Chapter 6 Activation Records

Concepts

Memory allocation methods for different kinds of
variables.

Using registers to store local variables and
temporary results.

Using registers to pass parameters and return
results (for function calls).

Stack frames (also known as activation records).
Call/return sequence.
Code injection attacks.

Runtime Image of Application Virtual

Space
e A stack is maintained in the high address
program's virtual address space.
Variables local to a function are stack
allocated to the stack frame, also
known as the activation record, of *
that function.

 Variables and constants which are

free memor
shared among different functions Y

are allocated elsewhere. ?
— Variables with fixed sizes known at
compile time are allocated to static heap
locations. _
— Dynamic data structures are static data

allocated at run-time on the heap.

code

low address

Stack Frame (Activation Record)

 Each procedure
activation has an frame
associated activation
record or frame

stack
pointer

argument n

higher addresses

!

=
% @
o) = <
c < =
= @© o
E £ S
S 3 : =
£ 2 argument 2 o
argument 1 ®
local
variables
return address
O
. [
temporaries g
=
=
. Q
saved registers 3
155)
argument m
D‘) —l@
£ 5
S £
25
= .
o 2 argument 2
[44]
argument 1
=
(]
=
-
-
Q
3
53]

lower addresses

Calling Sequence

 The following actions are divided between the caller and the callee:

— 1. Evaluates actual arguments and puts values on the top of the
caller's AR.

— 2. Stores return address in caller's AR (sometimes in the callee’s AR).

— 3. Stores the caller's frame pointer register, or called the caller's AR
pointer, in callee's AR. (Current AR pointer is called the control link in
callee's AR.)

— 4. Modifies the frame pointer %fp, making it point to callee's AR.

— 5. Modifies the stack pointer %sp, making it point to the to top of the
stack.

— 6. Branches to callee's first instruction.
— 7. Callee begins execution.

e Are there other register contents to be stored? Who stores them?
Caller-save vs. callee-save.

Return Sequence

1. Caller needs to retrieve the function return
value.

2. Restores saved stack pointer for caller (=
current AR pointer).

3. Restores saved register contents for caller.
4. Return to the caller.

Demo One

e Use “gcc—g —o demo demo.c”

to Comp_lle void foo (int x, int y) {
e Use “objdump —d =S demo > int t;
dump” to disassemble the char name[16];
binary demo to dump t=7;
e Use “vim dump” to view the :f;g‘&(_)) trf_t“m;
the disassembled code. | Vi
int main()

{
foo(10,2);

}

Using Registers

e The memory references required to read and modify
the stack contents can be time consuming. The number
of such memory references can be reduced by using
registers.

— Passing parameters through registers.

* Most functions have few parameters. We can use, e.g. two
registers, Rx and Ry to pass parameters.

* The rest of the parameters, if any, can be passed in the stack.
— Returning function's results through registers.
e Dividing registers into two groups
— Caller-saved registers.
— Callee-saved registers.

Caller-Save or Callee-Save

A leaf function (a function that makes no function
calls) should use ...

Variables whose live ranges do not cover function
calls should use ...

Suppose a variable's value is always dead (i.e. is
no longer needed) in function g whenever g calls

another function, say f. Then that variable should
use ...

If a variable is alive across multiple calls in f, we
should use ...

Accessing Non-local Data

e Locals in outer procedures
— Stack links (static links)
e Linked data structures (graphs, linked lists,

variable length strings, ...) and other
dynamically allocated data structures.

— Heap

Code Injection Attacks

 The goal is to hijack a program execution.

e The idea is to overwrite the return address by
overflowing a buffer in the frame.

e The consequence is that when the function
returns, it returns to the malicious code.

Demo Two

#include "stdlib.h"

void foo(char * s) {
inti;
char c[4];
int j;
i=0;
for (j=0;j<strlen(s);j++) {
cljl=sljl;
}
printf("i=%x\n",i);
}

int main () {
foo ("aaaaaabb");

}

~

#include "stdlib.h"
int j;
void foo(char * s) {
inti;
char c[4];
i=0;
for (j=0;j<strlen(s);j++) {
c[jl=slil;
}
printf("i=%x\n",i);
}

//the pc of its entry is 0x08048421
void gee () {
printf("l am in gee\n");

}

int main () {
foo
("aaaaaabbaaaabbbb\x21\x84\x04\x08");

}

Execution result:

>./a.out

i=62626161

| am in gee

Segmentation fault (core dumped)

Given the following program:

inti, sum;

int SUM(int n) {
i=0;
sum=0;
while (i<n) {
i++;
sum=sum-+i;
}
}

Given n=2, its execution trace is like

i=0;

sum=0;
while (i<n)
i++;
sum=sum-+i;
while (i<n)
i++;
sum=sum-+i;
while

How can you change the program so that executing the new program
does the original computation and prints the trace. (Hint:

recall how you use printf to print trace).

Please sketch a visitor pattern that automatically does the
transformation for you. No class definition is needed, only
brief discuss of your idea on visiting structures like

CompositeStmt and WhileStmt, etc.

