
CS 352 – Compilers: Principles and Practice
Final Examination, 12/11/05

Instructions: Read carefully through the whole exam first and plan your time. Note the
relative weight of each question and part (as a percentage ofthe score for the whole exam).
The total points is 100 (your grade will be the percentage of your answers that are correct).

This exam isclosed book, closed notes. You maynot refer to any book or other materials.

You havetwo hours to complete allnine (9) questions. Write your answers on this paper (use
both sides if necessary).

Name:

Student Number:

Signature:

1. (Runtime management: 25%) Consider the following MiniJava program:

class List {
public static void main (String[] a) {

List list1 = List.cons(1, List.cons(3, null));
List list2 = List.cons(2, List.cons(4, null));
list1.merge(list2);
System.out.println("");

}

int head;
List tail;
static List cons(int head, List tail) {

List list = new List();
list.head = head;
list.tail = tail;
return list;

}
void merge (List other) {

if (other == null) {
for (List l = this; l != null; l = l.tail)

Int.print(l.head);
} else if (this.head < other.head) {

Int.print(this.head);
other.merge(this.tail);

} else {
Int.print(other.head);
this.merge(other.tail);

}
}

}

class Int {
static void f(int i) {

if (i > 0) { Int.f(i/10); System.out.write(i-i/10*10+’0’); }
}
static void print(int i) {

if (i < 0) { System.out.write(’-’); i = -i; }
if (i == 0) System.out.write(’0’); else Int.f(i);
System.out.write(’ ’);

}
}

(a) (5%) What output does this program produce when theList.main method runs?

Answer:

1 2 3 4

2

(b) (20%) Show a diagram of PowerPC stack framesat the pointin List.merge where
Int.print is called with the value4. Show whereall the local variables and heap
variables are (assume that all local variables are stored inmemory in the stack, not
in registers); show the value of all integer variables in thestack and heap, as well as
variables containing references to the heap, and the objectthey refer to.

Answer:

STACK HEAP

+-------------+

main: | a |

| | +---+---+ +---+---+

| list1 ------+---+----------->| 1 | --+----+------->| 3 | |

| | | +---+---+ | +---+---+

| | | |

| | | +---+---+ | +---+---+

| list2 ------+---(----+------>| 2 | --+----(----+-->| 4 | |

| | | | +---+---+ | | +---+---+

| | | | | |

|-------------| | | | |

merge: | this -------+---+ | | |

| | | | |

| other------ +--------+ | |

|-------------| | | |

merge: | this -------+--------+ | |

| | | |

| other-------+-----------------------------+ |

|-------------| | |

merge: | this -------+-----------------------------+ |

| | |

| other-------+----------------------------------+

|-------------| |

merge: | this -------+----------------------------------+

| |

| other |

+-------------+

3

The remaining questions refer to the following Java class:

class Fact {

static int fact (int i) {

if (i > 1) return Fact.fact(i-1) * i;

return 1;

}

}

2. (IR trees; 10%) Draw an intermediate code tree for the methodFact.fact. Assume that the
word size of the target machine is 4 bytes, and that the resultis returned in register temporary
$a0 (as on the PowerPC). You may use named temporaries for each ofthe local variables or
formal parameters in the method (e.g., parameteri would be represented as temporaryi).
For unnamed intermediate results use numbered temporaries(t.1, t.2, etc.). For labels use
numbered labels (L.1, L.2, etc.).

Answer:

SEQ(

SEQ(

SEQ(

SEQ(

BGT(TEMP i, CONST 1, L.4, L.3),

SEQ(

SEQ(

LABEL L.4,

SEQ(

MOVE(

TEMP $a0,

MUL(CALL(NAME Fact.fact, SUB(TEMP i, CONST 1)), TEMP i)),

JUMP(NAME L.0))),

JUMP(NAME L.3))),

LABEL L.3),

SEQ(

MOVE(TEMP $a0, CONST 1),

JUMP(NAME L.0))),

LABEL L.0)

4

3. (Canonical trees; 10%) Transform the tree code from your answer to Question 2 intocanon-
ical trees (i.e., a straight-line sequence of treestatementscontaining no SEQ/ESEQ nodes).

