
13

Evaluating and Tuning a Static Analysis to Find Null
Pointer Bugs∗

David Hovemeyer, Jaime Spacco, and William Pugh
Dept. of Computer Science

University of Maryland
College Park, MD 20742 USA

{daveho,jspacco,pugh}@cs.umd.edu

ABSTRACT
Using static analysis to detect memory access errors, such as
null pointer dereferences, is not a new problem. However,
much of the previous work has used rather sophisticated
analysis techniques in order to detect such errors.

In this paper we show that simple analysis techniques can
be used to identify many such software defects, both in pro-
duction code and in student code. In order to make our
analysis both simple and effective, we use a non-standard
analysis which is neither complete nor sound. However, we
find that it is effective at finding an interesting class of soft-
ware defects.

We describe the basic analysis we perform, as well as the
additional errors we can detect using techniques such as an-
notations and inter-procedural analysis.

In studies of both production software and student projects,
we find false positive rates of around 20% or less. In the stu-
dent code base, we find that our static analysis techniques
are able to pinpoint 50% to 80% of the defects leading to a
null pointer exception at runtime.

Categories and Subject Descriptors
F.3.2 [Logics and Meanings of Programs]: Semantics
of Programming Languages—program analysis

General Terms
Experimentation, Measurement, Reliability

Keywords
Static analysis, testing

1. INTRODUCTION
∗Supported by NSF grant CCR-0098162 and by an IBM
Eclipse Innovation award.

Permissionto make digital or hard copiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthisnoticeandthefull citationon thefirst page.To copy otherwise,to
republish,to postonserversor to redistributeto lists,requiresprior specific
permissionand/ora fee.
PASTE ’05 Lisbon,Portugal
Copyright 2005ACM 1-59593-239-9/05/0009...$5.00.

Much recent research has investigated fairly sophisticated
static analysis techniques for finding subtle bugs in pro-
grams. While subtle bugs certainly do exist, our experience
has been that many interesting bugs arise from simple and
common coding mistakes, and can be found using relatively
simple analysis techniques. The challenge in developing an
effective tool to find these bugs lies not so much in think-
ing of sophisticated analysis techniques as in identifying and
evaluating simple analysis techniques which in combination
are effective at finding the desired category of bugs.

In this paper, we describe a static analysis to find null
pointer bugs in Java programs, and some of the simple anal-
ysis techniques we used to make it more accurate. We also
discuss experiments we conducted to measure the effective-
ness of the analysis, including a novel study of student pro-
gramming projects. We find that the analysis finds many
real bugs in analyzed programs, and the evaluation of the
analysis on real software suggests several ways it could be
extended to find even more real bugs.

1.1 Background
We developed our null-pointer analysis as part of Find-

Bugs [8], which is an open source static bug-finding tool for
Java. It works by analyzing Java class files at the byte-
code level, and implements some of these bugs 100 common
coding mistakes, including null pointer dereferences.

One of our goals in developing FindBugs is to help find
common coding errors in student programming projects. In
order to find out what kinds of mistakes students make
in their programs, we developed Marmoset, an automated
project snapshot, submission and testing system [10]. Like
similar project submission systems, it allows students to sub-
mit versions of their projects to a central server, which auto-
matically tests them and records the results. A novel feature
of Marmoset is that it collects fine-grained code snapshots
as students work on projects: each time a student saves her
work, it is automatically committed to a CVS repository.
The detailed development histories recorded by Marmoset
combined with a suite of unit tests that provide fairly com-
plete coverage of each project have yielded interesting and
useful ways to validate the analyses implemented in Find-
Bugs, as we will discuss later on in the paper.

2. NULL POINTER ANALYSIS
Exceptions due to dereferencing a null pointer are a very

common type of error in Java programs. Some null pointer
bugs arise because of null values loaded from the heap or

14

// org.eclipse.jdt.internal.ui.compare.JavaStructureDiffViewer

Control c= getControl();

if (c == null && c.isDisposed())

return;

Figure 1: An obvious null pointer dereference in
Eclipse 3.0.1

NonNull

NCP

NSP

Null-E

NSP-ENull

Checked

NonNull

No Kaboom

NonNull

Figure 2: Dataflow lattice for null pointer analysis

passed from a distant call site, and might require sophisti-
cated analysis techniques to find. However, our experience
studying real Java applications and libraries has shown that
many null pointer bugs are the result of simple mistakes,
such as using the wrong boolean operator. An example of a
simple null pointer bug is shown in Figure 1.

