Propositional logic

Contents

- Syntax of propositional logic
- Semantics of propositional logic
- Semantic entailment
 - Natural deduction proof system
 - Soundness and completeness
- Validity
 - Conjunctive normal forms
- Satisfiability
 - Horn formulas

Syntax of propositional logic

$$F ::= (P) \mid (\neg F) \mid (F \lor F) \mid (F \land F) \mid (F \to F)$$

$$P ::= p \mid q \mid r \mid \dots$$

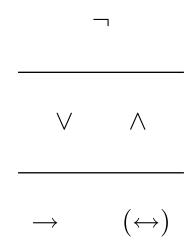
- propositional atoms: p, q, r, \ldots for describing declarative sentences such as:
 - All students have to follow the course Programming and Modal Logic
 - 1037 is a prime number
- connectives:

Connective	Symbol	Alternative symbols
negation	Г	~
disjunction	V	
conjunction	\wedge	&
implication	\longrightarrow	\Rightarrow , \supset , \supseteq

Sometimes also bi-implication $(\leftrightarrow, \Leftrightarrow, \equiv)$ is considered as a connective.

Syntax of propositional logic

Binding priorities



for reducing the number of brackets.

Also outermost brackets are often omitted.

Semantics of propositional logic

The meaning of a formula depends on:

- The meaning of the propositional atoms (that occur in that formula)
- The meaning of the connectives (that occur in that formula)

Semantics of propositional logic

The meaning of a formula depends on:

- The meaning of the propositional atoms (that occur in that formula)
 - o a declarative sentence is either true or false
 - o captured as an assignment of truth values ($\mathbb{B}=\{\mathtt{T},\mathtt{F}\}$) to the propositional atoms: a valuation $v:P\to\mathbb{B}$
- The meaning of the connectives (that occur in that formula)
 - \circ the meaning of an n-ary connective \oplus is captured by a function $f_{\oplus}:\mathbb{B}^n o \mathbb{B}$
 - usually such functions are specified by means of a truth table.

A	B	$\neg A$	$A \wedge B$	$A \vee B$	$A \to B$
Т	Т	F	Т	Т	Т
T	F	F	F	Т	F
F	Т	Т	F	Т	T
F	F	Т	F	F	T

Find the meaning of the formula $(p \to q) \land (q \to r) \to (p \to r)$ by constructing a truth table from the subformulas.

Find the meaning of the formula $(p \to q) \land (q \to r) \to (p \to r)$ by constructing a truth table from the subformulas.

p	q	r	$p \rightarrow q$	$q \rightarrow r$	$ \begin{array}{c} (p \to q) \\ \wedge \end{array} $	p o r	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
					$(q \rightarrow r)$		$(p \to r)$
T	Т	Т	Т	Т	T	Т	Т
T	Т	F	Т	F	F	F	T
T	F	Т	F	Т	F	T	T
T	F	F	F	T	F	F	T
F	Т	Т	Т	Т	T	T	T
F	Т	F	Т	F	F	Т	T
F	F	Т	Т	T	Т	Т	T
F	F	F	Т	Т	Т	Т	Т

Find the meaning of the formula $(p \to q) \land (q \to r) \to (p \to r)$ by constructing a truth table from the subformulas.

					$(p \rightarrow q)$		$\boxed{(p \to q) \land (q \to r)}$
$\parallel p$	q	r	$p \rightarrow q$	$q \rightarrow r$	\wedge	$p \rightarrow r$	\longrightarrow
					$(q \rightarrow r)$		$(p \to r)$
T	Т	Т	Т	Т	Т	Т	Т
T	Т	F	Т	F	F	F	T
T	F	Т	F	Т	F	T	T
T	F	F	F	Т	F	F	T
F	Т	Т	Т	Т	T	Т	T
F	Т	F	Т	F	F	Т	T
F	F	Т	Т	T	Т	Т	T
F	F	F	Т	Т	Т	Т	Т

Formally (this is not in the book)

$$\llbracket _ \rrbracket : F \to ((P \to \mathbb{B}) \to \mathbb{B})$$

Questions

Our interest lies with the following questions:

Semantic entailment

Many logical arguments are of the form: from the assumptions ϕ_1, \dots, ϕ_n , we know ψ . This is formalised by the *semantic entailment* relation \models .

