Scanner

maps characters into tokens – the basic unit of syntax

$$x = x + y;$$

becomes

$$< id, x > = < id, x > + < id, y > ;$$

- character string value for a *token* is a *lexeme*
- typical tokens: *number*, *id*, +, -, *, /, do, end
- eliminates white space (tabs, blanks, comments)
- a key issue is speed
 - ⇒ use specialized recognizer (as opposed to lex)

Specifying patterns

A scanner must recognize the units of syntax Some parts are easy:

Specifying patterns

A scanner must recognize the units of syntax Other parts are much harder:

```
identifiers
    alphabetic followed by k alphanumerics (_, $, &, ...)

numbers
    integers: 0 or digit from 1-9 followed by digits from 0-9
    decimals: integer '.' digits from 0-9
    reals: (integer or decimal) 'E' (+ or -) digits from 0-9
    complex: '(' real ', ' real ')'
```

Operations on languages

Operation	Definition
union of L and M	$L \cup M = \{s \mid s \in L \text{ or } s \in M\}$
written $L \cup M$	
concatenation of L and M	$LM = \{ st \mid s \in L \text{ and } t \in M \}$
written <i>LM</i>	
Kleene closure of L	$L^* = \bigcup_{i=0}^{\infty} L^i$
written L^*	
$\overline{\hspace{1cm}}$ positive closure of L	$L^+ = \bigcup_{i=1}^{\infty} L^i$
written L^+	

Regular expressions

Patterns are often specified as regular languages

Notations used to describe a regular language (or a regular set) include both *regular expressions* and *regular grammars*

Regular expressions (*over an alphabet* Σ):

- 1. ε is a RE denoting the set $\{\varepsilon\}$
- 2. if $a \in \Sigma$, then a is a RE denoting $\{a\}$
- 3. if r and s are REs, denoting L(r) and L(s), then:
 - (r) is a RE denoting L(r)
 - $(r) \mid (s)$ is a RE denoting $L(r) \cup L(s)$
 - (r)(s) is a RE denoting L(r)L(s)
 - $(r)^*$ is a RE denoting $L(r)^*$

If we adopt a *precedence* for operators, the extra parentheses can go away. We assume *closure*, then *concatenation*, then *alternation* as the order of precedence.

Examples

 $real \rightarrow (integer \mid decimal) E (+ \mid -) digit^*$

Numbers can get much more complicated

complex → '(' real , real ')'

Most programming language tokens can be described with REs We can use REs to build scanners automatically

Algebraic properties of REs

Axiom	Description	
r s=s r	is commutative	
r (s t) = (r s) t	is associative	
(rs)t = r(st)	concatenation is associative	
r(s t) = rs rt	concatenation distributes over	
(s t)r = sr tr		
$\varepsilon r = r$	ϵ is the identity for concatenation	
$r\epsilon = r$		
$r^* = (r \varepsilon)^*$	relation between * and ϵ	
$r^{**} = r^*$	* is idempotent	

Examples

Let
$$\Sigma = \{a, b\}$$

- 1. a|b denotes $\{a,b\}$
- 2. (a|b)(a|b) denotes $\{aa,ab,ba,bb\}$ i.e., (a|b)(a|b) = aa|ab|ba|bb
- 3. a^* denotes $\{\varepsilon, a, aa, aaa, \ldots\}$
- 4. $(a|b)^*$ denotes the set of all strings of a's and b's (including ϵ) i.e., $(a|b)^* = (a^*b^*)^*$
- 5. $a|a^*b$ denotes $\{a,b,ab,aab,aaab,aaab,\ldots\}$

Recognizers

From a regular expression we can construct a deterministic finite automaton (DFA)

Recognizer for *identifier*:

identifier

letter →
$$(a | b | c | ... | z | A | B | C | ... | Z)$$

 $digit$ → $(0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)$
 id → $letter$ ($letter$ | $digit$)*

Code for the recognizer

```
char \leftarrow next\_char();
state \leftarrow 0; /* code for state 0 */
done \leftarrow false;
token_value ← "" /* empty string */
while( not done ) {
   class ← char_class[char];
   state ← next_state[class,state];
   switch(state) {
      case 1: /* building an id */
         token_value ← token_value + char;
         char \leftarrow next\_char();
         break;
      case 2: /* accept state */
         token_type = identifier;
         done = true;
         break;
      case 3: /* error */
         token_type = error;
         done = true;
         break;
return token_type;
```

Tables for the recognizer

Two tables control the recognizer

To change languages, we can just change tables

Automatic construction

Scanner generators automatically construct code from RE-like descriptions

- construct a DFA
- use state minimization techniques
- emit code for the scanner (table driven or direct code)

A key issue in automation is an interface to the parser

lex is a scanner generator supplied with UNIX

- emits C code for scanner
- provides macro definitions for each token (used in the parser)

Grammars for regular languages

Can we place a restriction on the *form* of a grammar to ensure that it describes a regular language?