In this section, we describe the analysis used in FindBugs
to determine where null pointer dereferences might occur.
The design of this analysis illustrates some interesting exam-
ples of trade-offs needed to find real bugs without producing
too many false warnings.

2.1 The Basic Analysis
The null pointer analysis is a forward intra-procedural

dataflow analysis performed on a control-flow graph repre-
sentation of a Java method. The dataflow values are Java
stack frames containing “slots” representing method param-
eters, local variables, and stack operands. Each slot con-
tains a single symbolic value indicating whether the value
contained in the slot is definitely null, definitely not null,
or possibly null. The lattice of symbolic values is shown
in Figure 2, and the meaning of each value is described in
Table 1.

Figure 3: Example of an infeasible path. The deref-
erence p.f() would cause a null pointer exception
only on the path 2 → 3, which is infeasible.

2.1.1 Infeasible Paths
Because our null pointer analysis is meant to find bugs, it

is important to have high confidence that a value really can
be null at runtime before issuing a warning about a possible
null pointer dereference. If too many false warnings are
produced, the tool will not be worth the developer’s time
to use. Infeasible control paths are a common source of
inaccuracy in dataflow analysis, and avoiding them is an
important challenge in the design of an analysis to find null
pointer bugs.

Often, a dereference of a possibly-null value v will be
guarded by an explicit comparison of v to null, with the
dereference occurring only when v is not null. In such cases,
it is easy for the analysis to determine that the dereference
of v is protected. A more difficult analysis problem arises
when some other condition b guards the dereference of v.
If b implies v 6= null then the dereference of v is safe. An
example of an indirect null check is shown in Figure 3. A
näıve analysis might assume that p could be null at the call
to p.f(), resulting in a false warning.

Unfortunately, determining which conditions entail a guar-
antee that a value is or is not null is a difficult problem,
and is undecidable in general. In some cases, the condition
checked may originate from outside the scope of the cur-
rent analysis, such as a parameter passed into the method.
Rather than trying to use a sophisticated analysis to un-
tangle the meaning of conditions, we simply assume that all
conditions are opaque null checks. The analysis implements
this assumption as follows.

The meet of a definitely Null value with any other value
results in an NSP value—Null on a Simple Path. At run-
time, an NSP value is either null or non-null depending on
the outcome of a single conditional branch statement. As-
suming that the branch edge that causes the value to be
null is feasible, dereferencing it could cause a null pointer
exception, so the analysis issues a warning.

Whenever the analysis encounters a non-exception control
split—in other words, an ordinary branch—it changes all
NSP values to NCP, Null on a Complex Path. At runtime,
an NCP value is either null or non-null depending on the
outcome of two or more conditional branch statements. Be-
cause the conditions might be correlated, the analysis does
not assume that it is possible for NCP values to be null at
runtime.

15

Warning if ...
Compared

Value Meaning Dereferenced to null †

Null Value definitely null High Medium
Null-E Value null on exception path Medium Low
NonNull Value definitely non-null — Low
Checked NonNull Value non-null due to comparison — Medium
No Kaboom NonNull Value non-null because it was dereferenced — High
NSP Null on Simple Path Medium —
NSP-E Null on Simple Path due to exception Low —
NCP Null on Complex Path — —

†Low priority if the check does not create dead code

Table 1: Symbolic values used in the null pointer analysis

Statement Value of p
p = null Null
p = this NonNull
p = new ... NonNull
p = "string" NonNull
p = Foo.class NonNull
p = q.x NCP
p = a[i] NCP
p = f() NCP

Table 2: Modeling statements in the null pointer
analysis

Because no warnings are reported when NCP values are
dereferenced, this technique misses some real bugs. How-
ever, it ensures that a very high percentage of warnings that
are reported do correspond to real errors. In general, if it is
possible to achieve full branch coverage in a method, then
every dereference of a NSP is a real, exploitable bug. In the
future we may augment the analysis to be smarter about
inferring the effects of conditions which aren’t direct null
checks. (For one approach to efficient and precise analysis of
program states implied by boolean conditions, see ESP [2].)