Formally, $\phi_1, \dots, \phi_n \models \psi$ iff for all valuations v such that $\llbracket \phi_i \rrbracket(v) = \mathsf{T}$ for all $1 \leq i \leq n$ we have $\llbracket \psi \rrbracket(v) = \mathsf{T}$.

- Validity: A formula ϕ is *valid* if $\models \phi$ holds.
- Satisfiability: A formula ϕ is satisfiable if there exists a valuation v such that $\|\phi\|(v) = T$.

Semantic entailment

How to establish semantic entailment $\phi_1, \dots, \phi_n \models \psi$?

Option 1: Construct a truth table.

If the formulas contain m different propositional atoms, the truth table contains 2^m lines!

Option 2: Give a proof.

Suppose that $(p \to q) \land (q \to r)$. Suppose that p. Then, as $p \to q$ follows from $(p \to q) \land (q \to r)$, we have q. Finally, as $q \to r$ follows from $(p \to q) \land (q \to r)$, we have r. Thus the formula holds.

Semantic entailment

<u>Proof rules</u> for inferring a conclusion ψ from a list of premises ϕ_1, \dots, ϕ_n :

$$\phi_1, \cdots, \phi_n \vdash \psi$$
 (sequent)

What is a proof of a sequent $\phi_1, \dots, \phi_n \vdash \psi$ according to the book (informal definition)?

- o Proof rules may be instantiated, i.e. consistent replacement of variables by formulas
- Constructing the proof is filling the gap between the premises and the conclusion by applying a suitable sequence of proof rules.

Proof rules for **conjunction**:

• \(\lambda\) introduction

$$\frac{\phi \qquad \psi}{\phi \wedge \psi} \wedge \mathrm{i}$$

• ∧ elimination

$$\frac{\phi \wedge \psi}{\phi} \wedge \mathsf{e}_1 \qquad \qquad \frac{\phi \wedge \psi}{\psi} \wedge \mathsf{e}_2$$

Exercise 1.2.1: Prove $(p \land q) \land r, s \land t \vdash q \land s$.

Exercise 1.2.1: Prove $(p \land q) \land r, s \land t \vdash q \land s$.

Linear representation:

1	$(p \wedge q) \wedge r$	premise
2	$s \wedge t$	premise
3	$p \wedge q$	$\wedge e_1 \ 1$
4	q	$\wedge e_2$ 3
5	s	$\wedge e_1 \; 2$
6	$q \wedge s$	\wedge i $4,5$

Exercise 1.2.1: Prove $(p \land q) \land r, s \land t \vdash q \land s$.

Linear representation:

$$\begin{array}{cccc} 1 & (p \wedge q) \wedge r & \text{premise} \\ 2 & s \wedge t & \text{premise} \\ 3 & p \wedge q & \wedge e_1 \ 1 \\ 4 & q & \wedge e_2 \ 3 \\ 5 & s & \wedge e_1 \ 2 \\ 6 & q \wedge s & \wedge i \ 4, 5 \end{array}$$

Tree representation:

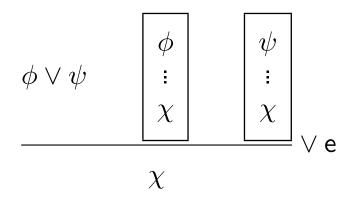
$$\frac{\frac{(p \wedge q) \wedge r}{p \wedge q} \wedge \mathsf{e}_1}{q} \wedge \mathsf{e}_2 \qquad \frac{s \wedge t}{s} \wedge \mathsf{e}_1 \\ q \wedge s \qquad \wedge \mathsf{i}$$

Proof rules for **disjunction**:

\(\) introduction

$$\frac{\phi}{\phi \vee \psi} \vee i_1 \qquad \frac{\psi}{\phi \vee \psi} \vee i_2$$

