
Some definitions

Recall

For a grammar G, with start symbol S, any string α such that S⇒∗ α is
called a sentential form

• If α ∈V ∗t , then α is called a sentence in L(G)

• Otherwise it is just a sentential form (not a sentence in L(G))

A left-sentential form is a sentential form that occurs in the leftmost
derivation of some sentence.

A right-sentential form is a sentential form that occurs in the rightmost
derivation of some sentence.

1

Bottom-up parsing

Goal:

Given an input string w and a grammar G, construct a parse tree
by starting at the leaves and working to the root.

The parser repeatedly matches a right-sentential form from the language
against the tree’s upper frontier.

At each match, it applies a reduction to build on the frontier:

• each reduction matches an upper frontier of the partially built tree to
the RHS of some production

• each reduction adds a node on top of the frontier

The final result is a rightmost derivation, in reverse.

2

Example

Consider the grammar

1 S → aABe
2 A → Abc
3 | b

4 B → d

and the input string abbcde

Prod’n. Sentential Form
3 a b bcde

2 a Abc de

4 aA d e

1 aABe
– S

The trick appears to be scanning the input and finding valid sentential
forms.

3

Handles

What are we trying to find?

A substring α of the tree’s upper frontier that

matches some production A→ α where reducing α to A is one
step in the reverse of a rightmost derivation

We call such a string a handle.

Formally:

a handle of a right-sentential form γ is a production A→ β and a
position in γ where β may be found and replaced by A to produce
the previous right-sentential form in a rightmost derivation of γ.

i.e., if S⇒∗rm αAw⇒rm αβw then A→ β in the position following α is a
handle of αβw

Because γ is a right-sentential form, the substring to the right of a handle
contains only terminal symbols.

4

Handles

Theorem:

If G is unambiguous then every right-sentential form has a unique
handle.

Proof: (by definition)

1. G is unambiguous⇒ rightmost derivation is unique

2. ⇒ a unique production A→ β applied to take γi−1 to γi

3. ⇒ a unique position k at which A→ β is applied

4. ⇒ a unique handle A→ β

5

Example

The left-recursive expression grammar (original form)

1 〈goal〉 ::= 〈expr〉
2 〈expr〉 ::= 〈expr〉+ 〈term〉
3 | 〈expr〉−〈term〉
4 | 〈term〉
5 〈term〉 ::= 〈term〉 ∗ 〈factor〉
6 | 〈term〉/〈factor〉
7 | 〈factor〉
8 〈factor〉 ::= num

9 | id

Prod’n. Sentential Form
– 〈goal〉
1 〈expr〉
3 〈expr〉 − 〈term〉
5 〈expr〉 − 〈term〉 ∗ 〈factor〉
9 〈expr〉 − 〈term〉 ∗ id
7 〈expr〉 − 〈factor〉 ∗ id
8 〈expr〉 − num ∗ id
4 〈term〉 − num ∗ id

7 〈factor〉 − num ∗ id

9 id − num ∗ id

6

Handle-pruning

The process to construct a bottom-up parse is called handle-pruning.

To construct a rightmost derivation

S = γ0⇒ γ1⇒ γ2⇒ ··· ⇒ γn−1⇒ γn = w

we set i to n and apply the following simple algorithm

for i = n downto 1

1. find the handle Ai→ βi in γi

2. replace βi with Ai to generate γi−1

This takes 2n steps, where n is the length of the derivation

7

Stack implementation

One scheme to implement a handle-pruning, bottom-up parser is called a
shift-reduce parser.

Shift-reduce parsers use a stack and an input buffer

1. initialize stack with $

2. Repeat until the top of the stack is the goal symbol and the input
token is $

a) find the handle
if we don’t have a handle on top of the stack, shift an input symbol
onto the stack

b) prune the handle
if we have a handle A→ β on the stack, reduce

i) pop | β | symbols off the stack

ii) push A onto the stack

8

Example: back to x − 2 ∗ y

1 〈goal〉 ::= 〈expr〉
2 〈expr〉 ::= 〈expr〉+ 〈term〉
3 | 〈expr〉−〈term〉
4 | 〈term〉
5 〈term〉 ::= 〈term〉 ∗ 〈factor〉
6 | 〈term〉/〈factor〉
7 | 〈factor〉
8 〈factor〉 ::= num

