
CS 352 – Compilers: Principles and Practice
Final Examination, 12/17/05

Instructions: Read carefully through the whole exam first and plan your time. Note the
relative weight of each question and part (as a percentage ofthe score for the whole exam).
The total points is 100 (your grade will be the percentage of your answers that are correct).

This exam isclosed book, closed notes. You maynot refer to any book or other materials.

You havetwo hours to complete all nine (9) questions. Write your answers on this paper (use
both sides if necessary).

Name:

Student Number:

Signature:

Assume we are compiling to a target architecture similar to the PowerPC, as we did in the
project, but having only the following general-purpose registers:

• $t0: a special-purpose caller-save register

• $sp: the stack-pointer

• $a0: a caller-saved argument/result register

• $a1: a caller-saved argument register

• $s0: a callee-save register

Both $sp and $t0 are special-purpose registers that cannot be allocated to temporaries by the
register allocator.

class Integer {

int value;

int mul (int i) {

int result = 0;

if (i != 0) result = this.value + this.mul(i-1);

return result;

}

public static void main (String[] args) {

Integer x = new Integer();

x.value = 9;

int y = x.mul(3);

}

}

1. (Semantics; 5%) What is the value of the variabley computed by themain method?

Answer:

27

2

2. (Translation; 15%) MJ translates themul method into the following canonicalized trees:

MOVE(TEMP this, TEMP $a0)

MOVE(TEMP i, TEMP $a1)

MOVE(TEMP result, CONST 0)

BNE(TEMP i, CONST 0, L3, L2)

LABEL L3

MOVE(TEMP result,

ADD(MEM(TEMP this, 0),

CALL(MEM(ADD(MEM(ADD(TEMP this,

CONST -4)),

CONST 0)),

TEMP this,

SUB(TEMP i, CONST 1))))

JUMP(NAME L2)

LABEL L2

MOVE(TEMP $a0, TEMP result)

For these intermediate trees, MJ generates the following PowerPC instructions:

mr this,$a0

mr i,$a1

li result,0

cmpwi i,0

beq L2

L3:

lwz t.1,0(this)

lwz t.2,-4(this)

lwz t.3,0(t.2)

subi t.4,i,1

mr $a0,this

mr $a1,t.4

mtctr t.3

bctrl

mr t.5,$a0

add result,t.1,t.5

L2:

mr $a0,result

Given that these instructions have been generated using “maximal munch”, circle the tiles
(in the trees above) and number the tiles in the order that they are “munched” (ie, the order
that instructions are emitted for the tiles). Then circle the instructions (above) corresponding
to each tile and mark them with the number of that tile.

3

3. (Control flow analysis; 5%) Identify thebasic blocksin this program (given again below),
and draw its control flow graph (CFG), having nodes which are the basic blocks and edges
representing flow of control between the basic blocks. Remember that acall is not treated as
a branch in the CFG.

mr this,$a0

mr i,$a1

li result,0

cmpwi i,0

beq L2

L3:

lwz t.1,0(this)

lwz t.2,-4(this)

lwz t.3,0(t.2)

subi t.4,i,1

mr $a0,this

mr $a1,t.4

mtctr t.3

bctrl

mr t.5,$a0

add result,t.1,t.5

L2:

mr $a0,result

Answer:

mr this,$a0

mr i,$a1

li result,0

cmpwi i,0

beq L2 +------------+

| |

L3: v |

lwz t.1,0(this) |

lwz t.2,-4(this) |

lwz t.3,0(t.2) |

subi t.4,i,1 |

mr $a0,this |

mr $a1,t.4 |

mtctr t.3 |

bctrl |

mr t.5,$a0 |

add result,t.1,t.5 |

| |

L2: v <--------------+

mr $a0,result

4

4. (Liveness analysis; 15%) Computelivenessinformation for each instruction in the program
as described in class, by tracing uses back to definitions, being careful to propagate along
both edges at a merge point in the CFG. Remember that a call instruction uses its argu-
ment registers and defines all argument/result registers. Ihave already labeled the vari-
ables/registersusedanddefinedby each instruction. Moves are marked as “def <= use”,
while other instructions are marked as “def <- use”.

To get you started I have already traced uses back to definitions for the first four instructions
for you, so liveness information on edges leading to/from those instructions has been com-
puted for those variables only on those instructions (liveness information at those instructions
for other variables is incomplete)! You should complete therest of the analysis.

DEF <- USE LIVE

$a0 $a1

mr this,$a0 this <= $a0

$a1

mr i,$a1 i <= $a1

i

li result,0 result <-

i

cmpwi i,0 <- i

beq L2 <- : goto L2 L3

L3:

lwz t.1,0(this) t.1 <- this

lwz t.2,-4(this) t.2 <- this

lwz t.3,0(t.2) t.3 <- t.2

subi t.4,i,1 t.4 <- i

mr $a0,this $a0 <= this

mr $a1,t.4 $a1 <= t.4

mtctr t.3 <- t.3

bctrl $a0 $a1 <- $a0 $a1

mr t.5,$a0 t.5 <= $a0

add result,t.1,t.5 result <- t.1 t.5

L2:

mr $a0,result $a0 <= result

$a0

5

Answer:

DEF <- USE LIVE

$a0 $a1

mr this,$a0 this <= $a0

$a1 this

mr i,$a1 i <= $a1

i this

li result,0 result <-

i this result

cmpwi i,0 <- i

i this result

beq L2 <- : goto L2 L3

L3: i this

lwz t.1,0(this) t.1 <- this

i this t.1

lwz t.2,-4(this) t.2 <- this

t.2 i this t.1

lwz t.3,0(t.2) t.3 <- t.2

i this t.3 t.1

subi t.4,i,1 t.4 <- i

this t.4 t.3 t.1

mr $a0,this $a0 <= this

t.4 t.3 $a0 t.1

mr $a1,t.4 $a1 <= t.4

t.3 $a0 $a1 t.1

mtctr t.3 <- t.3

$a0 $a1 t.1

bctrl $a0 $a1 <- $a0 $a1

$a0 t.1

mr t.5,$a0 $a0 $a1 <- $a0 $a1

t.1 t.5

add result,t.1,t.5 result <- t.1 t.5

L2: result

mr $a0,result $a0 <= result

$a0

6

5. (Interference; 15%) Fill in the following adjacency table representing the interference graph
for the program; an entry in the table should contain an× if the variable in the left column
interferes with the corresponding variable/register in the top row. Since machine registers
are pre-colored, we choose to omit adjacency information for them. Naturally, you must still
record if a non-precolored node (variable) interferes witha pre-colored node (register); the
columns for pre-colored nodes are there for that purpose.

Also, record theunconstrainedmove-related nodes in the table by placing an◦ in any empty
entry where the variable in the left column is the source or target of any move involving the
variable/register in the top row.Nodes that are move-related should not interfere if their
live ranges overlap only starting at the move and neither is subsequently redefined.

$a0 $a1 $s0 this i result t.1 t.2 t.3 t.4 t.5

this

i

result

t.1

t.2

t.3

t.4

t.5

Answer:

$a0 $a1 $s0 this i result t.1 t.2 t.3 t.4 t.5

this ◦ × × × × × × ×

i ◦ × × × × ×

result ◦ × ×

t.1 × × × × × × × ×

t.2 × × ×

t.3 × × × × × ×

t.4 × ◦ × × ×

t.5 ◦ ×

6. (Register allocation; 5%) The graph coloring register allocator decides it must spillt.1 in
favor of keepingt.3 in a register for the call. Why cant.1 not receive a register ift.3
does?

Answer:

Because the only register fort.3 is$s0, t.1 conflicts witht.3, and also conflicts
with the only other registers$a0 and$a1.

7

7. (Spilling; 10%) Given thatt.1 must spill, rewrite the program so that the value oft.1

resides at byte offset 20 from the stack pointer ($sp). You should use new temporaries
t.6 in place oft.1 wheret.1 is defined, andt.7 in place oft.1 wheret.1 is used,
storing/loading to/from memory as necessary. Your programshould now contain no uses or
definitions oft.1.

Answer:

mr this,$a0

mr i,$a1

li result,0

cmpwi i,0

beq L2

L3:

lwz t.6,0(this)

stw t.6,20($sp)

lwz t.2,-4(this)

lwz t.3,0(t.2)

subi t.4,i,1

mr $a0,this

mr $a1,t.4

mtctr t.3

bctrl

mr t.5,$a0

lwz t.7,20($sp)

add result,t.7,t.5

L2:

mr $a0,result

8

8. (Code emission; 15%) The register allocator now determines the following register assign-
ments:

this->$a0

i->$a1

result->$s0

t.6->$s0

t.2->$s0

t.3->$s0

t.4->$a1

t.5->$a0

t.7->$a1

Write the resulting assembly code program, eliminating anyredundant move instructions, in
between the method prologue/epilogue below:

mflr $t0 # load return address from link register

stw $t0,8($sp) # store it at $sp+8

stmw $s0,-4($sp) # save callee-save $s0, since we use it

stwu $sp,-framesize($sp) # allocate stack frame

Answer:

mr $a0,$a0

mr $a1,$a1

li $s0,0

cmpwi $a1,0

beq L2

L3:

lwz $s0,0($a0)

stw $s0,20($sp)

lwz $s0,-4($a0)

lwz $s0,0($s0)

subi $a1,$a1,1

mr $a0,$a0

mr $a1,$a1

mtctr $s0

bctrl

mr $a0,$a0

lwz $a1,20($sp)

add $s0,$a1,$a0

L2:

mr $a0,$s0

addi $sp,$sp,framesize # deallocate stack frame

9

lmw $s0,-4($sp) # restore callee-save $s0, since we use it

lwz $t0,8($sp) # load return address

mtlr $t0 # move it to the link register

blr # return (branch to link register)

10

9. (Runtime management; 15%) Given what you now know about the code for methodmul,
draw a diagram of the stack for the programat the pointwheremul is about to return the
value 0. Showall memory-resident local and heap variables (ie, that are not allocated to
registers), including both integer values and references to the heap (as well as the object to
which each reference variable refers).

The original source code is repeated again here, for your convenience:

class Integer {

int value;

int mul (int i) {

int result = 0;

if (i != 0) result = this.value + this.mul(i-1);

return result;

}

public static void main (String[] args) {

Integer x = new Integer();

x.value = 9;

int y = x.mul(3);

}

}

Answer:

In the following we showargs, x andy in memory though they probably are in
registers. You also need not show the value of$s0 since it is a register.

+------------+

main: | args ------+-------------------> array of String

| x ---------+-------------------> Integer(value = 9)

| y = 0 |

| ... |

+------------+

mul: | t.1 = 9 | $s0=0

| ... |

+------------+

mul: | t.1 = 9 | $s0=0

| ... |

+------------+

mul: | t.1 = 9 | $s0=0

| ... |

+------------+

mul: | t.1 = 9 | $s0=0

| ... |

+------------+

11