2.1.2 Modeling Values
On method entry, parameter values are assumed to be

NCP, Null on a Complex Path. This is a conservative as-
sumption reflecting the fact that the analysis has no a pri-
ori justification to assume that parameters are either null
or non-null. An exception is the reference to the receiver
object (this), which is set to NonNull in instance methods.

Statements are modeled as shown in Table 2. In this table,
p refers to the value computed by an expression—in other
words, the value that results from executing a statement. q

refers to an arbitrary object reference, a refers to an arbi-
trary array reference, and Foo refers to an arbitrary class.
In general, the analysis treats unknown values as NCP, Null
on Complex Path.

2.1.3 Control Flow
Control joins are modeled in the usual way, by taking

the meet in the lattice of the values in corresponding slots.
Where possible, branches on comparisons to null are used to
gain information about the tested value: we use the direction
of the resulting branch to make the value either Null or

class Foo implements Cloneable {

HashSet contents;

...

public Object clone() {

Foo dup = null;

try {

dup = super.clone();

} catch (CloneNotSupportedException e) {

// Can’t happen

}

// Make deep copy of contents

dup.contents = (HashSet)dup.contents.clone();

return dup;

}

}

Figure 4: An infeasible exception handler

NonNull on the appropriate control edge.
Exception paths are handled specially. On entry to an

exception handler, all Null values are replaced with Null-E,
and all NSP values are replaced with NSP-E. We maintain
this distinction because it is common for some call sites tar-
geting methods declaring a checked exception to know that
the checked exception cannot occur. A typical example in-
volving an infeasible CloneNotSupportedException handler
is shown in Figure 4. By keeping track of values which are
only null on an exception path, we can lower the precedence
of warnings emitted for dereferences of such values.

2.1.4 Redundant Comparisons
Interestingly, a significant number of null comparisons oc-

curring in real programs are redundant, because the value
compared to null is either definitely null or definitely non-
null. Sometimes, this is because of defensive programming.
A less benign cause of redundant comparisons is that a value
was unconditionally dereferenced, and checked against null
afterward. This often indicates a real error: if the value re-
ally can be null, the comparison should certainly be done
before the dereference. (Xie and Engler [11] provide a gen-
eral account of using redundant code to find bugs.)

FindBugs reports a high priority warning for all compar-
isons of No-Kaboom to null, since this strongly suggests that

16

the value really can be null at the earlier location where it
is dereferenced. Other redundant comparisons are consid-
erably less likely to represent real bugs. We use a simple
heuristic to determine which of the remaining cases is likely
to be worth reporting: if the infeasible branch of a redun-
dant comparison creates a nonempty region of dead code
that does something other than unconditionally throw an
exception, then we report a medium priority warning. Con-
sider the following code fragment:

p = new Object();

q = new Object();

r = new Object();

...

if (p != null) { // defensive null check
x = p.hashCode();

}

if (q == null) { // defensive null check
throw new NullPointerException("q is null");

}

if (r != null) { // probable logic error
y = r.hashCode();

} else {

doSomethingElse();

}

All three null comparisons are redundant, since neither p,
q, nor r can be null at runtime. The comparison p != null

is defensive, because it does not cause any dead code. The
comparison q == null does create dead code: however, the
dead code simply throws an exception, so this case is also
defensive programming. The comparison r != null, on the
other hand, is more likely to indicate programmer confusion:
the existence of executable code in the unreachable else

block suggests a logic error.
In any case, it is important to ensure that the dead code

resulting from redundant comparisons does not pollute the
results of the analysis. Our analysis marks the frame on
the infeasible branch of a redundant comparison as a special
“Top” value, which serves as the meet identity element. This
effectively makes the dead code invisible to the analysis. In
the previous example, this would ensure that p and q retain
the value NonNull, even after their respective null checks.

2.1.5 Assertions
Another form of infeasible control flow which must be con-

sidered in a null pointer analysis is exceptions due to failed
assertions. Generally, an assertion in Java is a method that
takes a boolean argument and throws an exception if the
argument is false:

// throws exception if p null:

checkAssertion(p != null);

p.f(); // safe

We handle these kinds of assertions by simply changing any
Null or NSP values to NCP following a call to a method
containing the substring “abort”, “assert”, “check”, “error”,
or “failed”.

