CS 352 Midterm One (2/12/09)

name

1. Forthe regular expression of (a|€) (a | b)*, do the following.
a. (15 p) Translate the expression to a NFA .
b. (20 p) Translate the NFA to a DFA.

Note: Showing intermediate steps will help gaining partial credits.

(a)

a b
A={1,2,4,5,6,7,8,10,13} {3,6,7,8,9,10,12,13} {7,8,10,11,12,13}
B={3,6,7,8,9,10,12,13} {7,8,9,10,12,13} {7,8,10,11,12,13}
C={7,8,10,11,12,13} {7,8,9,10,12,13} {7,8,10,11,12,13}
D={7,8,9,10,12,13} {7,8,9,10,12,13} {7,8,10,11,12,13}

2. Given the following grammar
S ->a¥
S->bS|€

a. (10p)Are aS’s’, abS’, bS’, aS’b, bb sentential forms (Correction: a sentence is also a
sentential form)?
Only ab$’ is.

b. (10 p) Compute the FIRST and FOLLOW sets for the non-terminals.
FIRST(S)={a}; FIRST(S’)={b, € }

FOLLOW(S)={$} FOLLOW(S’)={$}
c. (10 p) Fill in the following LL(1) parse table.

a B S

S S->as’ - -

S - S’->bS’ S'-> €

d. (10 p) Show the steps of parsing “abb” using the LL(1) parsing algorithm in a table
similar to the following.

Stack Input
s$ abb$
as’s abb$
S’S bb$
bS’$ bb$
S’'S bS
bS’$ bS$
S'S $

$ $

(15 p) If the rule of S changes to S -> a S’ b, what are the new FIRST and FOLLOW
sets (5 p)? Can you briefly explain why the grammar is not LL(1) (3 p)? In what
situation does the parser have difficulty predicting the production rule (3 p)? Is the
grammar ambiguous? (4 p).

FIRST sets are the same; FOLLOW(S)={S} FOLLOW{S'}={b}

FIRST(bS’) has overlap with FOLLOW(S’).

The parser runs into trouble if it tries to use S’ to parse (part of) the input string and
it sees ‘b’, it cannot decide to use S’->bS’ or S-> €

f. (Extra Credit 5 p) Rewrite the grammar in (e) to make it LL(1) (Hint: first derive the
sentences described by the grammar and then rewrite based on the sentence
pattern).

S->ab$s’
S’->bS’| €

3. (10 p) Regular Expressions.
a. (4 p) Strings over the alphabet {a, b} with only one b.
b. (3 p) Strings over the alphabet {a, b} with an even number of b’s.
c. (3 p) Strings over the alphabet {a, b} with an odd number of b’s.

a. a*ba*
b. a*(ba*ba*)*
c. a*ba*(ba*ba*)*

