
CS 352: Compilers: Principles and Practice

Important facts:
Name: Dr. Xiangyu Zhang
Email: xyzhang@cs.purdue.edu

Office: LWSN 3154K

Basis for grades:
15% midterm 1
15% midterm 2
25% final
30% project
15% homeworks

CS352 Introduction 1

Things to do

• read Appel chapter 1

• make sure you have a working account

• start brushing up on Java

• review Java development tools

• find http://www.cs.purdue.edu/homes/xyzhang/spring09

• subscribe to the mailing list and the news group.

CS352 Introduction 2

Compilers

What is a compiler?

• a program that translates an executable program in one language into an

executable program in another language

• we expect the program produced by the compiler to be better, in some

way, than the original

What is an interpreter?

• a program that reads an executable program and produces the results of

running that program

• usually, this involves executing the source program in some fashion

This course deals mainly with compilers

Many of the same issues arise in interpreters

CS352 Introduction 3

How to Construct Compiler: A Dummy One

int x

x=1

x=x+2

if (x)

s1

is compiled to

mov 1, 0x800000 //x=1

add 2, 0x800000 //x=x+2

cmp 0x800000, 0

jz 1; //skip the next instr.;

compilation of s1;

A Dummy Compiler :

//fin is the input file, fout is the output file

int mem=0x800000;

hashmap var_mem;

while ((buf=readLine(fin)!=NULL) {

if (buf[0...2]=="int") { //handle "int x"

char v= buf[4];

var_mem.add (v, mem++);

}

if (buf[1]=="=" && isConstant(buf[2])) //handle "x=1"

fwrite(fout, "mov "+ buf[2]+", "+ var_mem.get(buf[0]));

...

}

}

CS352 Introduction 4

How to Construct Compiler: A Dummy One (cont.)

int x

x=1

x=x+2

if (x)

s1

is compiled to

mov 1, 0x800000 //x=1

add 2, 0x800000 //x=x+2

cmp 0x800000, 0

jz 1; //skip the next instr.;

compilation of s1;

A Dummy Compiler :

...

while ((buf=readLine(fin)!=NULL) {

...

if (buf[1]=="=" && buf[0]==buf[2] && isAdd(buf[3]) &&

isConstant(buf[4])) { //handle "x=x+2"

fwrite(fout, "add " + buf[4]+", "+ var_mem.get(buf[0]));

if (buf[0...1]=="if") { //handle "if (x)"

fwrite (fout, "cmp " + var_mem.get(buf[3]) + ",0");

fwrite (fout, "jz 1");

}

}

How many ways to fail the compiler?

CS352 Introduction 5

How many ways to fail the dummy compiler?

• White spaces;

• Variable names longer than 1;

• Complex expressions;

• Composite statements;

• A different architecture;

• ...

In this class: We learn techniques to build realistic compilers.

CS352 Introduction 6

Motivation

Why study compiler construction?

CS352 Introduction 7

A Core Subject in Computer Science

Bridge the gap between high level languages to low level artifacts.

Better understanding of many desgin choices in the field (stack, garbage
collection, classpath, etc.).

A problem solver instead of a mere programmer.

A microcosm of computer science (algorithm, systems, theory, architecture).

CS352 Introduction 8

Long Live Compilers: Isn’t it a solved problem?

Machines are constantly changing. Languages are constantly improving.

Changes in architecture ⇒ changes in compilers

• new features pose new problems

• changing costs lead to different concerns

• old solutions need re-engineering

CS352 Introduction 9

Broad Ramifications

Security

• Security vulnerabilities in programs;

• Intrusion detection;

• Information protection;

• Spam filtering;

CS352 Introduction 10

Broad Ramifications

Software Engineering

• Debugging - tracing;

• Testing - test automation;

• Performance tuning - profiling;

Data Bases

CS352 Introduction 11

Abstract view

errors

compilercode code
source machine

Implications:

• recognize legal (and illegal) programs

• generate correct code

• manage storage of all variables and code

• agreement on format for object (or assembly) code

CS352 Introduction 12

Traditional two pass compiler

code
source

code
machinefront

end
back
end

IR

errors

Implications:

• intermediate representation (IR)

• front end maps legal code into IR

• back end maps IR onto target machine

• simplify retargeting

• allows multiple front ends

• multiple passes ⇒ better code

CS352 Introduction 13

A fallacy

back
end

front
end

FORTRAN
code

front
end

front
end

front
end

back
end

back
end

code

code

code

C++

CLU

Smalltalk

target1

target2

target3

Can we build n×m compilers with n+m components?