9 | id

Stack Input Action
$ id − num ∗ id shift
$id − num ∗ id reduce 9
$〈factor〉 − num ∗ id reduce 7
$〈term〉 − num ∗ id reduce 4
$〈expr〉 − num ∗ id shift
$〈expr〉 − num ∗ id shift
$〈expr〉 − num ∗ id reduce 8
$〈expr〉 − 〈factor〉 ∗ id reduce 7
$〈expr〉 − 〈term〉 ∗ id shift
$〈expr〉 − 〈term〉 ∗ id shift
$〈expr〉 − 〈term〉 ∗ id reduce 9
$〈expr〉 − 〈term〉 ∗ 〈factor〉 reduce 5
$〈expr〉 − 〈term〉 reduce 3
$〈expr〉 reduce 1
$〈goal〉 accept

1. Shift until top of stack is the right end of a handle

2. Find the left end of the handle and reduce

5 shifts + 9 reduces + 1 accept

9

Shift-reduce parsing

Shift-reduce parsers are simple to understand

A shift-reduce parser has just four canonical actions:

1. shift — next input symbol is shifted onto the top of the stack

2. reduce — right end of handle is on top of stack;
locate left end of handle within the stack;
pop handle off stack and push appropriate non-terminal LHS

3. accept — terminate parsing and signal success

4. error — call an error recovery routine

Key insight: recognize handles with a DFA.

10

LR parsing

The skeleton parser:

push s0
token ← next token()

repeat forever
s ← top of stack

if action[s,token] = "shift si" then
push si
token ← next token()

else if action[s,token] = "reduce A→ β"
then
pop | β | states
s′← top of stack
push goto[s′,A]

else if action[s, token] = "accept" then
return

else error()

This takes k shifts, l reduces, and 1 accept, where k is the length of the
input string and l is the length of the reverse rightmost derivation

11

Example tables

state ACTION GOTO
id + ∗ $ 〈expr〉 〈term〉 〈factor〉

0 s4 – – – 1 2 3
1 – – – acc – – –
2 – s5 – r3 – – –
3 – r5 s6 r5 – – –
4 – r6 r6 r6 – – –
5 s4 – – – 7 2 3
6 s4 – – – – 8 3
7 – – – r2 – – –
8 – r4 – r4 – – –

The Grammar
1 〈goal〉 ::= 〈expr〉
2 〈expr〉 ::= 〈term〉+ 〈expr〉
3 | 〈term〉
4 〈term〉 ::= 〈factor〉 ∗ 〈term〉
5 | 〈factor〉
6 〈factor〉 ::= id

Note: This is a simple little right-recursive grammar; not the same as in previous lectures.

12

Example using the tables

Stack Input Action
$ 0 id∗ id+ id$ s4
$ 0 4 ∗ id+ id$ r6
$ 0 3 ∗ id+ id$ s6
$ 0 3 6 id+ id$ s4
$ 0 3 6 4 + id$ r6
$ 0 3 6 3 + id$ r5
$ 0 3 6 8 + id$ r4
$ 0 2 + id$ s5
$ 0 2 5 id$ s4
$ 0 2 5 4 $ r6
$ 0 2 5 3 $ r5
$ 0 2 5 2 $ r3
$ 0 2 5 7 $ r2
$ 0 1 $ acc

13

LR(k) grammars

Informally, we say that a grammar G is LR(k) if, given a rightmost
derivation

S = γ0⇒ γ1⇒ γ2⇒ ··· ⇒ γn = w,

we can, for each right-sentential form in the derivation,

1. isolate the handle of each right-sentential form, and

2. determine the production by which to reduce

by scanning γi from left to right, going at most k symbols beyond the right
end of the handle of γi.

14

Why study LR grammars?

LR(1) grammars are often used to construct parsers.

We call these parsers LR(1) parsers.

• everyone’s favorite parser

• virtually all context-free programming language constructs can be
expressed in an LR(1) form

• LR grammars are the most general grammars parsable by a
deterministic, bottom-up parser

• efficient parsers can be implemented for LR(1) grammars

• LR parsers detect an error as soon as possible in a left-to-right scan
of the input

• LR grammars describe a proper superset of the languages
recognized by predictive (i.e., LL) parsers

15

Parsing review

Recursive descent

A hand coded recursive descent parser directly encodes a grammar
(typically an LL(1) grammar) into a series of mutually recursive
procedures. It has most of the linguistic limitations of LL(1).

LL(k)

An LL(k) parser must be able to recognize the use of a production
after seeing only the first k symbols of its right hand side.

LR(k)

An LR(k) parser must be able to recognize the occurrence of the right
hand side of a production after having seen all that is derived from
that right hand side with k symbols of lookahead.

16

Facts to remember

LR is more expressive than LL.

LL is more expressive than RE.

A RE can be parsed by a DFA; A CFG can be parsed by DFA+Stack (in
LR). Why Stack?

17

Applications

Machine translation.

Random test generation.

Reverse engineering.