∨ elimination



Exercise 1.4.2.(q). Prove

$$(p \land q) \lor (p \land r) \vdash p \land (q \lor r)$$

Exercise 1.4.2.(q). Prove

$$(p \land q) \lor (p \land r) \vdash p \land (q \lor r)$$

1	$(p \wedge q) \vee (p \wedge r)$	premise
2	$p \wedge q$	assumption
3	p	$\wedge e_1$ 2
4	q	$\wedge e_2$ 2
5	$q \lor r$	\vee i $_1$ 4
6	$p \wedge (q \vee r)$	∧i 3,5
7	$p \wedge r$	assumption
8	$\mid p \mid$	$\wedge e_1$ 7
9	r	$\wedge e_2$ 7
10	$q \lor r$	\lor i $_2$ 9
11	$p \wedge (q \vee r)$	∧i 8,10
12	$p \wedge (q \vee r)$	∨e 1,2-6,7-11

Proof rules for **implication**:

→ introduction

$$\frac{\begin{bmatrix} \phi \\ \vdots \\ \psi \end{bmatrix}}{\phi \to \psi} \to \mathbf{i}$$

→ elimination

$$\frac{\phi \qquad \phi \rightarrow \psi}{\psi} \rightarrow e$$

1. Prove $p \to q, q \to r \vdash p \to r$.

2. Prove $\vdash (p \rightarrow (q \rightarrow r)) \rightarrow (q \rightarrow (p \rightarrow r))$.

Prove
$$p \rightarrow q, q \rightarrow r \vdash p \rightarrow r$$

Linear representation:

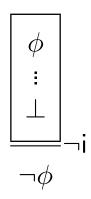
 $\begin{array}{cccc} 1 & p \rightarrow q & \text{premise} \\ 2 & q \rightarrow r & \text{premise} \\ 3 & p & \text{assumption} \\ 4 & q & \rightarrow \text{e 1,3} \\ 5 & r & \rightarrow \text{e 2,4} \\ 6 & p \rightarrow r & \rightarrow \text{i 3-5} \end{array}$

Tree representation (assumption management more difficult):

$$\begin{array}{|c|c|} \hline p \to q & p \\ \hline \hline q & \rightarrow \mathsf{e} & q \to r \\ \hline \hline r & & \\ \hline \hline p \to r & & \\ \hline \end{array} \to \mathsf{i}$$

Proof rules for **negation**:

¬ introduction



¬ elimination

$$\phi$$
 $\neg \phi$ $\neg \epsilon$

Example: $\vdash p \rightarrow (\neg p \rightarrow q)$

Proof rules for **falsum**:

- ullet introduction: there are no proof rules for the introduction of ot

$$_{\phi}^{\perp}$$

Proof rules for **double negation**:

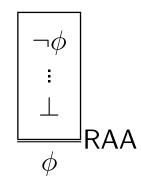
¬¬ elimination

Derived rules (derivation in book):

• Modus Tollens
$$\frac{\phi o \psi o \neg \psi}{\neg \phi}$$
MT

• ¬¬ introduction
$$\frac{\phi}{\neg \neg \phi}$$
¬¬i

Reduction Ad Absurdum / Proof by contradiction



• Law of the Excluded Middle / Tertium Non Datur $\frac{}{\phi \vee \neg \phi}$ LEM

Soundness of natural deduction

if
$$\phi_1, \cdots, \phi_n \vdash \psi$$
, then $\phi_1, \cdots, \phi_n \models \psi$

Completeness of natural deduction

if
$$\phi_1, \cdots, \phi_n \models \psi$$
, then $\phi_1, \cdots, \phi_n \vdash \psi$

Deciding validity and satisfiability of propositional formulas

- Validity: A formula ϕ is *valid* if for any valuations v, $\llbracket \phi \rrbracket(v) = \mathsf{T}$.
- Satisfiability: A formula ϕ is satisfiable if there exists a valuation v such that $\|\phi\|(v) = T$.

Deciding validity and satisfiability of propositional formulas

- Validity: A formula ϕ is *valid* if for any valuations v, $\llbracket \phi \rrbracket(v) = \mathsf{T}$.
- Satisfiability: A formula ϕ is satisfiable if there exists a valuation v such that $\|\phi\|(v) = T$.

Examples

$p \wedge q$	valid? satisfiable?
$p \to (q \to p)$	valid? satisfiable?
$p \land \neg p$	valid? satisfiable?