• must encode all the knowledge in each front end

• must represent all the features in one IR

• must handle all the features in each back end

Limited success with low-level IRs
CS352 Introduction 14

Front end

code
source tokens

errors

scanner parser IR

Responsibilities:

• recognize legal procedure

• report errors

• produce IR

• preliminary storage map

• shape the code for the back end

Much of front end construction can be automated
CS352 Introduction 15

Front end

code
source tokens

errors

scanner parser IR

Scanner:

• maps characters into tokens – the basic unit of syntax

x = x + y;

becomes

<id, x> = <id, x> + <id, y> ;

• character string value for a token is a lexeme

• typical tokens: number, id, +, -, *, /, do, end

• eliminates white space (tabs, blanks, comments)

• a key issue is speed

⇒ use specialized recognizer (as opposed to lex)

CS352 Introduction 16

Front end

code
source tokens

errors

scanner parser IR

Parser:

• recognize context-free syntax

• guide context-sensitive analysis

• construct IR(s)

• produce meaningful error messages

• attempt error correction

Parser generators mechanize much of the work

CS352 Introduction 17

Front end

Context-free syntax is specified with a grammar

<sheep noise> ::= baa

| baa <sheep noise>

The noises sheep make under normal circumstances

This format is called Backus-Naur form (BNF)

Formally, a grammar G = (S,N,T,P) where

S is the start symbol
N is a set of non-terminal symbols
T is a set of terminal symbols
P is a set of productions or rewrite rules

(P : N → N ∪T)

CS352 Introduction 18

Front end

Context free syntax can be put to better use

1 <goal> ::= <expr>
2 <expr> ::= <expr> <op> <term>
3 | <term>
4 <term> ::= number

5 | id

6 <op> ::= +

7 | -

Simple expressions with addition and subtraction over tokens id and number

S = <goal>
T = number, id, +, -
N = <goal>, <expr>, <term>, <op>

P = 1, 2, 3, 4, 5, 6, 7

CS352 Introduction 19

Front end

Given a grammar, valid sentences can be derived by repeated substitution.

Prod’n. Result
<goal>

1 <expr>
2 <expr> <op> <term>
5 <expr> <op> y

7 <expr> - y

2 <expr> <op> <term> - y

4 <expr> <op> 2 - y

6 <expr> + 2 - y

3 <term> + 2 - y

5 x + 2 - y

To recognize a valid sentence in some CFG, we reverse this process and build
up a parse

CS352 Introduction 20

Front end

A parse can be represented by a parse, or syntax, tree

2><num:

<id:x>

<id: >y

goal

op

termopexpr

expr term

expr

term

-

+

Obviously, this contains a lot of unnecessary information

CS352 Introduction 21

Front end

So, compilers often use an abstract syntax tree

<id:x> 2><num:

<id: >y+

-

This is much more concise

Abstract syntax trees (ASTs) are often used as an IR between front end and
back end

CS352 Introduction 22

Back end

errors

IR allocation
register

selection
instruction machine

code

Responsibilities

• translate IR into target machine code

• choose instructions for each IR operation

• decide what to keep in registers at each point

• ensure conformance with system interfaces

Automation has been less successful here
CS352 Introduction 23

Back end

errors

IR allocation
register machine

code
instruction
selection

Instruction selection:

• produce compact, fast code

• use available addressing modes

• pattern matching problem

– ad hoc techniques
– tree pattern matching
– string pattern matching
– dynamic programming

CS352 Introduction 24

Back end

errors

IR machine
code

instruction
selection

register
allocation

Register Allocation:

• have value in a register when used
• limited resources
• changes instruction choices
• can move loads and stores
• optimal allocation is difficult

Modern allocators often use an analogy to graph coloring

CS352 Introduction 25

Traditional three pass compiler

IR

errors

IRmiddlefront back
end end end

source
code code

machine

Code Improvement

• analyzes and changes IR

• goal is to reduce runtime

• must preserve values

CS352 Introduction 26

Optimizer (middle end)

