Register allocation

IR —= instruction machine

selection alloca code

errors

Register allocation:

e have value in a register when used
e limited resources

e changes instruction choices

e can move loads and stores

e optimal allocation is difficult
= NP-complete for k > 1 registers

Liveness analysis

Problem:

¢ |R contains an unbounded number of temporaries

e machine has bounded number of registers

Approach:

e temporaries with disjoint /ive ranges can map to same register

e If not enough registers then spill some temporaries
(i.e., keep them in memory)

The compiler must perform liveness analysis for each temporary:

It is /ive if it holds a value that may be needed in future

Control flow analysis

Before performing liveness analysis, need to understand the control flow
by building a control flow graph (CFG):

e nodes may be individual program statements or basic blocks

e edges represent potential flow of control

Out-edges from node n lead to successor nodes, succ|n|
In-edges to node n come from predecessor nodes, pred|n|
Example:

a0

L1: b+a+1
C<C+Db
a<bx?2
If a<N gotolL4
returnc

Liveness analysis

Gathering liveness information is a form of data flow analysis operating
over the CFG:

e liveness of variables “flows” around the edges of the graph
e assignments define a variable, v.

— def(v) = set of graph nodes that defiue
— defln| = set of variables defined by

e Occurrences of vin expressions use it:

— use(v) = set of nodes that use
— use|n| = set of variables used im

Liveness: v is live on edge e if there is a directed path from eto a use of v
that does not pass through any def(v)

v is live-in at node n if live on any of n’s in-edges
vis live-out at n if live on any of n's out-edges

v € use[n] = v live-in atn

v live-in atn = v live-out at allm € pred|n|

v live-out atn,v ¢ defin| = v live-in atn

Liveness analysis

Define: -
in[n]: variables live-in at n
inn]: variables live-out at n

Then:
outinj]= | J in[g
sesucc(n)
succin] = @= outn] = @
Note:

in[n] © useln|

in[n] 2 out{n] — defin|

useln] and defln] are constant (independent of control flow)
Now, v € in|n| iff. v € use[n| or v € out|n] — def|n]

Thus, in[n] = use[n| U (out{n| — defin])

Iterative solution for liveness

foreach n
in[n| < @
outn| < @
repeat
foreach n
in'[n] < in[n[;

out’[n| < out[n|;
[< useln|U (out|n| — def[n])

n|
ut[n] <= Usesuccyn) Nl
in

until in'[n] [n] A out’[n] = out[n],Vn

Notes:

e should order computation of inner loop to follow the “flow”
e liveness flows backward along control-flow arcs, from out to in
e nodes can just as easily be basic blocks to reduce CFG size

e could do one variable at a time, from uses back to defs, noting
liveness along the way

Iterative solution for liveness

Complexity: for input program of size N

e <N nodes in CFG
=< N variables
= N elements per in/out
= O(N) time per set-union
e for loop performs constant number of set operations per node
= O(N?) time for for loop

e each iteration of repeat loop can only add to each set
sets can contain at most every variable
— sizes of all in and out sets sum to 2N?,
bounding the number of iterations of the repeat loop

= worst-case complexity of O(N%)

e ordering can cut repeat loop down to 2-3 iterations
= O(N) or O(N?) in practice

Iterative solution for liveness

Least fixed points

There is often more than one solution for a given dataflow problem (see
example).

Any solution to dataflow equations is a conservative approximation:

e V has some later use downstream from n
= V € out(n)

e but not the converse

Conservatively assuming a variable is live does not break the program,;
just means more registers may be needed.

Assuming a variable is dead when it is really live will break things.
May be many possible solutions but want the “smallest”. the least fixpoint.

The iterative liveness computation computes this least fixpoint.

Another DF analysis example

 Problem: given a program, identify all possible null

pointer dereference errors.

1. p=&A;
2.1=0;
3. While (i<N) {
4. sum=sum+*p;
5. if(i>3)
6. p=0;
else
7. p++;
8. i++

}

There is a null pointer
dereference error in
the code snippet on
the left, when the
program takes the
path 6-8-3-4

* A naive solution: identify all pointer dereference points, for each deref

point, enumerate all backward paths from the point to see if a null
assignment (def) can be encountered without encountering another def.

— Problem: path explosion and loops

e Data flow equation:

ININI=Upprecn OUTIP]
OUT[n]=(IN[n]- all null defs)U (if nis a null def then {n} else {})

e Full algorithm:

Initialize IN[] and OUT(] to {}
changed =1;
While (changed) {
changed =0
for (each node n in topological order)
update IN [n] and OUT[n] according to the above equations.

changed = new IN[n]/OUT[n] is observed
}

e Proof of Termination:

IN[N]=U s¢prednQUTIP]
OUT[n]=(IN[n]- all null defs)U (if nis a null def then {n} else {})

The set of all null defs and the set (if n is a null def then {n} else{}) are
constants regarding a specific n, lets represent them as Kill and Gen, the
equation becomes:

IN[n]=Up€pred(n)OUT[p]
OUT[n]=(IN[n]- Kill)JU Gen

Since they are constant, the two equations are monotonic, meaning IN[n]
increases if OUT[p] increases, and vice versa

And, the maximal value of IN[n] and OUT[n] is bounded.