Another form of assertion is a method that throws an
exception unconditionally:

if (p == null)

error("p is null"); // throws exception

p.f(); // safe

We handle these cases using a simple inter-procedural analy-
sis that identifies methods which throw an exception uncon-
ditionally, and at each call site, removing the control edge
representing a normal return from those methods.

2.1.6 Finally Blocks
A finally block in Java is a region of code associated

with a try statement which is guaranteed to be executed no
matter how control leaves the try block. The Java source to
bytecode compiler will emit code for a finally block either
by duplicating it in the generated bytecode, or by emitting
a jsr subroutine. Two issues arise regarding finally blocks.

The first issue is how to represent jsr subroutines in
the control flow graph. For FindBugs, we decided to in-
line them into their call sites. This makes jsr and ret

instructions used to call and return from jsr subroutines
behave like goto instructions as far as the dataflow analy-
sis is concerned. While this could theoretically result in an
exponential increase in the size of the resulting control flow
graph, we have not observed this in practice.

The second issue is how to handle warnings for code inside
finally blocks. For most kinds of warnings, including null
pointer dereferences, as long as the warning describes a bug
feasible for at least one expansion of the block, the warning
is valid. However, redundant comparison warnings are only
valid if the comparison is redundant for every expansion,
and is always redundant for the same reason. We use the
method source line number table to keep track of duplicated
code, and only emit redundant comparison warnings if all re-
dundant comparisons for a particular line are in agreement.

2.2 Extending the Basic Analysis
In this section, we discuss some inter-procedural exten-

sions to our basic null pointer analysis.

2.2.1 Unconditionally Dereferenced Parameters
One common source of null pointer errors we have ob-

served in real programs is confusion about whether method
parameters may be null. A sure sign that the programmer
believes a parameter should be non-null is that it is derefer-
enced unconditionally. If a caller ever passes a null value for
such a parameter, a null pointer exception is guaranteed.

To find methods which unconditionally dereference a pa-
rameter, we perform a backward dataflow analysis to com-
pute the set of parameter values guaranteed to be deref-
erenced on all forward paths. The set at the entry of the
method’s control flow graph is the set of unconditionally
dereferenced parameters. The analysis excludes runtime ex-
ception control edges from consideration, unless they are
thrown via an explicit throw statement. To see why it is
necessary to exclude “implicit” runtime exceptions, consider
the following method:

boolean sameHashCode(Object p, Object q) {

return p.hashCode() == q.hashCode();

}

Although it is possible for the call to p.hashCode() to throw
a null pointer exception which bypasses the call to q.hashCode(),
that behavior is not part of the expected behavior of the

17

Annotation Context How checked
@NonNull Parameter Callers must not pass Null or NSP

Return value Method must not return Null or NSP
@CheckForNull Parameter Method must not dereference unconditionally

Return value Callers must not dereference unconditionally

Table 3: Supported annotations for method parameters and return values

method. So, our analysis would consider both parameters of
this method to be dereferenced unconditionally.

Once we have computed the set of methods which uncon-
ditionally dereference a parameter, we examine all call sites
to find places where a possibly-null value (Null or NSP in the
lattice) is passed to a method which might unconditionally
dereference it. An obvious difficulty in Java is determining
which methods might be called at polymorphic call sites.
Our analysis conservatively assumes that unless the type of
the receiver object is known exactly it could be any concrete
subtype. Some methods, such as Object.equals(), have a
large number of potential target methods, and could there-
fore generate a large number of false warnings. To reduce
the effect of these false positives, we issue a higher priority
warning for cases where there is only one known target, or
when all known targets dereference the parameter uncondi-
tionally.

2.2.2 Parameter and Return Value Annotations
A recurring issue in program analysis to find bugs is trying

to deduce the expected behavior of some piece of code. In
null pointer analysis, it is often unclear where the blame lies
when an inconsistency is detected. For example, when an
unconditional parameter dereference results in a null pointer
exception, should we blame the caller or the callee?