opt nopt1 ... IR

errors

IR IR
IR

Modern optimizers are usually built as a set of passes

Typical passes

• constant propagation and folding

• code motion

• reduction of operator strength

• common subexpression elimination

• redundant store elimination

• dead code elimination

CS352 Introduction 27

The MiniJava compiler

Parse TranslateLex
Canon-Semantic

Analysis calize
Instruction
Selection

Frame
Layout

Parsing
Actions

S
ou

rc
e

P
ro

gr
am

T
ok

en
s

Pass 10

R
ed

uc
tio

ns

A
bs

tr
ac

t S
yn

ta
x

T
ra

ns
la

te

IR
 T

re
es

IR
 T

re
es

Frame

Tables

Environ-
ments

A
ss

em

Control
Flow

Analysis

Data
Flow

Analysis

Register
Allocation

Code
Emission Assembler

M
ac

hi
ne

 L
an

gu
ag

e

A
ss

em

F
lo

w
 G

ra
ph

In
te

rf
er

en
ce

 G
ra

ph

R
eg

is
te

r
A

ss
ig

nm
en

t

A
ss

em
bl

y
La

ng
ua

ge

R
el

oc
at

ab
le

 O
bj

ec
t C

od
e

Pass 1 Pass 4

Pass 5 Pass 8 Pass 9

Linker

Pass 2

Pass 3

Pass 6 Pass 7

CS352 Introduction 28

The MiniJava compiler phases

Lex Break source file into individual words, or tokens
Parse Analyse the phrase structure of program
Parsing
Actions

Build a piece of abstract syntax tree for each phrase

Semantic
Analysis

Determine what each phrase means, relate uses of variables to their defini-
tions, check types of expressions, request translation of each phrase

Frame Layout Place variables, function parameters, etc., into activation records (stack
frames) in a machine-dependent way

Translate Produce intermediate representation trees (IR trees), a notation that is not
tied to any particular source language or target machine

Canonicalize Hoist side effects out of expressions, and clean up conditional branches, for
convenience of later phases

Instruction
Selection

Group IR-tree nodes into clumps that correspond to actions of target-
machine instructions

Control Flow
Analysis

Analyse sequence of instructions into control flow graph showing all possi-
ble flows of control program might follow when it runs

Data Flow
Analysis

Gather information about flow of data through variables of program; e.g.,
liveness analysis calculates places where each variable holds a still-needed
(live) value

Register
Allocation

Choose registers for variables and temporary values; variables not simulta-
neously live can share same register

Code
Emission

Replace temporary names in each machine instruction with registers

CS352 Introduction 29

A straight-line programming language

Stm → Stm ; Stm CompoundStm
Stm → id := Exp AssignStm
Stm → print (ExpList) PrintStm
Exp → id IdExp
Exp → num NumExp
Exp → Exp Binop Exp OpExp
Exp → (Stm , Exp) EseqExp
ExpList → Exp , ExpList PairExpList
ExpList → Exp LastExpList
Binop → + Plus
Binop → − Minus
Binop → × Times
Binop → / Div

An example straight-line program:

a := 5+3; b := (print(a,a−1),10×a); print(b)

prints:

8 7

80

CS352 Introduction 30

Tree representation

a := 5+3; b := (print(a,a−1),10×a); print(b)

AssignStm

CompoundStm

a OpExp

PlusNumExp

5

NumExp

3

AssignStm

b EseqExp

PrintStm

PairExpList

IdExp

a

LastExpList

OpExp

MinusIdExp NumExp

a 1

OpExp

NumExp Times IdExp

a10

PrintStm

LastExpList

IdExp

b

CompoundStm

This is a convenient internal representation for a compiler to use.

CS352 Introduction 31

Java classes for trees

abstract class Stm {}
class CompoundStm extends Stm

Stm stm1, stm2;
CompoundStm(Stm s1, Stm s2)
{ stm1=s1; stm2=s2; }

}
class AssignStm extends Stm
{

String id; Exp exp;
AssignStm(String i, Exp e)
{ id=i; exp=e; }

}
class PrintStm extends Stm {

ExpList exps;
PrintStm(ExpList e)
{ exps=e; }

}

abstract class Exp {}
class IdExp extends Exp {

String id;
IdExp(String i) {id=i;}

}

class NumExp extends Exp {
int num;
NumExp(int n) {num=n;}

}
class OpExp extends Exp {

Exp left, right; int oper;
final static int
Plus=1,Minus=2,Times=3,Div=4;

OpExp(Exp l, int o, Exp r)
{ left=l; oper=o; right=r; }

}
class EseqExp extends Exp {

Stm stm; Exp exp;
EseqExp(Stm s, Exp e)
{ stm=s; exp=e; }

}
abstract class ExpList {}
class PairExpList extends ExpList {

Exp head; ExpList tail;
public PairExpList(Exp h, ExpList t)
{ head=h; tail=t; }

}
class LastExpList extends ExpList {

Exp head;
public LastExpList(Exp h) {head=h;}

}

CS352 Introduction 32