Provable fact:

For any RE
$$r$$
, \exists a grammar g such that $L(r) = L(g)$

Grammars that generate regular sets are called *regular grammars*:

They have productions in one of 2 forms:

- 1. $A \rightarrow aA$
- **2.** $A \rightarrow a$

where A is any non-terminal and a is any terminal symbol

These are also called *type 3* grammars (Chomsky)

More regular languages

Example: the set of strings containing an even number of zeros and an even number of ones

The RE is $(00 \mid 11)^*((01 \mid 10)(00 \mid 11)^*(01 \mid 10)(00 \mid 11)^*)^*$

More regular expressions

What about the RE $(a \mid b)^*abb$?

State s_0 has multiple transitions on a!

⇒ nondeterministic finite automaton

	а	b
s_0	$\{s_0, s_1\}$	$\{s_0\}$
s_1	_	{ <i>s</i> ₂ }
s_2	_	$\{s_3\}$

Finite automata

A non-deterministic finite automaton (NFA) consists of:

- 1. a set of *states* $S = \{s_0, ..., s_n\}$
- 2. a set of input symbols Σ (the alphabet)
- 3. a transition function *move* mapping state-symbol pairs to sets of states
- 4. a distinguished start state s_0
- 5. a set of distinguished *accepting* or *final* states *F*

A Deterministic Finite Automaton (DFA) is a special case of an NFA:

- 1. no state has a ε -transition, and
- 2. for each state *s* and input symbol *a*, there is at most one edge labelled *a* leaving *s*

A DFA *accepts* x iff. \exists a *unique* path through the transition graph from s_0 to a final state such that the edges spell x.

DFAs and NFAs are equivalent

- 1. DFAs are clearly a subset of NFAs
- 2. Any NFA can be converted into a DFA, by simulating sets of simultaneous states:
 - each DFA state corresponds to a set of NFA states
 - possible exponential blowup

NFA to DFA using the subset construction: example 1

	а	b
$-\{s_0\}$	$\{s_0, s_1\}$	$\{s_0\}$
$\{s_0, s_1\}$	$\{s_0, s_1\}$	$\{s_0, s_2\}$
$\{s_0, s_2\}$	$\{s_0, s_1\}$	$\{s_0, s_3\}$
$\{s_0,s_3\}$	$\{s_0, s_1\}$	$\{s_0\}$

Constructing a DFA from a regular expression

RE →NFA w/ε moves build NFA for each term connect them with ε moves

NFA w/ε moves to DFA construct the simulation the "subset" construction

DFA → minimized DFA merge compatible states

RE to NFA

RE to NFA: example

NFA to DFA: the subset construction

Input: NFA N

Output: A DFA D with states Dstates and transitions Dtrans such that L(D) = L(N)

Method: Let s be a state in N and T be a set of states, and using the following operations:

Definition
set of NFA states reachable from NFA state s on ϵ -transitions
alone
set of NFA states reachable from some NFA state s in T on
ε-transitions alone
set of NFA states to which there is a transition on input symbol a from some NFA state s in T

```
add state T = \varepsilon-closure(s_0) unmarked to Dstates while \exists unmarked state T in Dstates mark T for each input symbol a U = \varepsilon-closure(move(T, a)) if U \not\in Dstates then add U to Dstates unmarked Dtrans[T, a] = U endfor endwhile
```

 ε -closure(s_0) is the start state of D

A state of D is final if it contains at least one final state in N

NFA to DFA using subset construction: example 2

$$A = \{0,1,2,4,7\} \qquad D = \{1,2,4,5,6,7,9\} \qquad \begin{array}{c|cccc} & a & b \\ \hline A & B & C \\ B = \{1,2,3,4,6,7,8\} & E = \{1,2,4,5,6,7,10\} & C & B & C \\ C = \{1,2,4,5,6,7\} & D & B & E \\ E & B & C & C \\ \end{array}$$

Limits of regular languages

Not all languages are regular

One cannot construct DFAs to recognize these languages:

- $\bullet \ L = \{p^k q^k\}$
- $L = \{wcw^r \mid w \in \Sigma^*\}$

Note: neither of these is a regular expression! (DFAs cannot count!)

But, this is a little subtle. One can construct DFAs for:

- alternating 0's and 1's $(\epsilon \mid 1)(01)^*(\epsilon \mid 0)$
- sets of pairs of 0's and 1's
 (01 | 10)⁺

Ramification - Internet Protocol

How does your browser establish a connection with a web server?

- The client sends a SYN message to the server.
- In response, the server replies with a SYN-ACK.
- Finally the client sends an ACK back to the server.

This is done through two DFAs in the client and server, respectively.

Ramification - Intrusion Detection

```
Code
FILE * f;
f=fopen("demo", "r");
strcpy(...); //vulnerability
if (!f)
   printf("Fail to open\n");
else
   fgets(f, buf);
...
Code
Operating System

SYS_OPEN

SYS_WRITE

SYS_WRITE

SYS_READ
```

A DFA will be exercised simultaneously with the program on the OS side to detect intrusion.