
Testing Basics

© Aditya P. Mathur 2005
2

Testing

Testing is the process of determining if a program has any
errors.

© Aditya P. Mathur 2005
3

Test case/data

A test case is a pair consisting of test data to be input to
the program and the expected output. The test data is a
set of values, one for each input variable.

A test set is a collection of zero or more test cases.

Sample test case for sort:

Test data: <''A'’ 12 -29 32 >
Expected output: -29 12 32

© Aditya P. Mathur 2005
4

Program behavior

Can be specified in several ways: plain natural language, a
state diagram, formal mathematical specification, etc.

A state diagram specifies program states and how the
program changes its state on an input sequence.
inputs.

© Aditya P. Mathur 2005
5

Program behavior: Example

Consider a menu
driven application.

© Aditya P. Mathur 2005
6

Program behavior: Example (contd.)

© Aditya P. Mathur 2005
7

Behavior: observation and analysis

The entity that performs the task of checking the
correctness of the observed behavior is known as an
oracle.

In the first step one observes the behavior.

In the second step one analyzes the observed behavior to
check if it is correct or not. Both these steps could be quite
complex for large commercial programs.

© Aditya P. Mathur 2005
8

Oracle: Example

© Aditya P. Mathur 2005
9

Oracle: Programs

Oracles can also be programs designed to check the behavior
of other programs.

© Aditya P. Mathur 2005
10

Types of testing

C1: Source of test generation.

C2: Lifecycle phase in which testing takes place

C3: Goal of a specific testing activity

C4: Characteristics of the artifact under test

One possible classification is based on the following four
classifiers:

© Aditya P. Mathur 2005
11

C1: Source of test generation

© Aditya P. Mathur 2005
12

C2: Lifecycle phase in which testing
takes place

© Aditya P. Mathur 2005
13

C3: Goal of specific testing activity

© Aditya P. Mathur 2005
14

C4: Artifact under test

Functional Testing

© Aditya P. Mathur 2005
16

Learning Objectives

Test generation from predicates

Equivalence class partitioning

Boundary value analysis
Essential black-box techniques
for generating tests for
functional testing.

© Aditya P. Mathur 2005
17

Equivalence class partitioning

© Aditya P. Mathur 2005
18

Equivalence Class Testing

Complete testing
Avoiding redundancy

Equivalence classes form a partition of a set.
Partition: collection of mutually disjoint subsets whose

union is the entire set.
Equivalence testing: use one element from each

equivalence class.
Key: choice of equivalence relation.

© Aditya P. Mathur 2005
19

Program: f(a,b,c) with input domains A, B, and C.
A = A1 U A2 U A3
B = B1 U B2 U B3 U B4
C = C1 U C2

Elements of partition denoted as:

22
33
11

Cc
Bb
Aa

∈
∈
∈

© Aditya P. Mathur 2005
20

Weak Equivalence Class Testing
Use one variable from each equivalence class
in a test case.

#test cases = #classes in the partition with
the largest numbering of subsets.

Test Case a b c

a11 b1 c1
a22 b2 c2
a33 b3 c1
a14 b4 c2

© Aditya P. Mathur 2005
21

Strong Equivalence Class Testing

Based on Cartesian product of the partition
subsets.
A X B X C will have 3 X 4 X 2 = 24 elements
(a1,b1,c1),(a1,b1,c2),(a1,b2,c1)…..

We cover all the equivalence classes and we
have one of each possible combination of
inputs.

Generalization: equivalence classes on outputs

© Aditya P. Mathur 2005
22

Given the valid and invalid sets of inputs, the
traditional equivalence testing strategy
identifies test cases as follows:
For valid inputs, use one value from each valid
class.
For invalid inputs, a test case will have one
invalid value and the remaining values will all
be valid.

Traditional Equivalence Class Testing

© Aditya P. Mathur 2005
23

The Nextdate Program

It is a function that returns the date of the day after
the input date. The month, day and year values in the
input date have numerical values with the following
constraints.

1<= month <= 12
1 <= day <= 31
1812 <= year <= 2012

Note: A year is a leap year if it is divisible by 4,
unless it is a century year. Century years are leap
years only if they are multiples of 400. So 2000 is a
leap year while the year 1900 is not a leap year.

© Aditya P. Mathur 2005
24

e.g., valid ranges for next date problem
1<= month <= 12; 1 <= day <= 31;

1812 <= year <= 2012
invalid ranges

day>31; day<1; month<1; month>12;
year>2012; year<1812

© Aditya P. Mathur 2005
25

Traditional Equivalence Class Test Cases
for Next Date Function

Equivalence relation defines the class of elements that
should be treated in the same way.

Deficiency of traditional approach: same treatment at
valid/invalid level.

Better Equivalence relation?
Look at the functionality of the program, that is,
what must be done to input date?

