Garbage Collection
Problem: When items are allocated from the heap, how do we know when to
free them?

e Solution 1: The programmer explicitly frees the memory.
e Pros: Easy for compiler

e Cons: Hard for programmer
e Ex: C/C++

e Solution 2: Free any variables that aren't live.

e Actually, use a heuristic of freeing variables that aren't reachable.
e This 1s garbage collection.

Mark-and-Sweep
e Can represent heap allocated records as a directed graph
e Step 1: Mark records with a DFS
e Step 2: Sweep the heap looking for unmarked nodes
e (Garbage is put into the freelist

Algorithm
Mark phase

e For each root x, do DFS(x)

Sweep Phase
e p < First address in heap
e While p <last address 1n heap
1. If record p 1s marked, unmark p
2.Else, let f; be the first field in p
p.f1 € freelist
freelist € p
3. p € p+(size of record p)

Example

Beginning Heap
12 59
L, . .
37 . .
¢ L
*]
7 .
=
37 =

After mark phase

37

L 2

-}

During Sweep phase

12
b .
a7 .
15
7
.
.
.
. 7 ¢
freelist 9

After Sweep phase

12 £ 59
. . .
37 . .
.
15
IEEI
¢ .
.
.
.
. ki *
freeli=zt ?
37

Complexity

e R =number of reachable records

e H = size of the heap

e Amortized cost: (C,R+ C,H)/(H—-R)
e What does this mean?

Implementation Issues

e If we use recursion, the run-time stack could reach a size of H activation
records!

e If we use an explicit stack, we could still have a stack of size H words!

Pointer Reversal — Use the elements in the heap as the stack itself, reversing

the pointers as you go

o Array of Freelists — freelist[i] stores records of size i

e Fragmentation — Internal and External

Copying Collection
traverse graph
need two heaps
* from-space (working heap)
= to-space (heap for garbage collection)

redirect roots to to-space (new space)

copy records from old space to new space
" create 1Isomorphic copy in to-space

after all records moved, swap new and old space

copy 1s contiguous — no external fragmentation

Advantage:
- simplicity - no stack or pointer reversal required

- doesn’t move garbage

- makes free space contiguous,
o allocation cheap
o no freelist

Disadvantage:
- half of memory 1s wasted

- maintain accurate pointer
o heap pointers (next, scan)
o record pointer

fram- roots to- from- roots io-

Space Space space space
ll. 2 1 —
/ 5l
. |I " l
N f | 5"; 1
o] | /) R
= |/ | ::} '_' &
=] L —
&l | | 1
f— I| q
1-a i ——
- q
|/ | |e=—ngxt
=
4]
L next
[,.,-"'-.

imit — fimit

Pointer Forwarding

Given pointer p:
Redirect record from from-space to to-space

Case 1:
If p points to already copied record, p.f1 is forwarding pointer that tells where copy is in to-space.
Return forwarding pointer

Case 2:
If p points to record that has not been copied, copy record to the next free location in to-space and
store forwarding pointer into p.f1. Return forwarding pointer

Case 3:
p points outside of from-space (to-space/not garbage collected arena)

forward (p) {
If p points t from-space
then if p.f1 points to to-space
then return p.f1
else for each field fi of p

next.fi:=p.fi
p.f1 :=next
next := next + (size of *p)
return p.f1

else return p

Cheney's Algorithm
- Performs a breadth-first copy

1. Scan and Next points to start of to-space
Roots are forwarded
Records reachable from roots copied to to-space
Next pointer incremented accordingly

2. Scan €= Next contain records copied to to-space but fields not yet forwarded (ie
fields point to from-space)
- Scanning a record
Forwards fields of each record not yet in to-space
Both next and scan are incremented
Garbage collection done when scan reaches next

scan ;= begin-of-to-space

next := scan

for each root r
r .= forward(r)

while scan < next
for each field fi of *scan

scan.fi ;= forward(scan.fi)

scan :=scan + (size of *scan)

Example

Before
from to
12 roots — next
- ™ scan
‘ - o
ol __"'_ P
15-._ — il q
H—t— . i Y r
- ra
=1 f

L]

"'*Hm*"*%?LE‘IH

Forward Roots Forward Roots

from to
from

= SCdn

r13_|
|
]
]
=
o
1T
|
" k"‘-w._l
III %
18
.1.
(0]
[
ol |
o |
ol
|
]
II
W3
12
e
|
™ |
«|m| &

I*I?ITII*I*I
TR
H‘"«.'\ LY
1
I*ITITII*I*I
Y
RE
v Ny,
[=]+]%]

«— next

_
N

.

=
I_HT-I
[

I
HE

I
AN

:

EIEEIE

[+ le|S|[=]e][s] [2]]¢[+]=

DG
Il
Y

Scan and Forward

from

%II?I*IIIIT'I_}II*ITI_II*I*I I

L# [¢]S]]=[][2]¢]

e

r::u-::t;i-——— 7
\ V-

8 /”

|°|*|EI|"*|*|53|I*|T|<-| g

"l T
,f.‘-“-i%a
= - |l .l'l

| — scan

T next

from

[#[e[E][=]e]{e]e [2][¢[+] [[=[+][*]¢] II*I*I |

Scan and Forward

\

r-::u::l:ﬁ-—
™ E

o

hn

I°I*IEII*I*|5“5IITIT|

+— next

Scan and Forward

from

T T

T

+

=]

I?-'I.I-

LB RN IN NN

LR

12

{7

= SCan

+— next

—
[]|

AR R OEDE R

scan
*‘i next

Bad locality of reference:
- breadth-first copy
o records end far apart in memory
o bad for virtual memory and caching

Solution:
Hybrid of breadth-first and depth-first
Use breadth-first but forward the child of a node immediately, 1f

possible

Cost
- breadth-first copying & hybrid

Amortzed cost R/ (2R

Cs;R = Total cost of collection based on number of records copied
H/2 — R = heap divided by two — words/records to allocate before next collection

H >>R, cost approaches 0

