Scanner

- maps characters into *tokens* – the basic unit of syntax

 \[x = x + y; \]
 becomes

 \[\langle \text{id, } x \rangle = \langle \text{id, } x \rangle + \langle \text{id, } y \rangle; \]

- character string value for a *token* is a *lexeme*

- typical tokens: *number, id, +, -, *, /, do, end*

- eliminates white space (*tabs, blanks, comments*)

- a key issue is speed

 ⇒ use specialized recognizer (as opposed to *lex*)
A scanner must recognize the units of syntax
Some parts are easy:

white space

\[
\begin{align*}
<ws> & := <ws> \ ' ' \\
& | <ws> \ 't' \\
& | ' ' \\
& | '\t'
\end{align*}
\]

keywords and operators

specified as literal patterns: do, end

comments

opening and closing delimiters: /* ··· */
Specifying patterns

A scanner must recognize the units of syntax

Other parts are much harder:

Identifiers

- Alphabetic followed by k alphanumerics (_, \$, &, \ldots)

Numbers

- Integers: 0 or digit from 1-9 followed by digits from 0-9
- Decimals: integer ' . ' digits from 0-9
- Reals: (integer or decimal) 'E' (+ or -) digits from 0-9
- Complex: '(real , real)'

We need a powerful notation to specify these patterns
Operations on languages

<table>
<thead>
<tr>
<th>Operation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>union of (L) and (M)</td>
<td>(L \cup M = {s \mid s \in L \text{ or } s \in M })</td>
</tr>
<tr>
<td>written (L \cup M)</td>
<td></td>
</tr>
<tr>
<td>concatenation of (L) and (M)</td>
<td>(LM = {st \mid s \in L \text{ and } t \in M })</td>
</tr>
<tr>
<td>written (LM)</td>
<td></td>
</tr>
<tr>
<td>Kleene closure of (L)</td>
<td>(L^* = \bigcup_{i=0}^{\infty} L^i)</td>
</tr>
<tr>
<td>written (L^*)</td>
<td></td>
</tr>
<tr>
<td>positive closure of (L)</td>
<td>(L^+ = \bigcup_{i=1}^{\infty} L^i)</td>
</tr>
<tr>
<td>written (L^+)</td>
<td></td>
</tr>
</tbody>
</table>
Regular expressions

Patterns are often specified as regular languages

Notations used to describe a regular language (or a regular set) include both regular expressions and regular grammars

Regular expressions (over an alphabet Σ):

1. ϵ is a RE denoting the set $\{\epsilon\}$
2. if $a \in \Sigma$, then a is a RE denoting $\{a\}$
3. if r and s are REs, denoting $L(r)$ and $L(s)$, then:

 (r) is a RE denoting $L(r)$

 $(r) \mid (s)$ is a RE denoting $L(r) \cup L(s)$

 $(r)(s)$ is a RE denoting $L(r)L(s)$

 $(r)^*$ is a RE denoting $L(r)^*$

If we adopt a precedence for operators, the extra parentheses can go away. We assume closure, then concatenation, then alternation as the order of precedence.
Examples

identifier

\[
letter \rightarrow (a \mid b \mid c \mid \ldots \mid z \mid A \mid B \mid C \mid \ldots \mid Z)
\]

\[
digit \rightarrow (0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9)
\]

\[
id \rightarrow letter \ (\ letter \mid digit \)^*
\]

numbers

\[
integer \rightarrow (+ \mid - \mid \varepsilon) \ (0 \mid (1 \mid 2 \mid 3 \mid \ldots \mid 9) \ digit^*)
\]

\[
decimal \rightarrow integer \ . \ (\ digit \)^*
\]

\[
real \rightarrow (integer \mid decimal) \ E \ (+ \mid -) \ digit^*
\]

\[
complex \rightarrow \ (\ real, real \)'
\]

Numbers can get much more complicated

Most programming language tokens can be described with REs

We can use REs to build scanners automatically
Algebraic properties of REs

<table>
<thead>
<tr>
<th>Axiom</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r</td>
<td>s = s</td>
</tr>
<tr>
<td>$r</td>
<td>(s</td>
</tr>
<tr>
<td>$(rs)t = r(st)$</td>
<td>concatenation is associative</td>
</tr>
<tr>
<td>$r(s</td>
<td>t) = rs</td>
</tr>
<tr>
<td>$(s</td>
<td>t)r = sr</td>
</tr>
<tr>
<td>$\varepsilon r = r$</td>
<td>ε is the identity for concatenation</td>
</tr>
<tr>
<td>$r\varepsilon = r$</td>
<td></td>
</tr>
<tr>
<td>$r^* = (r</td>
<td>\varepsilon)^*$</td>
</tr>
<tr>
<td>$r^{**} = r^*$</td>
<td>$*$ is idempotent</td>
</tr>
</tbody>
</table>
Examples

Let \(\Sigma = \{a,b\} \)

1. \(a|b \) denotes \(\{a,b\} \)

2. \((a|b)(a|b) \) denotes \(\{aa,ab,ba,bb\} \)
 i.e., \((a|b)(a|b) = aa|ab|ba|bb \)

