
1/9/2008

1

Slide 2.1

Object OrientedObject-Oriented
Software Engineering

WCB/McGraw Hill 2008

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

WCB/McGraw-Hill, 2008

Stephen R. Schach
srs@vuse.vanderbilt.edu

Slide 2.2
CHAPTER 1, 2, and 3

SOFTWARESOFTWARE
LIFE-CYCLE

MODELS AND
PROCESS

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

PROCESS

Slide 2.3
Overview

Software life-cycle models
Unified process
C bilit M t it M d l (CMM)Capability Maturity Models (CMM)

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Slide 2.4
Software Development in Theory

Classical model (1970)

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Figure 1.2

1/9/2008

2

Slide 2.5
Typical Classical Phases

Requirements phase
– Explore the concept
– Elicit the client’s requirementsElicit the client s requirements

Analysis (specification) phase
– Analyze the client’s requirements
– Draw up the specification document

Draw up the software project management plan

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

– Draw up the software project management plan
– “What the product is supposed to do”

Slide 2.6
Typical Classical Phases (contd)

Design phase
– Architectural design, followed by
– Detailed designDetailed design
– “How the product does it”

Implementation phase
– Coding

Unit testing

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

– Unit testing
– Integration
– Acceptance testing

Slide 2.7
Typical Classical Phases (contd)

Postdelivery maintenance
– Corrective maintenance
– Perfective maintenancePerfective maintenance
– Adaptive maintenance

Retirement

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Slide 2.8
Software Development in Practice

In the real world, software development is totally
different
– We make mistakesWe make mistakes
– The client’s requirements change while the software

product is being developed

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

1/9/2008

3

Slide 2.9
2.2 Winburg Mini Case Study

Episode 1: The first version is implemented

Episode 2: A fault is foundEpisode 2: A fault is found
– The product is too slow because of an implementation fault
– Changes to the implementation are begun

Episode 3: A new design is adopted
– A faster algorithm is used

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Episode 4: The requirements change
– Accuracy has to be increased

Epilogue: A few years later, these problems recur

Slide 2.10
Waterfall Model

The linear life cycle model with
feedback loops
– The waterfall model cannot show the

d f torder of events

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.
Figure 2.3

Slide 2.11
2.3 Lessons of the Winburg Mini Case Study

In the real world, software development is more
chaotic than the Winburg mini case study

Changes are always needed
– A software product is a model of the real world, which is

continually changing
– Software professionals are human, and therefore make

mistakes

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Slide 2.12
2.4 Teal Tractors Mini Case Study

While the Teal Tractors software product is being
constructed, the requirements change

The company is expanding into Canada

Changes needed include:
– Additional sales regions must be added

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

– The product must be able to handle Canadian taxes and
other business aspects that are handled differently

– Third, the product must be extended to handle two
different currencies, USD and CAD

1/9/2008

4

Slide 2.13
Teal Tractors Mini Case Study (contd)

These changes may be
– Great for the company; but
– Disastrous for the software productDisastrous for the software product

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Slide 2.14
Moving Target Problem

A change in the requirements while the software
product is being developed
– Regression fault

No solution

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Slide 2.15
2.5 Iteration and Incrementation

The basic software development process is
iterative
– Each successive version is intended to be closer to itsEach successive version is intended to be closer to its

target than its predecessor

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Slide 2.16
Miller’s Law (1956)

At any one time, we can concentrate on only
approximately seven chunks (units of information)

To handle larger amounts of information, use
stepwise refinement
– Concentrate on the aspects that are currently the most

important
– Postpone aspects that are currently less critical

Every aspect is eventually handled but in order of

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

– Every aspect is eventually handled, but in order of
current importance

This is an incremental process

1/9/2008

5

Slide 2.17
Iteration and Incrementation (contd)

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved. Figure 2.4

Slide 2.18
Iteration and Incrementation (contd)

The number of increments will vary — it does not
have to be four

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Slide 2.19
Sequential Phases versus Workflows

Sequential phases do not exist in the real world

Instead the five core workflows (activities) areInstead, the five core workflows (activities) are
performed over the entire life cycle
– Requirements workflow
– Analysis workflow
– Design workflow
– Implementation workflow

T t kfl

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

– Test workflow

Slide 2.20
Workflows

All five core workflows are performed over the entire
life cycle

However, at most times one workflow predominates

Examples:
– At the beginning of the life cycle

» The requirements workflow predominates

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

– At the end of the life cycle
» The implementation and test workflows predominate

Planning and documentation activities are performed
throughout the life cycle

1/9/2008

6

Slide 2.21
2.7 Risks and Other Aspects of Iter. and Increm.