Test Case Month Day Year

61 15 1912
-12 15 1912
133 15 1912
64 -1 1912
65 32 1912
66 15 1811
67 15 2013

Expected Output

6/16/1912
Invalid Input
Invalid Input
Invalid Input
Invalid Input
Invalid Input
Invalid Input

© Aditya P. Mathur 2005
26

Postulate the following equivalence classes:
M1 = {month: month has 30 days}
M2 = {month: month has 31 days}
M3 = {month: month is February}
D1 = {day: 1<=day<=28}
D2 = {day: day=29}
D3 = {day: day=30}
D4 = {day: day=31}
Y1 = {year: year = 1900}
Y2 = {year: 1812<=year<=2012 AND (year!=1900)

AND(year=0 mod 4)}
Y3 = {year: (1812<=year<=2012 AND year!=0 mod 4}

© Aditya P. Mathur 2005
27

Weak Equivalence Class Test Cases

Strong Equivalence Class Test Cases
(m1,m2,m3) X (d1,d2,d3,d4) X (y1,y2,y3)
3 x 5 x 3 = 45 test cases

Test Case Month Day Year

61 14 1900
72 29 1912
23 30 1913
64 31 1900

Expected Output

6/15/1900
7/30/1912

Invalid Input
Invalid Input

© Aditya P. Mathur 2005
28

Equivalence classes for variables:
range

{{J}, {3}}letter:bool

{{-1}, {56},
{132}}

age: int

{{-1.0},
{15.52}}

area: float
area≥0.0

{50}, {75},
{92}

speed
∈[60..90]

One class with
values inside the
range and two with
values outside the
range.

ExampleEq. Classes
Constraints Classes

© Aditya P. Mathur 2005
29

Equivalence classes for variables:
strings

{{ε}, {Sue},
{Loooong
Name}}

firstname:
string

At least one
containing all legal
strings and one all
illegal strings based
on any constraints.

ExampleEq. Classes
Constraints Classes

© Aditya P. Mathur 2005
30

Equivalence classes for variables:
enumeration

{{true}, {false}}up:boolean

{{red,} {blue},
{green}}

autocolor:{red,
blue, green}

Each value in a separate
class

ExampleEq. Classes
Constraints Classes

© Aditya P. Mathur 2005
31

Equivalence classes for variables:
arrays

{[]}, {[-10, 20]},
{[-9, 0, 12, 15]}

int [] aName:
new int[3];

One class containing all
legal arrays, one
containing the empty
array, and one
containing a larger than
expected array.

ExampleEq. Classes
Constraints Classes

© Aditya P. Mathur 2005
32

Equivalence classes for variables:
compound data type

Arrays in Java and records, or structures, in C++, are compound
types. Such input types may arise while testing components of an
application such as a function or an object.

While generating equivalence classes for such inputs, one must
consider legal and illegal values for each component of the
structure.

© Aditya P. Mathur 2005
33

Boundary value analysis

© Aditya P. Mathur 2005
34

Errors at the boundaries

Experience indicates that programmers make mistakes in processing
values at and near the boundaries of equivalence classes.

For example, suppose that method M is required to compute a
function f1 when x≤ 0 is true and function f2 otherwise. However,
M has an error due to which it computes f1 for x<0 and f2
otherwise.

Obviously, this fault is revealed, though not necessarily, when M is
tested against x=0 but not if the input test set is, for example, {-4,
7} derived using equivalence partitioning. In this example, the
value x=0, lies at the boundary of the equivalence classes x≤0 and
x>0.

© Aditya P. Mathur 2005
35

Boundary value analysis (BVA)

Boundary value analysis is a test selection technique that targets
faults in applications at the boundaries of equivalence classes.

While equivalence partitioning selects tests from within equivalence
classes, boundary value analysis focuses on tests at and near the
boundaries of equivalence classes.

Certainly, tests derived using either of the two techniques may
overlap.

© Aditya P. Mathur 2005
36

BVA: Procedure

1 Partition the input domain using unidimensional (weak)
partitioning. This leads to as many partitions as there are input
variables. Alternately, a single partition of an input domain can
be created using multidimensional partitioning. We will generate
several sub-domains in this step.

2 Identify the boundaries for each partition. Boundaries may also
be identified using special relationships amongst the inputs.

3 Select test data such that each boundary value occurs in at
least one test input.

© Aditya P. Mathur 2005
37

BVA: Example: 1. Create equivalence
classes

Assuming that an item code must be in the range 99..999 and
quantity in the range 1..100,

Equivalence classes for code:
E1: Values less than 99.
E2: Values in the range.
E3: Values greater than 999.

Equivalence classes for qty:
E4: Values less than 1.
E5: Values in the range.
E6: Values greater than 100.

© Aditya P. Mathur 2005
38

BVA: Example: 2. Identify boundaries

Equivalence classes and boundaries for findPrice. Boundaries are
indicated with an x. Points near the boundary are marked *.

E1
E2

E3

98 100 998 1000

99 999
x x* * * *

E4
E5

E6

0 2 99 101

1 100
x x* * * *

© Aditya P. Mathur 2005
39

BVA: Example: 3. Construct test set

Test selection based on the boundary value analysis technique
requires that tests must include, for each variable, values at and
around the boundary. Consider the following test set:

T={ t1: (code=98, qty=0),
t2: (code=99, qty=1),
t3: (code=100, qty=2),
t4: (code=998, qty=99),
t5: (code=999, qty=100),
t6: (code=1000, qty=101)

}

Illegal values of code
and qty included.

© Aditya P. Mathur 2005
40

BVA: In-class exercise

Is T the best possible test set for findPrice? Answer this question
based on T’s ability to detect missing code for checking the
validity of age.

Is there an advantage of separating the invalid values of code and
age into different test cases?

© Aditya P. Mathur 2005
41

Summary

Equivalence partitioning and boundary value analysis are the most

commonly used methods for test generation while doing functional

testing.

Given a function f to be tested in an application, one can apply

these techniques to generate tests for f.

