Garbage Collection
Problem: When items are allocated from the heap, how do we know when to
free them?

e Solution 1: The programmer explicitly frees the memory.
e Pros: Easy for compiler

e Cons: Hard for programmer
e Ex: C/C++

e Solution 2: Free any variables that aren't live.

e Actually, use a heuristic of freeing variables that aren't reachable.
e This 1s garbage collection.



Mark-and-Sweep
e Can represent heap allocated records as a directed graph
e Step 1: Mark records with a DFS
e Step 2: Sweep the heap looking for unmarked nodes
e (Garbage is put into the freelist

Algorithm
Mark phase

e For each root x, do DFS(x)

Sweep Phase
e p < First address in heap
e While p <last address 1n heap
1. If record p 1s marked, unmark p
2.Else, let f; be the first field in p
p.f1 € freelist
freelist € p
3. p € p+(size of record p)
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Complexity

e R =number of reachable records

e H = size of the heap

e Amortized cost: (C,R+ C,H)/(H—-R)
e What does this mean?

Implementation Issues

e If we use recursion, the run-time stack could reach a size of H activation
records!

e If we use an explicit stack, we could still have a stack of size H words!

Pointer Reversal — Use the elements in the heap as the stack itself, reversing

the pointers as you go

o Array of Freelists — freelist[i] stores records of size i

e Fragmentation — Internal and External



Copying Collection
traverse graph
need two heaps
* from-space (working heap)
= to-space (heap for garbage collection)

redirect roots to to-space (new space)

copy records from old space to new space
" create 1Isomorphic copy in to-space

after all records moved, swap new and old space

copy 1s contiguous — no external fragmentation



Advantage:
- simplicity - no stack or pointer reversal required

- doesn’t move garbage

- makes free space contiguous,
o allocation cheap
o no freelist

Disadvantage:
- half of memory 1s wasted

- maintain accurate pointer
o heap pointers (next, scan)
o record pointer
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Pointer Forwarding

Given pointer p:
Redirect record from from-space to to-space

Case 1:
If p points to already copied record, p.f1 is forwarding pointer that tells where copy is in to-space.
Return forwarding pointer

Case 2:
If p points to record that has not been copied, copy record to the next free location in to-space and
store forwarding pointer into p.f1. Return forwarding pointer

Case 3:
p points outside of from-space (to-space/not garbage collected arena)



forward (p) {
If p points t from-space
then if p.f1 points to to-space
then return p.f1
else for each field fi of p

next.fi:=p.fi
p.f1 :=next
next := next + (size of *p)
return p.f1

else return p



Cheney's Algorithm
- Performs a breadth-first copy

1. Scan and Next points to start of to-space
Roots are forwarded
Records reachable from roots copied to to-space
Next pointer incremented accordingly

2. Scan €= Next contain records copied to to-space but fields not yet forwarded (ie
fields point to from-space)
- Scanning a record
Forwards fields of each record not yet in to-space
Both next and scan are incremented
Garbage collection done when scan reaches next



scan ;= begin-of-to-space

next := scan

for each root r
r .= forward(r)

while scan < next
for each field fi of *scan

scan.fi ;= forward(scan.fi)

scan :=scan + (size of *scan)
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Forward Roots Forward Roots
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Scan and Forward
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Scan and Forward
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Bad locality of reference:
- breadth-first copy
o records end far apart in memory
o bad for virtual memory and caching

Solution:
Hybrid of breadth-first and depth-first
Use breadth-first but forward the child of a node immediately, 1f

possible

Cost
- breadth-first copying & hybrid

Amortzed cost R/ (2R

Cs;R = Total cost of collection based on number of records copied
H/2 — R = heap divided by two — words/records to allocate before next collection

H >>R, cost approaches 0