Specifications are a simple way for the programmer to
make the job of the analysis easier by explicitly marking
which values must not be null and which may be null. (An-
other tool that leverages lightweight annotations to find
memory bugs, including null pointer dereferences, is LCLint
[5]). Our analysis can use two kinds of specifications on
method parameters and return values: @NonNull, which in-
dicates that a value must not be null, and @CheckForNull,
which indicates that a value might be null. These specifica-
tions are conveyed using Java source annotations. Table 3
lists a summary of how these annotations are checked.

Note the name @CheckForNull is carefully chosen, and it
not simply the converse of @NonNull (which might, perhaps,
be annotated @Nullable). The standard Java semantics, and
the default meaning associated with a reference parameter or
return value, is that it could be null. However, in many cases
the caller can easily determine from context, without an ex-
plicit null-check, that the value is nonnull. For example, a
get method invoked on a List could return a null value if the
List contained null, but in many/most situations, the pro-
grammer may know that the List will not contain null values,
and requiring an explicit null check would just obfuscate the
code and annoy the developer. The annotation @CheckFor-
Null is intended for cases where good programming practice
recommends that the value be checked for null. For exam-
ple, the return value from BufferredReader.readLine() or the
argument to equals(Object) should be checked for null, and
could be marked @CheckForNull. Other methods are more
of a judgment call. For example, the get method for Map

returns null to signal no entry for a key. But in many use
cases, you know that the key is contained in the Map, and
requiring an explicit null check would be unproductive.

@NonNull and @CheckForNull annotations are inherited
by subclasses. Annotations on method parameters may be
relaxed by subclasses but not strengthened (e.g., changing
a @NonNull annotation to @CheckForNull on a parameter),
while annotations on return types may be strengthened but
not relaxed (e.g., changing a @CheckForNull annotation on
a return type to @NonNull). In this way, annotations behave
similar to covariant and contravariant constraints on method
parameters and return types.

Because annotations are a contract applying to all sub-
classes, they do not suffer imprecision due to the difficulty
of resolving target methods at polymorphic call sites. How-
ever, they do impose an additional restriction on method
callers not to pass a null value or unconditionally derefer-
ence a return value, even when they know that to be safe in
the calling context.

3. EXPERIMENTAL RESULTS
In this section we present results and observations from

running our null-pointer analysis over both student code and
production code. The analysis of student projects was per-
formed with FindBugs version 0.9.2. The analysis of pro-
duction code was performed with FindBugs version 0.9.3, in
order to take advantage of updated heuristics for redundant
null comparison warnings.

3.1 Student Code
Using Marmoset, we have collected snapshots of students’

source code for the second semester object oriented program-
ming course at the University of Maryland. We focused our
analysis on two projects, a Binary Search Tree (BST) for
which we recorded 3,357 unique compilable snapshots from
73 students and a WebSpider for which we recorded 3,771
unique compilable snapshots from 92 students (the projects
were from different semesters; hence the different number of
students).

The student project repositories collected by Marmoset
have several nice properties: First, student repositories are
easy to configure and run. Second, each project has unit
tests that provide fairly complete coverage of major project
features. Finally, student repositories represent several dozen
attempts to implement the same project by programmers
with varying abilities, experience, and coding styles.

We would like to determine both what null pointer ex-
ceptions that arise during unit testing correspond to defects
identified by our static analysis, and what warnings gen-
erated by our static analysis correspond to actual software
defects. Null pointer exceptions not predicted by any static
analysis warning are false negatives, and warnings not corre-
sponding to a feasible null pointer exception are false posi-

18

Snapshots With Observed
Project with NPE warning false neg. %
Search Tree 71 38 46
Web Spider 162 127 21

With Observed
Project Warnings NPE false pos. %
Search Tree 40 36 10
Web Spider 129 101 21

Table 4: Observed false negative and false positive
rates for null pointer warnings in student projects
(with annotations)

tives. The goal of any static analysis to find bugs is obviously
to make the false negative and false positive rates as low as
possible.