Answer:

BGT(TEMP i, CONST 1, L.4, L.3)

LABEL L.4

MOVE(TEMP t.1, SUB(TEMP i, CONST 1))

MOVE(TEMP t.2, CALL(NAME Fact.fact, TEMP t.1))

MOVE(TEMP $a0, MUL(TEMP t.2, TEMP i))

JUMP(NAME L.0)

JUMP(NAME L.3)

LABEL L.3

MOVE(TEMP $a0, CONST 1)

JUMP(NAME L.0)

LABEL L.0

5

4. (Trace scheduling; 10%) Trace schedule thebasic blocksof your answer to Question 3 so
that each conditional jump is followed immediately by its false target.

Answer:

LABEL L.5

BGT(TEMP i, CONST 1, L.4, L.3)

LABEL L.3

MOVE(TEMP $a0, CONST 1)

JUMP(NAME L.0)

LABEL L.4

MOVE(TEMP t.1, SUB(TEMP i, CONST 1))

MOVE(TEMP t.2, CALL(NAME Fact.fact, TEMP t.1))

MOVE(TEMP $a0, MUL(TEMP t.2, TEMP i))

JUMP(NAME L.0)

LABEL L.6

JUMP(NAME L.3)

LABEL L.0

6

5. (CFGs; 10%) MJ generates the following instructions for this program:

mr i,$a0

L.5:

cmpwi i,1

bgt L.4

L.3:

li t.3,1

mr $a0,t.3

b L.0

L.4:

subi t.4,i,1

mr t.1,t.4

mr $a0,t.1

bl Fact.fact

mr t.2,$a0

mullw t.5,t.2,i

mr $a0,t.5

b L.0

L.6:

b L.3

L.0:

Identify thebasic blocksin this code, and draw its control flow graph (CFG) having nodes
which are thebasic blocksand edges representing control flow among them. Remember that
a call is not treated as a branch in the CFG. For eachbasic block, summarize the tempo-
raries/registers used (before they are defined) and defined by the block.

Answer:

0: i <- $a0 ; goto 1

mr i,$a0

1: <- i ; goto 3 2

L.5:

cmpwi i,1

bgt L.4

2: t.3 $a0 <- ; goto 5

L.3:

li t.3,1

mr $a0,t.3

b L.0

3: t.4 t.1 $a0 t.2 t.5 <- i ; goto 5

L.4:

7

subi t.4,i,1

mr t.1,t.4

mr $a0,t.1

bl Fact.fact

mr t.2,$a0

mullw t.5,t.2,i

mr $a0,t.5

b L.0

4: <- ; goto 2

L.6:

b L.3

5: <- $a0 ; goto

L.0:

8

6. (Liveness analysis; 10%) Assume we are compiling to a target architecture similar to the
PowerPC, as we did in the project, but having only the following general-purpose registers:

• $a0: a caller-saved argument/result register
• $s0: a callee-save register

Draw the CFG for the individualinstructionsin the code below, having nodes which are
the instructionsand edges representing control flow among them. Computelivenessinfor-
mation for eachinstruction in the code, as described in class, by tracing from uses back
to definitions, being careful to propagate along both edges at a merge point in the CFG.
Remember that a call instruction uses its argument registers and defines all argument/result
registers. I have already labeled the variables/registersusedanddefinedby each instruction
as “def <- use”. Moves are marked as “def <= use”.

