
Model Checking Java Programs
(Java PathFinder)

Slides partially compiled from the NASA
JavaPathFinder project and E. Clarke’s course

material

CS 510/08

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

Java PathFinder

JPF is an explicit state software model
checker for Java bytecode

JPF is a Java virtual machine that executes your
program not just once (like a normal VM), but
theoretically in all possible ways, checking for
property violations like deadlocks or unhandled
exceptions along all potential execution paths.

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

Symbolic Model Checking

Program

Claim

Analysis

Engine

SAT

Solver

UNSAT

(no counterexample found)

SAT

(counterexample exists)

CNF

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

Explicit State Model Checking

The program is indeed executing
jpf <your class> <parameters>

Very similar to “java <your class> <parameters>
Execute in a way that all possible scenarios are
explored

Thread interleaving
Undeterministic values (random values)

Concrete input is provided
A state is indeed a concrete state, consisting of

Concrete values in heap/stack memory

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

JPF Status

developed at the Robust Software Engineering Group at
NASA Ames Research Center
currently in it’s fourth development cycle

v1: Spin/Promela translator - 1999
v2: backtrackable, state matching JVM - 2000
v3: extension infrastructure (listeners, MJI) - 2004
v4: symbolic execution, choice generators - 4Q 2005

open sourced since 04/2005 under NOSA 1.3 license:
<javapathfinder.sourceforge.net>
it’s a first: no NASA system development hosted on public
site before
11100 downloads since publication 04/2005

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

An Example

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

An Example (cont.)

One execution corresponds to one path.

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

JPF explores multiple possible executions GIVEN
THE SAME CONCRETE INPUT

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

Another Example

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

Two Essential Capabilities

Backtracking
Means that JPF can restore previous execution
states, to see if there are unexplored choices left.

While this is theoretically can be achieved by re-executing
the program from the beginning, backtracking is a much more
efficient mechanism if state storage is optimized.

State matching
JPF checks every new state if it already has seen an
equal one, in which case there is no use to continue
along the current execution path, and JPF can
backtrack to the nearest non-explored non-
deterministic choice

Head and thread-stack snapshots.

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

The Challenge

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

The Challenge (cont.)

State Explosion!!

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

JPF’s Solution

Configurable search strategy
Directing the search so that defects can be found
quicker

A debugging tool instead of a “proof” system.
User can easily develop his/her own strategy

Reducing state storage
State collapsing

Premise: only a tiny part of the state is changed upon each
transaction. (e.g. a single stack frame)
Dividing a state into components, use hashtable to index a
specific value for a component.

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

Solution- State Collapsing

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

Solution (3) – State Reduction

Orthogonal (our focus)
State Abstraction
Partial Order Reduction

JPF specific
Host VM Execution

Delegate execution to the underlying host VM (no state
tracking).

Heuristic Choice Generators

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

Abstraction

Eliminate details irrelevant to the property

Obtain simple finite models sufficient to
verify the property

E.g., Infinite state → Finite state approximation

Disadvantage
Loss of Precision: False positives/negatives

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

Data Abstraction

h h hh h

Abstraction Function h : from S to S’

S

S’

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

Data Abstraction Example

Abstraction proceeds component-wise, where
variables are components

x:int
Even

Odd…, -3, -1, 1, 3, …

…, -2, 0, 2, 4, …

1, 2, 3, …

…, -3, -2, -1

0

Pos

Neg

Zeroy:int

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

Data Abstraction Example

Partition concrete variables into visible(V)
and invisible(I) variables.

The abstract model consists of V
variables. I variables are existentially
quantified out.

The abstraction function maps each
state to its projection over V.

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

Data Type Abstraction

int x = 0;

if (x == 0)

x = x + 1;

Abstract Data domain

(n<0) : NEG
(n==0): ZERO
(n>0) : POS

Signs

NEG POSZERO

int

Code

Signs x = ZERO;

if (Signs.eq(x,ZERO))

x = Signs.add(x,POS);

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

How do we Abstract Behaviors?

Abstract domain A
Abstract concrete values to those in A

Then compute transitions in the abstract
domain

Over-approximations: Add extra behaviors
Under-approximations: Remove actual behaviors

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

Guarantees from Abstraction

Assume M’ is an abstraction of M

Strong Preservation:
P holds in M’ iff P holds in M

Weak Preservation:
P holds in M’ implies P holds in M

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

Discussion of Abstraction

Formalizing Abstraction/Refinement
Homomorphic Abstractions
Abstract Interpretation Theory

Applications
Software – e.g., Predicate Abstraction

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

Building an Abstraction

Computing Abstract Domain

Computing Abstract Transitions

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

Homomorphisms

Clarke et. al.- ’94, ’00

Concrete States S, Abstract states S’

Abstraction function (Homomorphism)
h: S → S’
Induces a partition on S equal to size of S’

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

Existential/Universal Abstractions

Existential
Make a transition from an abstract state if at least
one corresponding concrete state has the
transition.
Abstract model M’ simulates concrete model M

Universal
Make a transition from an abstract state if all the
corresponding concrete states have the transition.

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

Existential Abstraction (Over-approximation)

I

I

h

S

S’

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

Universal Abstraction (Under-Approximation)

I

I

h

S

S’

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

Guarantees from Exist. Abstraction

Preservation Theorem
M’ ⊨ φ → M ⊨ φ

M’ ⊭ φ : counterexample may be spurious

Converse does not hold
M’ ⊭ φ → M ⊭ φ

Let φ be a hold-for-all-paths property
M’ existentially abstracts M, so M � M’

M’

M

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

Guarantees from Univ.
Abstraction

Preservation Theorem
M’ � φ → M � φ

Converse does not hold
M ⊭ φ → M’ ⊭ φ

Let φ be a existential-quantified property and M
simulates M’

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

Why spurious counterexample?