The main question in measuring false negatives and false
positives is which snapshots and warnings to count. There
are two issues to consider in answering this question. First,
we cannot easily evaluate the accuracy of a warning if the
statement it identifies is never executed. To resolve this is-
sue, we collected code coverage data for each unit test, and
excluded all warnings never covered by any test case from
consideration. The second issue is slightly more subtle. Be-
cause Marmoset collects fine-grained snapshots, it tends to
record a single warning or runtime exception many times.
If we consider all snapshots and warnings, we tend to over-
count those that persist through many successive versions.
This will over count warnings that are false positives, and
may undercount exceptions that are false negatives. To solve
this problem, we only counted warnings that are either re-
moved in the subsequent snapshot, or are present in the final
snapshot, as potential false positives. Likewise, for potential
false negatives we only counted the first in a chronological
series of snapshots where a particular null pointer exception
occurred.

After selecting the subset of snapshots and warnings to
count, we calculated false negatives and false positives as
follows:

False negatives =
Snapshots w/ exception but no warning

Snapshots with exception

False positives =
Warnings w/ no exception thrown

Warnings

Tables 4 and 5 show the results for the two projects we
studied. With annotations on selected method parameters
and return values, the analysis was able to find between 50%
and 80% of all null pointer bugs, with a low false positive
rate. Without annotations, the false positive rate drops to
near zero, but the false negative rate is much worse, finding
only 30% of the null pointer bugs for the Web Spider project,
and only 2% for the Search Tree project. From this result
we draw two conclusions. First, strictly intra-procedural
analysis is not sufficient to find most null pointer bugs. Sec-
ond, annotations on method parameters and return values
can effectively extend an intra-procedural analysis to find
a significant number of null pointer bugs that would other-

Snapshots With Observed
Project with NPE warning false neg. %
Search Tree 71 1 98
Web Spider 162 47 70

With Observed
Project Warnings NPE false pos. %
Search Tree 2 2 0
Web Spider 77 75 2

Table 5: Observed false negative and false positive
rates for null pointer warnings in student projects
(without annotations)

%
Warning type Serious False Serious
Null dereference 73 16 82
No Kaboom RCN comparison 33 15 69
Other RCN 15 17 47

Table 6: Serious bugs and false warnings in Eclipse
3.0.1 for null dereference and redundant comparison
to null (RCN) warnings

wise require inter-procedural analysis. Because the student
projects were relatively small and not very complex, we can-
not confidentially predict that the same false negative rates
would hold for large production applications. However, we
believe that annotations could find a significant chunk of the
null pointer bugs in such applications.

3.2 Production Code
We also evaluated the null pointer checker on one produc-

tion application: Eclipse 3.0.1 ([3]). While student program-
ming projects are a useful testbed, they may not represent
the kind of code that professional programmers write. Our
goal in evaluating the analysis on production software was to
count how many real bugs the analysis found, and also mea-
sure the false warning rate. The results of this evaluation
are shown in Table 6. We obtained this data by manually
classifying each null-pointer and redundant null comparison
warning by hand as either a serious bug or a false warning.
This process involves fallible human judgment; however, we
tried to err on the side of only marking a warning as a real
bug if we were confident it would be worth fixing.

In general, the null dereference warnings (which corre-
spond to dereferences of Null and NSP values) were very
accurate. The most common source of inaccurate warnings
was falling off the end of a chain of if/else statements,
or falling through the default case of a switch: the analysis
assumes both of these cases represent feasible control flow,
although in many cases these control edges are not feasible.
The redundant null comparison warnings involving a previ-
ously dereferenced (No Kaboom) value found some genuine
bugs. With the use of the dead-code heuristic, the other
RCN warnings also identified 15 real bugs, with a false pos-
itive rate only slightly higher than 50%.

We have not yet evaluated the inter-procedural or annotation-
based versions of the analysis on production code. However,
the basic intra-procedural analysis finds a fairly large num-

19

ber of real bugs on its own. Our preliminary experience is
that performing this kind of analysis across method bound-
aries is very sensitive to calling context: it is typical for
a single call site to exercise only a small number of paths
through the called method or methods. We believe that by
concentrating on the unambiguous cases, such as passing an
NSP value for a parameter which is unconditionally deref-
erenced by the called method, we will be able to find some
additional bugs without too many false positives.