DEF <- USE

mr i,$a0 i <= $a0

L.5:

cmpwi i,1 <- i

bgt L.4 <- : goto L.4 L.3

L.3:

li t.3,1 t.3 <-

mr $a0,t.3 $a0 <= t.3

b L.0 <- : goto L.0

L.4:

subi t.4,i,1 t.4 <- i

mr t.1,t.4 t.1 <= t.4

mr $a0,t.1 $a0 <= t.1

bl Fact.fact $a0 <- $a0

mr t.2,$a0 t.2 <= $a0

mullw t.5,t.2,i t.5 <- t.2 i

mr $a0,t.5 $a0 <= t.5

b L.0 <- : goto L.0

L.6:

b L.3 <- : goto L.3

L.0:

9

Answer:

DEF <- USE LIVEIN

mr i,$a0 i <= $a0 $a0

L.5: cmpwi i,1 <- i i

bgt L.4 <- : goto L.4 L.3 i

L.3: li t.3,1 t.3 <- t.3

mr $a0,t.3 $a0 <= t.3 $a0

b L.0 <- : goto L.0 $a0

L.4: subi t.4,i,1 t.4 <- i i

mr t.1,t.4 t.1 <= t.4 i t.4

mr $a0,t.1 $a0 <= t.1 i t.1

bl Fact.fact $a0 <- $a0 i $a0

mr t.2,$a0 t.2 <= $a0 i $a0

mullw t.5,t.2,i t.5 <- t.2 i i t.2

mr $a0,t.5 $a0 <= t.5 t.5

b L.0 <- : goto L.0 $a0

L.6: b L.3 <- : goto L.3 $a0

L.0: $a0

10

7. (Interference graphs; 10%) Fill in the following adjacency table representing the interference
graph for the program; an entry in the table should contain an× if the variable in the left
column interferes with the corresponding variable/register in the top row. Since machine
registers are pre-colored, we choose to omit adjacency information for them. Naturally,
you must still record if a non-precolored node (variable) interferes with a pre-colored node
(register); the columns for pre-colored nodes are there forthat purpose.

Also, record theunconstrainedmove-related nodes in the table by placing an◦ in any empty
entry where the variable in the left column is the source or target of any move involving the
variable/register in the top row.Nodes that are move-related should not interfere if their
live ranges overlap only starting at the move and neither is subsequently redefined.

$a0 $s0 i t.1 t.2 t.3 t.4 t.5

i

t.1

t.2

t.3

t.4

t.5

Answer:

$a0 $s0 i t.1 t.2 t.3 t.4 t.5

i × × × ×

t.1 ◦ × ◦

t.2 ◦ ×

t.3 ◦

t.4 × ◦

t.5 ◦

11

8. (Register allocation; 10%) The register allocator determines the following register assign-
ments:i->$s0, t.1->$a0, t.2->$a0, t.3->$a0, t.4->$a0, t.5->$a0. Write the result-
ing assembly code program, eliminating any redundant move instructions, in between the
method prologue/epilogue below: ls1

Fact.fact:

__framesize=48

mflr $zt

stw $zt,8($sp)

stmw $s0,-4($sp)

stwu $sp,-__framesize($sp)

Answer:

mr $s0,$a0

L.5:

cmpwi $s0,1

bgt L.4

L.3:

li $a0,1

mr $a0,$a0

b L.0

L.4:

subi $a0,$s0,1

mr $a0,$a0

mr $a0,$a0

bl Fact.fact

mr $a0,$a0

mullw $a0,$a0,$s0

mr $a0,$a0

b L.0

L.6:

b L.3

L.0:

addi $sp,$sp,__framesize

lmw $s0,-4($sp)

lwz $zt,8($sp)

mtlr $zt

blr

12

9. (Register allocation; 5%) Temporaryi is allocated to callee-save register$s0. Why does
i end up in this register? What does the prolog/epilog code do to permit this assignment?
What would happen if the machine had no callee-save registers?

Answer:

i has a lifetime that spans the recursive call toFact.fact, so it needs to go in a
callee-save register$s0 or be spilled. As a result,$s0 must be saved and restored
in the prolog. If there were no callee-save registers,i would have to spill to
memory, and be loaded/stored on each use/definition.

13