We can consider the project as a whole as a set of
mini projects (increments)

Each mini project extends the
– Requirements artifacts
– Analysis artifacts
– Design artifacts

Implementation artifacts

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

– Implementation artifacts
– Testing artifacts

The final set of artifacts is the complete product

Slide 2.22
Risks and Other Aspects of Iter. and Increm. (contd)

During each mini project we
– Extend the artifacts (incrementation);
– Check the artifacts (test workflow); andCheck the artifacts (test workflow); and
– If necessary, change the relevant artifacts (iteration)

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Slide 2.23
Risks and Other Aspects of Iter. and Increm. (contd)

Each iteration can be viewed as a small but
complete waterfall life-cycle model

During each iteration we select a portion of the
software product

On that portion we perform the

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

– Requirements phase
– Analysis phase
– Design phase
– Implementation phase

Slide 2.24
Strengths of the Iterative-and-Incremental Model

There are multiple opportunities for checking that
the software product is correct
– Every iteration incorporates the test workflowEvery iteration incorporates the test workflow
– Faults can be detected and corrected early

The robustness of the architecture can be
determined early in the life cycle

Architecture — the various component modules and

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

– Architecture — the various component modules and
how they fit together

– Robustness — the property of being able to handle
extensions and changes without falling apart

1/9/2008

7

Slide 2.25
Strengths of the Iterative-and-Incremental Model (contd)

We can mitigate (resolve) risks early
– Risks are invariably involved in software development

and maintenance

We have a working version of the software product
from the start
– The client and users can experiment with this version to

determine what changes are needed

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

g

Variation: Deliver partial versions to smooth the
introduction of the new product in the client
organization

Slide 2.26
Strengths of the Iterative-and-Incremental Model (contd)

There is empirical evidence that the life-cycle
model works

The CHAOS reports of the Standish Group (see
overleaf) show that the percentage of successful
products increases

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Slide 2.27
Strengths of the Iterative-and-Incremental Model (contd)

CHAOS
reports
fromfrom
1994 to
2004

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved. Figure 2.7

Slide 2.28
Strengths of the Iterative-and-Incremental Model (contd)

Reasons given for the decrease in successful
projects in 2004 include:

– More large projects in 2004 than in 2002

– Use of the waterfall model

– Lack of user involvement

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Lack of user involvement

– Lack of support from senior executives

1/9/2008

8

Slide 2.29
2.9 Other Life-Cycle Models

The following life-cycle models are presented and
compared:
– Code-and-fix life-cycle modelCode and fix life cycle model
– Waterfall life-cycle model
– Rapid prototyping life-cycle model
– Open-source life-cycle model
– Agile processes
– Synchronize-and-stabilize life-cycle model

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

y y
– Spiral life-cycle model

Slide 2.30
2.9.1 Code-and-Fix Model

No design

NNo
specifications
– Maintenance

nightmare

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Figure 2.8

Slide 2.31
Code-and-Fix Model (contd)

The easiest way to develop software

The most expensive wayThe most expensive way

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Slide 2.32
2.9.2 Waterfall Model (Royce 1970)

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Figure 2.9

1/9/2008

9

Slide 2.33
2.9.2 Waterfall Model (contd)

Characterized by
– Feedback loops
– Documentation-driven

Advantages
– Documentation
– Maintenance is easier

Disadvantages
– Specification document

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

p
» Hard to understand for clients (e.g., Z language)

– Don’t get to see the product till the end
» “I know this is what I asked for, but it isn’t what I meant

Slide 2.34
2.9.3 Rapid Prototyping Model

Linear
model

“Rapid”

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved. Figure 2.10

Slide 2.35
2.9.4 Open-Source Life-Cycle Model

Two informal phases

First one individual builds an initial versionFirst, one individual builds an initial version
– Made available via the Internet (e.g., SourceForge.net)