4. RELATED WORK
Many static analysis tools for finding memory errors have

been developed: for example, LCLint [5], PREfix [1], and
Metal [4] are good examples. Because they analyze C pro-
grams, some of the bugs they target are more low level than
those occurring in Java. LCLint uses specifications to im-
prove precision in the absence of extensive inter-procedural
analysis; our use of annotations is meant to address the same
problem.

ESC/Java [7] is a static checker for Java that uses an-
notations, such as null and non-null, in an effort to prove
useful properties about a program. While FindBugs’ null
pointer analysis can also benefit from annotations, there are
key differences between the two tools. First, ESC/Java (as
well as many other specification-based approaches to static
checking) tries to find all violations of a null or non-null
annotation, which can find more real bugs at the cost of a
(potentially much) higher false positive rate.

In [6], Fähndrich and Leino discuss many important is-
sues involved in retrofitting an existing type-safe object-
oriented language with augmented types containing infor-
mation about the potential nullity of a reference. Although
their work focuses on C#, most of the issues they cover ap-
ply to Java as well. The primary difference between this
work and our work is in scope. They use annotations as a
tool to attack a larger, more general problem, while we use
annotations as a convenient lightweight mechanism to im-
prove the precision of our bug checker. These two goals are
complementary in that FindBugs could greatly benefit from
the information provided by a new language feature such as
the non-null types proposed by Fähndrich and Leino.

In [9], Rountev et. al. propose a methodology for precisely
determining the imprecision of applying conservative static
analysis to a software artifact. The technique involves using
dynamic analysis (executing tests) to determine a feasible
set of analysis facts, and then using proofs of infeasibility
to identify the areas of imprecision left over. Our goals and
methodology are at least somewhat similar, in that we focus
on identifying the intersection of static and dynamic analysis
results with the aim of making the intersection as large as
possible.

5. REFERENCES
[1] William R. Bush, Jonathan D. Pincus, and David J.

Sielaff. A static analyzer for finding dynamic
programming errors. Software—Practice and
Experience, 30:775–802, 2000.

[2] Manuvir Das, Sorin Lerner, and Mark Seigle. ESP:
Path-sensitive program verification in polynomial
time. In Proceedings of the ACM SIGPLAN 2002
Conference on Programming Language Design and
Implementation, pages 57–68. ACM Press, 2002.

[3] Eclipse. http://www.eclipse.org, 2005.

[4] D. Engler, B. Chelf, A. Chou, and S. Hallem.
Checking system rules using system-specific,
programmer-written compiler extensions. In
Proceedings of the Fourth Symposium on Operating
Systems Design and Implementation, San Diego, CA,
October 2000.

[5] D. Evans. Static detection of dynamic memory errors.
In Proceedings of the SIGPLAN Conference on
Programming Languages, Design, and Implementation,
1996.

[6] Manuel Fähndrich and K. Rustan M. Leino. Declaring
and checking non-null types in an object-oriented
language. In OOPSLA ’03: Proceedings of the 18th
annual ACM SIGPLAN conference on Object-oriented
programing, systems, languages, and applications,
pages 302–312, New York, NY, USA, 2003. ACM
Press.

[7] C. Flanagan, K. Leino, M. Lillibridge, C. Nelson,
J. Saxe, and R. Stata. Extended static checking for
Java, 2002.

[8] David Hovemeyer and William Pugh. Finding bugs is
easy. In Companion of the 19th ACM Conference on
Object-Oriented Programming, Systems, Languages,
and Applications, Vancouver, BC, October 2004.

[9] Atanas Rountev, Scott Kagan, and Michael Gibas.
Evaluating the imprecision of static analysis. In
PASTE ’04: Proceedings of the
ACM-SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering, pages
14–16, Washington DC, USA, 2004.

[10] Jaime Spacco, Jaymie Strecker, David Hovemeyer, and
William Pugh. Software repository mining with
Marmoset: An automated programming project
snapshot and testing system. In Proceedings of the
Mining Software Repositories Workshop (MSR 2005),
St. Louis, Missouri, USA, May 2005.

[11] Yichen Xie and Dawson Engler. Using redundancies to
find errors. In SIGSOFT ’02/FSE-10: Proceedings of
the 10th ACM SIGSOFT Symposium on Foundations
of Software Engineering, pages 51–60, Charleston,
South Carolina, USA, 2002.