Deciding validity and satisfiability of propositional formulas

- Validity: A formula ϕ is *valid* if for any valuations v, $[\![\phi]\!](v) = \mathsf{T}$.
- Satisfiability: A formula ϕ is satisfiable if there exists a valuation v such that $\|\phi\|(v) = T$.

Examples

$p \wedge q$	satisfiable
$p \to (q \to p)$	valid
$p \land \neg p$	unsatisfiable

Given a propositional formula ϕ , how to check whether it is valid? satisfiable?

What are the means to decide whether or not a given formula ϕ is valid?

- Use techniques for semantic entailment (e.g., natural deduction).
- Use a calculus for semantical equivalence to prove that $\phi \equiv \top$.
- Transform ϕ into some normal form that is semantically equivalent and then apply dedicated techniques (syntactic).

 ϕ and ψ are semantically equivalent (not. $\phi \equiv \psi$) iff $\phi \models \psi$ and $\psi \models \phi$.

A decision procedure for validity can be used for semantic entailment. **Lemma (1.41)**:

$$\phi_1, \cdots, \phi_n \models \psi \text{ iff } \models \phi_1 \rightarrow (\phi_2 \rightarrow \cdots \rightarrow (\phi_n \rightarrow \psi))$$

- If I am wealthy, then I am happy. I am happy.
 Therefore, I am wealthy.
- If John drinks beer, he is at least 18 years old. John does not drink beer. Therefore, John is not yet 18 years old.
- If girls are blonde, they are popular with boys. Ugly girls are unpopular with boys. Intellectual girls are ugly. Therefore, blonde girls are not intellectual.
- If I study, then I will not fail basket weaving 101. If I do not play cards to often, then I will study. I failed basket weaving 101. Therefore, I played cards too often.

Conjunctive Normal Forms

A literal is either an atom p or the negation of an atom $\neg p$.

A formule ϕ is in conjunctive normal form (CNF) if it is a conjunction of a number of disjunctions of literals only.

$$\begin{array}{ll} L ::= P \mid \neg P & \text{literal} \\ C ::= L \mid C \vee C & \text{clause} \\ CNF ::= C \mid CNF \wedge CNF & \text{CNF} \end{array}$$

Examples

- p and $\neg p$ are in CNF;
- $\neg \neg p$ is not in CNF;
- $p \wedge \neg p$ and $(p \vee \neg r) \wedge (\neg r \vee s) \wedge q$ are in CNF;
- $(p \land \neg q) \lor q$ is not in CNF.

Usefulness of CNF

Deciding validity of formulas in CNF is easy!

$$C_1 \wedge C_2 \wedge \cdots \wedge C_n$$
 (CNF)

Each clause has to be valid.

$$L_1 \vee L_2 \vee \dots \vee L_m$$
 (C)

Lemma (1.43): $\models L_1 \lor \cdots \lor L_m$ iff there are i and j $(1 \le i, j \le m)$ such that L_i and $\neg L_j$ are syntactically equal.

Any formula be transformed into an equivalent formula in CNF!

Transformation into CNF

1. Remove all occurrences of \rightarrow .

Done by the algorithm IF

Input: formula

Output: formula without \rightarrow

2. Obtain a 'negation normal form' (only atoms are negated!).

$$N ::= P \mid \neg P \mid (N \lor N) \mid (N \land N)$$

$$P ::= p \mid q \mid r \mid \cdots$$

Done by the algorithm NNF

Input: formula without \rightarrow Output: formula in NNF

3. Apply distribution laws

Done by the algorithm CNF

Input: formula in NNF

Output: formula in CNF

Therefore, $CNF(NNF(IF(\phi)))$ is in CNF and semantically equivalent with ϕ .