Then, if there is sufficient interest in the project
– The initial version is widely downloaded
– Users become co-developers

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

– The product is extended

Key point: Individuals generally work voluntarily on
an open-source project in their spare time

Slide 2.36
The Activities of the Second Informal Phase

Reporting and correcting defects
– Corrective maintenance

Adding additional functionality
– Perfective maintenance

Porting the program to a new environment
– Adaptive maintenance

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

The second informal phase consists solely of
postdelivery maintenance
– The word “co-developers” on the previous slide should

rather be “co-maintainers”

1/9/2008

10

Slide 2.37
Open-Source Life-Cycle Model (contd)

Postdelivery maintenance life-cycle model

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.
Figure 2.11

Slide 2.38
Open-Source Life-Cycle Model (contd)

Closed-source software is maintained and tested
by employees
– Users can submit failure reports but never fault reportsUsers can submit failure reports but never fault reports

(the source code is not available)

Open-source software is generally maintained by
unpaid volunteers
– Users are strongly encouraged to submit defect reports,

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Users are strongly encouraged to submit defect reports,
both failure reports and fault reports

Slide 2.39
Open-Source Life-Cycle Model (contd)

Core group
– Small number of dedicated maintainers with the

inclination, the time, and the necessary skills to submit , , y
fault reports (“fixes”)

– They take responsibility for managing the project
– They have the authority to install fixes

Peripheral group

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

p g p
– Users who choose to submit defect reports from time to

time

Slide 2.40
Open-Source Life-Cycle Model (contd)

New versions of closed-source software are
typically released roughly once a year
– After careful testing by the SQA groupAfter careful testing by the SQA group

The core group releases a new version of an
open-source product as soon as it is ready
– Perhaps a month or even a day after the previous

version was released

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

version was released
– The core group performs minimal testing
– Extensive testing is performed by the members of the

peripheral group in the course of utilizing the software
– “Release early and often”

1/9/2008

11

Slide 2.41
Open-Source Life-Cycle Model (contd)

An initial working version is produced when using
– The rapid-prototyping model;
– The code-and-fix model; andThe code and fix model; and
– The open-source life-cycle model

Then:
– Rapid-prototyping model

» The initial version is discarded

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

– Code-and-fix model and open-source life-cycle model
» The initial version becomes the target product
» Successful projects get all the attention, but half of the 175,000

projects on SourceForge.org have 0 download.
» Open source software is not customized.

Slide 2.42
2.9.5 Agile Processes

Extreme Programming (later lecture)

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Slide 2.43
2.9.6 Synchronize-and Stabilize Model

Microsoft’s life-cycle model

Requirements analysis — interview potentialRequirements analysis interview potential
customers

Draw up specifications

Divide project into 3 or 4 builds

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Divide project into 3 or 4 builds

Each build is carried out by small teams working in
parallel

Slide 2.44
Synchronize-and Stabilize Model (contd)

At the end of the day — synchronize (test and
debug)

At the end of the build — stabilize (freeze the
build)

Components always work together

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

– Faults can be fixed in a early stage
– Get early insights into the operation of the product

1/9/2008

12

Slide 2.45
2.9.7 Spiral Model

Simplified form
– Rapid

prototyping p yp g
model plus
risk analysis
preceding
each phase

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved. Figure 2.12

Slide 2.46
A Key Point of the Spiral Model

If all risks cannot be mitigated, the project is
immediately terminated

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Slide 2.47
Full Spiral Model

Precede each phase by
– Alternatives
– Risk analysisy

Follow each phase by
– Evaluation
– Planning of the next phase

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Radial dimension: cumulative cost to date

Angular dimension: progress through the spiral

Slide 2.48
Full Spiral Model (contd)

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Figure 2.13

1/9/2008

13

Slide 2.49
Analysis of the Spiral Model

Strengths
– Alternative analysis allows the reuse of existing

software
– It is easy to judge how much to test

» Terms it as risks and perform risks analysis

Weaknesses
– For large-scale software only

» Intensive risk analysis

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

» Intensive risk analysis
– For internal (in-house) software only

» Easy termination
– Discrete phases