3. \(a^* \) denotes \(\{\epsilon,a,aa,aaa,...\} \)

4. \((a|b)^* \) denotes the set of all strings of \(a \)'s and \(b \)'s (including \(\epsilon \))
 i.e., \((a|b)^* = (a^*b^*)^* \)

5. \(a|a^*b \) denotes \(\{a,b,ab,aab,aaab,aaaab,...\} \)
Recognizers

From a regular expression we can construct a

deterministic finite automaton (DFA)

Recognizer for identifier:

\[
\begin{align*}
\text{identifier} & \rightarrow (a \mid b \mid c \mid \ldots \mid z \mid A \mid B \mid C \mid \ldots \mid Z) \\
\text{letter} & \rightarrow (a \mid b \mid c \mid \ldots \mid z) \\
\text{digit} & \rightarrow (0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9) \\
\text{id} & \rightarrow \text{letter} \ (\text{letter} \mid \text{digit})^*
\end{align*}
\]
Code for the recognizer

```c
char ← next_char();
state ← 0; /* code for state 0 */
done ← false;
token_value ← "" /* empty string */
while( not done ) {
    class ← char_class[char];
    state ← next_state[class,state];
    switch(state) {
        case 1: /* building an id */
            token_value ← token_value + char;
            char ← next_char();
            break;
        case 2: /* accept state */
            token_type = identifier;
            done = true;
            break;
        case 3: /* error */
            token_type = error;
            done = true;
            break;
    }
}
return token_type;
```
Tables for the recognizer

Two tables control the recognizer.

<table>
<thead>
<tr>
<th>char_class:</th>
<th>$a-z$</th>
<th>$A-Z$</th>
<th>$0-9$</th>
<th>other</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>letter</td>
<td>letter</td>
<td>digit</td>
<td>other</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>next_state:</th>
<th>class</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>letter</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>digit</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>other</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Automatic construction

Scanner generators automatically construct code from RE-like descriptions

- construct a DFA
- use state minimization techniques
- emit code for the scanner
 (table driven or direct code)

A key issue in automation is an interface to the parser

`lex` is a scanner generator supplied with UNIX

- emits C code for scanner
- provides macro definitions for each token
 (used in the parser)
Grammars for regular languages

Can we place a restriction on the form of a grammar to ensure that it describes a regular language?

Provable fact:

For any RE r, \exists a grammar g such that $L(r) = L(g)$

Grammars that generate regular sets are called regular grammars:

They have productions in one of 2 forms:

1. $A \rightarrow aA$
2. $A \rightarrow a$

where A is any non-terminal and a is any terminal symbol

These are also called type 3 grammars (Chomsky)
More regular languages

Example: the set of strings containing an even number of zeros and an even number of ones

![NFA Diagram]

The RE is $(00 \mid 11)\ast((01 \mid 10)(00 \mid 11)\ast(01 \mid 10)(00 \mid 11)\ast)^\ast$
More regular expressions

What about the RE \((a \mid b)^*abb\) ?

State \(s_0\) has multiple transitions on \(a\)!
⇒ *nondeterministic finite automaton*

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_0)</td>
<td>({s_0, s_1})</td>
<td>({s_0})</td>
</tr>
<tr>
<td>(s_1)</td>
<td>–</td>
<td>({s_2})</td>
</tr>
<tr>
<td>(s_2)</td>
<td>–</td>
<td>({s_3})</td>
</tr>
</tbody>
</table>
A non-deterministic finite automaton (NFA) consists of:

1. a set of states $S = \{s_0, \ldots, s_n\}$
2. a set of input symbols Σ (the alphabet)
3. a transition function $move$ mapping state-symbol pairs to sets of states
4. a distinguished start state s_0
5. a set of distinguished accepting or final states F

A Deterministic Finite Automaton (DFA) is a special case of an NFA:

1. no state has a ε-transition, and
2. for each state s and input symbol a, there is at most one edge labelled a leaving s

A DFA accepts x iff. \exists a unique path through the transition graph from s_0 to a final state such that the edges spell x.
DFAs and NFAs are equivalent

1. DFAs are clearly a subset of NFAs

2. Any NFA can be converted into a DFA, by simulating sets of simultaneous states:
 - each DFA state corresponds to a set of NFA states
 - possible exponential blowup
NFA to DFA using the subset construction: example 1

\[\text{a|b} \]

\[\begin{array}{ccc}
 s_0 & \xrightarrow{a} & s_1 & \xrightarrow{b} & s_2 & \xrightarrow{b} & s_3 \\
\end{array} \]

