and tries to match the input

e requires the capability of predicting the right rule
Bottom-up parsers

e Start at the leaves and fill in the derivation tree in a bottom-up fashion

e an intermediate node is inserted if the body (right hand side) appears.

15

A simple grammar

1S = dataHB
2 H Id num
3 B RB|¢€
4R == (num)

Example string: data Grade 2 (100) (90)

16

A top down parser for the simple grammar

void eat (Token s) {
if (s!=scanner.getNextToken()) {

, error(); void parseB() {
, if (lend0fFile()) {
parseR();
arseB() ;
int main () { } ’
eat (data); }
parseH() ;
BO);
, parseB() void parseR() {
eat (leftParenthesis);
eat (num) ;
void parseH() { . :
eat (rightParentheis) ;
eat (id) ;
}
eat (num) ;

17

Problem 1:Left Recursion

1S = dataHB
2 H Id num
3B = BR]|¢
4R == (num)

Formally, a grammar is left-recursive if

JA €V, such that A =T Aa for some string o

18

Eliminating left-recursion

To remove left-recursion, we can transform the grammar

Consider the grammar fragment:

(foo) =

|
where a and (3 do not start with (foo)
We can rewrite this as:

(foo) = [(barn
(ban =

|
Q
O
Q
S

where (bar is a new non-terminal

This fragment contains no left-recursion

19

Example

Our expression grammar contains two cases of left-recursion

(expn = (expn +(term)
(expn — (term)
(term)
(term) = (term)x (facton
(term) /(factorn
(factor)
Applying the transformation gives
(expn = (term)(expr)
(expr) = +(term)(expr)
| €
| —(term)(expr)
(term) = (facton (ternf)
(terml) = x(facton (ternt)
| €
| /{facton (ternT)

With this grammar, a top-down parser will
e terminate

20

Problem 2: deciding production rules

1 S = dataHB
2| H Id num

3 B RBINB|¢€
4| R (num)

5 N = "id”

Example string: data Grade 2 (100) “Wendy”

For some RHS a € G, define FIRST(a) as the set of tokens that appear
first in some string derived from a.
That is, for some w € \}*, w € FIRST(0a) iff. a =" wy.

Key property:
Whenever two productions A — a and A — 3 both appear in the grammatr,
we would like

FIRST(Q) NFIRST(B) =@

This would allow the parser to make a correct choice with a lookahead of
only one symbol!

21

Deciding production rules (cont.)

1 S = dataHB
2| H Id num
3 B RBINB|¢€
4| R (num) [(')
5/N = "id”

Two solutions:

1. Multiple tokens lookahead. Simple but expensive.

2. Left factoring.

22

Left factoring

What if a grammar does not have this property?
Sometimes, we can transform a grammar to have this property.

For each non-terminal A find the longest prefix
o common to two or more of its alternatives.

If a #~ € then replace all of the A productions
A—aBg|aBz || apn
with

A— aA

A —B1|B2] | Bn
where A’ is a new non-terminal.

Repeat until no two alternatives for a single
non-terminal have a common prefix.

23

Predictive parsing

Basic idea:

For any two productions A — a | 3, we would like a distinct way of
choosing the correct production to expand.

The simplest way to construct a top-down parser.

24

Generality

Question:

By left factoring and eliminating left-recursion, can we transform
an arbitrary context-free grammar to a form where it can be
predictively parsed with a single token lookahead?

Answer:

Given a context-free grammar that doesn’t meet our conditions, it
IS undecidable whether an equivalent grammar exists that does
meet our conditions.

Many context-free languages do not have such a grammar:
{a"ob" | n> 1} J{a"1b®" | n> 1}

Must look past an arbitrary number of a’s to discover the 0 or the 1 and so
determine the derivation.

25