Transformation into CNF. The algorithm IF

Idea: Apply the following replacement until it can not be applied anymore: $\phi \to \psi$ replace by $\neg \phi \lor \psi$

Inductive definition of IF:

$$IF(p) = p$$

$$IF(\neg \phi) = \neg IF(\phi)$$

$$IF(\phi_1 \land \phi_2) = IF(\phi_1) \land IF(\phi_2)$$

$$IF(\phi_1 \lor \phi_2) = IF(\phi_1) \lor IF(\phi_2)$$

$$IF(\phi_1 \to \phi_2) = \neg IF(\phi_1) \lor IF(\phi_2)$$

Properties of IF:

- IF is well-defined (terminates for any input)
- IF $(\phi) \equiv \phi$ (the output of IF and the input of IF are semantically equivalent)
- ullet IF (ϕ) is an implication-free formula for any formula ϕ

Transformation into CNF. The algorithm NNF

Idea: apply the following replacements until none can be applied anymore:

$$\neg\neg \phi \qquad \text{replace by} \quad \phi \\ \neg(\phi \wedge \psi) \quad \text{replace by} \quad \neg \phi \vee \neg \psi \\ \neg(\phi \vee \psi) \quad \text{replace by} \quad \neg \phi \wedge \neg \psi$$

Inductive definition of NNF:

Properties of NNF:

- NNF is well-defined (terminates for any input)
- NNF $(\phi) \equiv \phi$ (the output of NNF and the input of NNF are semantically equivalent)
- NNF (ϕ) is a NNF for any implication-free formula ϕ

Deciding validity

<u>Transformation into CNF</u>. The algorithm CNF

Idea: apply until no longer possible:

$$(\phi_1 \wedge \phi_2) \vee \psi$$
 replace by $(\phi_1 \vee \psi) \wedge (\phi_2 \vee \psi)$
 $\phi \vee (\psi_1 \wedge \psi_2)$ replace by $(\phi \vee \psi_1) \wedge (\phi \vee \psi_2)$

Inductive definition of CNF:

$$\begin{array}{lll} \operatorname{CNF}(p) & = & p \\ \operatorname{CNF}(\neg p) & = & \neg p \\ \operatorname{CNF}(\phi_1 \wedge \phi_2) & = & \operatorname{CNF}(\phi_1) \wedge \operatorname{CNF}(\phi_2) \\ \operatorname{CNF}(\phi_1 \vee \phi_2) & = & \operatorname{D}(\operatorname{CNF}(\phi_1), \operatorname{CNF}(\phi_2)) \end{array} \end{array} \text{ with } \begin{array}{lll} \operatorname{D}(\phi_1, \phi_2) = \\ \begin{cases} \operatorname{D}(\phi_{11}, \phi_2) \wedge \operatorname{D}(\phi_{12}, \phi_2) & \phi_1 = \phi_{11} \wedge \phi_{12} \\ \operatorname{D}(\phi_1, \phi_{21}) \wedge \operatorname{D}(\phi_1, \phi_{22}) & \phi_2 = \phi_{21} \wedge \phi_{22} \\ \phi_1 \vee \phi_2 & \text{otherwise} \end{cases}$$

$$\begin{split} & \mathbf{D}(\phi_{1},\phi_{2}) = \\ & \begin{cases} \mathbf{D}(\phi_{11},\phi_{2}) \wedge \mathbf{D}(\phi_{12},\phi_{2}) & \phi_{1} = \phi_{11} \wedge \phi_{12} \\ \mathbf{D}(\phi_{1},\phi_{21}) \wedge \mathbf{D}(\phi_{1},\phi_{22}) & \phi_{2} = \phi_{21} \wedge \phi_{22} \\ \phi_{1} \vee \phi_{2} & \text{otherwise} \\ \end{cases}$$

Properties of CNF (and D):

- CNF and D are well-defined
- $D(\phi, \psi) \equiv \phi \vee \psi$ and $CNF(\phi) \equiv \phi$
- ullet CNF (ϕ) is in CNF for any formula ϕ in NNF and D (ϕ,ψ) is in CNF for any formulas ϕ and ψ in CNF

Example

Find a CNF for $p \vee \neg q \rightarrow r$.

Example

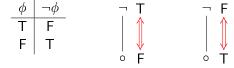
Validity of $((p \leftrightarrow q) \leftrightarrow r) \leftrightarrow s$.

CNF: ??

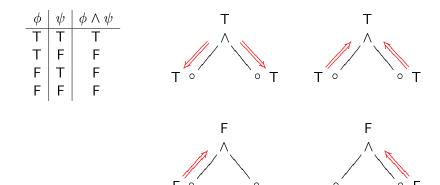
SAT Solver

 Finding satisfying valuations to a propositional formula.