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>({s_0})</td>
<td>({s_0, s_1})</td>
<td>({s_0})</td>
</tr>
<tr>
<td>({s_0, s_1})</td>
<td>({s_0, s_1})</td>
<td>({s_0, s_2})</td>
</tr>
<tr>
<td>({s_0, s_2})</td>
<td>({s_0, s_1})</td>
<td>({s_0, s_3})</td>
</tr>
<tr>
<td>({s_0, s_3})</td>
<td>({s_0, s_1})</td>
<td>({s_0})</td>
</tr>
</tbody>
</table>

\[\begin{array}{ccc}
 \{s_0\} & \xrightarrow{a} & \{s_0, s_1\} & \xrightarrow{b} & \{s_0, s_2\} & \xrightarrow{b} & \{s_0, s_3\} \\
\end{array} \]
Constructing a DFA from a regular expression

RE \rightarrow NFA w/ ε moves
 build NFA for each term
 connect them with ε moves

NFA w/ ε moves to DFA
 construct the simulation
 the "subset" construction

DFA \rightarrow minimized DFA
 merge compatible states

DFA \rightarrow RE
 construct $R_{ij}^k = R_{ik}^{k-1} (R_{kk}^{k-1})^* R_{kj}^{k-1} \cup R_{ij}^{k-1}$
RE to NFA

$N(\varepsilon) \xleftarrow{} \circ \xrightarrow{} \circ$

$N(a) \xleftarrow{} \circ \xrightarrow{a} \circ$

$N(A|B) \xleftarrow{} \circ \xrightarrow{} \circ$

$N(AB) \xleftarrow{} \circ \xrightarrow{} \circ$

$N(A^*) \xleftarrow{} \circ \xrightarrow{} \circ$
RE to NFA: example

\[a \mid b \]

\[(a \mid b)^* \]

\[abb \]
NFA to DFA: the subset construction

Input: NFA N
Output: A DFA D with states $Dstates$ and transitions $Dtrans$ such that $L(D) = L(N)$
Method: Let s be a state in N and T be a set of states, and using the following operations:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε-closure(s)</td>
<td>set of NFA states reachable from NFA state s on ε-transitions alone</td>
</tr>
<tr>
<td>ε-closure(T)</td>
<td>set of NFA states reachable from some NFA state s in T on ε-transitions alone</td>
</tr>
<tr>
<td>move(T, a)</td>
<td>set of NFA states to which there is a transition on input symbol a from some NFA state s in T</td>
</tr>
</tbody>
</table>

add state $T = \varepsilon$-closure(s_0) unmarked to $Dstates$
while \exists unmarked state T in $Dstates$
 mark T
 for each input symbol a
 $U = \varepsilon$-closure(move(T, a))
 if $U \notin Dstates$ then add U to $Dstates$ unmarked
 $Dtrans[T,a] = U$
 endfor
endwhile

ε-closure(s_0) is the start state of D
A state of D is final if it contains at least one final state in N
NFA to DFA using subset construction: example 2

\[
\begin{align*}
A &= \{0, 1, 2, 4, 7\} & D &= \{1, 2, 4, 5, 6, 7, 9\} \\
B &= \{1, 2, 3, 4, 6, 7, 8\} & E &= \{1, 2, 4, 5, 6, 7, 10\} \\
C &= \{1, 2, 4, 5, 6, 7\}
\end{align*}
\]

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>(B)</td>
<td>(C)</td>
</tr>
<tr>
<td>(B)</td>
<td>(B)</td>
<td>(D)</td>
</tr>
<tr>
<td>(C)</td>
<td>(B)</td>
<td>(C)</td>
</tr>
<tr>
<td>(D)</td>
<td>(B)</td>
<td>(E)</td>
</tr>
<tr>
<td>(E)</td>
<td>(B)</td>
<td>(C)</td>
</tr>
</tbody>
</table>
Limits of regular languages

Not all languages are regular

One cannot construct DFAs to recognize these languages:

- \(L = \{ p^k q^k \} \)
- \(L = \{ wcw^r \mid w \in \Sigma^* \} \)

Note: neither of these is a regular expression!
(DFAs cannot count!)

But, this is a little subtle. One can construct DFAs for:

- alternating 0’s and 1’s
 \((\varepsilon \mid 1)(01)^*(\varepsilon \mid 0) \)
- sets of pairs of 0’s and 1’s
 \((01 \mid 10)^+ \)
Ramification - Internet Protocol

How does your browser establish a connection with a web server?

• The client sends a SYN message to the server.

• In response, the server replies with a SYN-ACK.

• Finally the client sends an ACK back to the server.

This is done through two DFAs in the client and server, respectively.
Ramification - Intrusion Detection

<table>
<thead>
<tr>
<th>Code</th>
<th>Operating System</th>
</tr>
</thead>
<tbody>
<tr>
<td>FILE * f;</td>
<td></td>
</tr>
<tr>
<td>f=fopen("demo", "r");</td>
<td>SYS_OPEN</td>
</tr>
<tr>
<td>strcpy(...); //vulnerability</td>
<td>SYS_WRITE</td>
</tr>
<tr>
<td>if (!f)</td>
<td>SYS_READ</td>
</tr>
<tr>
<td>printf("Fail to open\n");</td>
<td></td>
</tr>
<tr>
<td>else</td>
<td></td>
</tr>
<tr>
<td>fgets(f, buf);</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

A DFA will be exercised simultaneously with the program on the OS side to detect intrusion.