I

I

Deadend
states

Bad
States Failure

State

f

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

Refinement

Problem: Deadend and Bad States are in the
same abstract state.
Solution: Refine abstraction function.
The sets of Deadend and Bad states should
be separated into different abstract states.

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

Refinement

h’

Refinement : h’

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

Automated Abstraction/Refinement

Good abstractions are hard to obtain
Automate both Abstraction and Refinement processes

Counterexample-Guided AR (CEGAR)
Build an abstract model M’
Model check property P, M’ � P?
If M’ � P, then M � P by Preservation Theorem
Otherwise, check if Counterexample (CE) is spurious
Refine abstract state space using CE analysis results
Repeat

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

Counterexample-Guided
Abstraction-Refinement (CEGAR)

Check
Counterexample

Obtain
Refinement Cue

Model CheckBuild New
Abstract Model

M’M

No Bug

Pass

Fail

Bug
Real CESpurious CE

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

Predicate Abstraction

Extract a finite state model from an infinite
state system

Used to prove assertions or safety properties

Successfully applied for verification of C
programs

SLAM (used in windows device driver verification)
MAGIC, BLAST, F-Soft

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

Example for Predicate Abstraction

int main() {
int i;

i=0;

while(even(i))
i++;

}

+ p1 ⇔ i=0
p2 ⇔ even(i) =

void main() {
bool p1, p2;

p1=TRUE;
p2=TRUE;

while(p2)
{

p1=p1?FALSE:nondet();
p2=!p2;

}
}

PredicatesC program Boolean program

[Ball, Rajamani ’01]
[Graf, Saidi ’97]

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

Computing Predicate Abstraction

How to get predicates for checking a given
property?

How do we compute the abstraction?

Predicate Abstraction is an over-
approximation

How to refine coarse abstractions

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

Counterexample Guided Abstraction
Refinement loop

C
Program

Abstract
model

Model
Checker

Abstraction refinement

Verification
Initial

Abstraction
No error

or bug found

Simulator

Property
holds

Simulation
sucessful

Bug found

Refinement

Spurious counterexample

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

Abstraction

1: x = ctr;
2: y = ctr + 1;
3: if (x = i-1){
4: if (y != i){

ERROR:
}

}

1: skip;
2: skip;
3: if (*){
4: if (*){

ERROR:
}

}

Abstract

C program No predicates
available currently

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

Checking the abstract model

1: skip;
2: skip;
3: if (*){
4: if (*){

ERROR:
}

}

Abstract
model has a
path leading
to error state

Is ERROR
reachable?

yes

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

Simulation

1: x = ctr;
2: y = ctr + 1;
3: assume(x == i-1)
4: assume (y != i)

1: skip;
2: skip;
3: if (*){
4: if (*){

ERROR:
}

}

Does this
correspond to a

real bug?

Not
possible

Concrete traceCheck using a
SAT solver

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

Refinement

1: x = ctr;
2: y = ctr + 1;
3: assume(x == i-1)
4: assume (y != i)

1: skip;
2: skip;
3: if (*){
4: if (*){

ERROR:
}

}

Spurious Counterexample Initial abstraction

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

Refinement

1: x = ctr;
2: y = ctr + 1;
3: assume(x == i-1)
4: assume (y != i)

1: skip;
2: skip;
3: if (*){
4: if (b0){

ERROR:
}

}

boolean b0 : y != i

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

Refinement

1: x = ctr;
2: y = ctr + 1;
3: assume(x == i-1)
4: assume (y != i)

1: skip;
2: skip;
3: if (b1){
4: if (b0){

ERROR:
}

}

boolean b0 : y != i
boolean b1 : x== i-1

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

Refinement

1: x = ctr;
2: y = ctr + 1;
3: assume(x == i-1)
4: assume (y != i)

1: skip;
2: b0 = b2;
3: if (b1){
4: if (b0){

ERROR:
}

}

boolean b0 : y != i
boolean b1 : x== i-1

boolean b2 : ctr + 1 ! = iWeakest precondition
of y != i

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

Refinement

1: x = ctr;
2: y = ctr + 1;
3: assume(x == i-1)
4: assume (y != i)

1: b1 = b3;
2: b0 = b2;
3: if (b1){
4: if (b0){

ERROR:
}

}

boolean b0 : y != i
boolean b1 : x== i-1

boolean b2 : ctr + 1 ! = i
boolean b3: ctr == i -1

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

Refinement

1: b1 = b3;
2: b0 = b2;
3: if (b1){
4: if (b0){

ERROR:
}

}

boolean b0 : y != i
boolean b1 : x== i-1

boolean b2 : ctr + 1 ! = i
boolean b3: ctr == i -1

b2 and b3 are
mutually

exclusive.
b2 =1, b3 = 0
b2 =0 , b3 = 1

What about
initial values
of b2 and b3?

So system is
safe!

cs
5

1
0

 S
o

ftw
a
re

 E
n

g
in

e
e
rin

g

Tools for Predicate Abstraction of
C

SLAM at Microsoft
Used for verifying correct sequencing of function calls in windows
device drivers

MAGIC at CMU
Allows verification of concurrent C programs
Found bugs in MicroC OS

BLAST at Berkeley
Lazy abstraction, interpolation

SATABS at CMU
Computes predicate abstraction using SAT
Can handle pointer arithmetic, bit-vectors

F-Soft at NEC Labs
Localization, register sharing