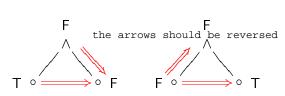
Forcing laws - negation



Forcing laws – conjunction



Other laws possible, but \neg and \land are adequate



Using the SAT solver

1. Convert to \neg and \land .

$$T(p) = p T(\neg \phi) = \neg T(\phi)$$

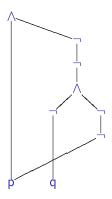
$$T(\phi \land \psi) = T(\phi) \land T(\psi) T(\phi \lor \psi) = \neg(\neg T(\phi) \land \neg T(\psi))$$

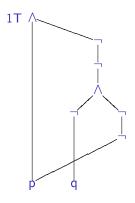
$$T(\phi \to \psi) = \neg(T(\phi) \land \neg T(\psi))$$

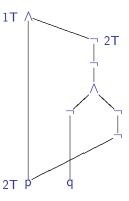
Linear growth in formula size (no distributivity).

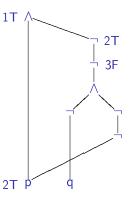
- 2. Translate the formula to a DAG, sharing common subterms.
- 3. Set the root to T and apply the forcing rules.

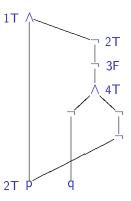
Satisfiable if all nodes are consistently annotated.

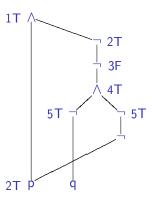




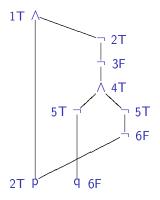








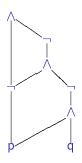
Formula:
$$p \land \neg (q \lor \neg p) \equiv p \land \neg \neg (\neg q \land \neg \neg p)$$



Satisfiable?

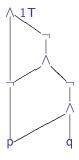
Formula: $(p \lor (p \land q)) \rightarrow p$

Valid if $\neg((p \lor (p \land q)) \rightarrow p)$ is not satisfiable



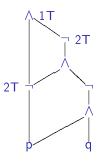
Formula: $(p \lor (p \land q)) \rightarrow p$

Valid if $\neg((p \lor (p \land q)) \rightarrow p)$ is not satisfiable



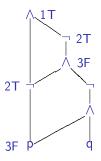
Formula: $(p \lor (p \land q)) \rightarrow p$

Valid if $\neg((p \lor (p \land q)) \rightarrow p)$ is not satisfiable



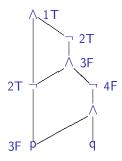
Formula: $(p \lor (p \land q)) \rightarrow p$

Valid if $\neg((p \lor (p \land q)) \rightarrow p)$ is not satisfiable



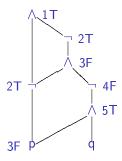
Formula: $(p \lor (p \land q)) \rightarrow p$

Valid if $\neg((p \lor (p \land q)) \rightarrow p)$ is not satisfiable



Formula: $(p \lor (p \land q)) \rightarrow p$

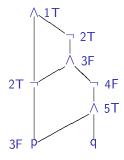
Valid if $\neg((p \lor (p \land q)) \rightarrow p)$ is not satisfiable



Formula: $(p \lor (p \land q)) \rightarrow p$

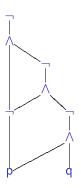
Valid if $\neg((p \lor (p \land q)) \rightarrow p)$ is not satisfiable

Translated formula: $\neg(\neg p \land \neg(p \land q)) \land \neg p$

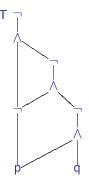


Contradiction.

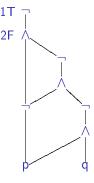
Formula:
$$(p \lor (p \land q)) \rightarrow p \equiv \neg(\neg(\neg p \land \neg(p \land q)) \land \neg p)$$



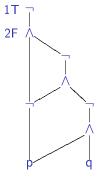
Formula:
$$(p \lor (p \land q)) \rightarrow p \equiv \neg(\neg(\neg p \land \neg(p \land q)) \land \neg p)$$



Formula:
$$(p \lor (p \land q)) \rightarrow p \equiv \neg(\neg(\neg p \land \neg(p \land q)) \land \neg p)$$

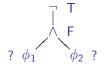


Formula:
$$(p \lor (p \land q)) \rightarrow p \equiv \neg(\neg(\neg p \land \neg(p \land q)) \land \neg p)$$



Now what?

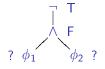
Fails for all formulas of the form $\neg(\phi_1 \land \phi_2)$.



Some are valid, and thus satisfiable:

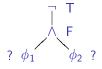
Т

Fails for all formulas of the form $\neg(\phi_1 \land \phi_2)$.



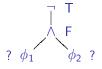
$$\top \equiv p \rightarrow p$$

Fails for all formulas of the form $\neg(\phi_1 \land \phi_2)$.



$$\top \equiv p \rightarrow p \equiv \neg (p \land \neg p)$$

Fails for all formulas of the form $\neg(\phi_1 \land \phi_2)$.



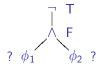
Some are valid, and thus satisfiable:

$$\top \equiv p \rightarrow p \equiv \neg (p \land \neg p)$$

Some are not valid, and thus not satisfiable:

 \perp

Fails for all formulas of the form $\neg(\phi_1 \land \phi_2)$.

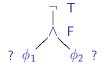


Some are valid, and thus satisfiable:

$$\top \equiv p \rightarrow p \equiv \neg (p \land \neg p)$$

$$\bot \equiv \neg \top$$

Fails for all formulas of the form $\neg(\phi_1 \land \phi_2)$.

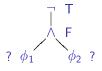


Some are valid, and thus satisfiable:

$$\top \equiv p \rightarrow p \equiv \neg (p \land \neg p)$$

$$\bot \equiv \neg \top \equiv \neg (\top \land \top)$$

Fails for all formulas of the form $\neg(\phi_1 \land \phi_2)$.

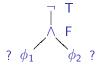


Some are valid, and thus satisfiable:

$$\top \equiv p \rightarrow p \equiv \neg (p \land \neg p)$$

$$\bot \equiv \neg \top \equiv \neg (\top \wedge \top) \equiv \neg (p \to p \wedge p \to p)$$

Fails for all formulas of the form $\neg(\phi_1 \land \phi_2)$.

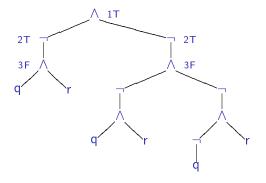


Some are valid, and thus satisfiable:

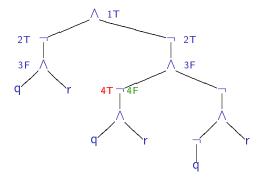
$$\top \equiv p \rightarrow p \equiv \neg (p \land \neg p)$$

$$\bot \equiv \neg \top \equiv \neg (\top \wedge \top) \equiv \neg (p \to p \wedge p \to p) \equiv \neg (\neg (p \wedge \neg p) \wedge \neg (p \wedge \neg p))$$

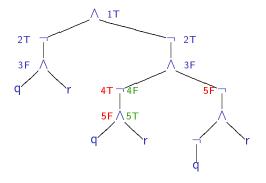
Formula:
$$\neg(q \land r) \land \neg(\neg(q \land r) \land \neg(\neg q \land r))$$



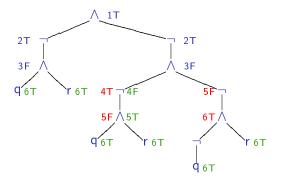
Formula:
$$\neg(q \land r) \land \neg(\neg(q \land r) \land \neg(\neg q \land r))$$



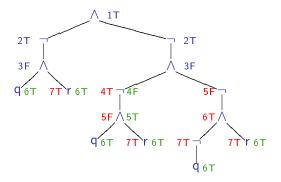
Formula:
$$\neg(q \land r) \land \neg(\neg(q \land r) \land \neg(\neg q \land r))$$



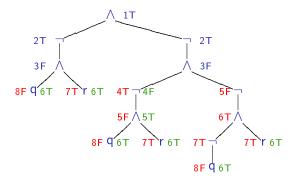
Formula:
$$\neg(q \land r) \land \neg(\neg(q \land r) \land \neg(\neg q \land r))$$



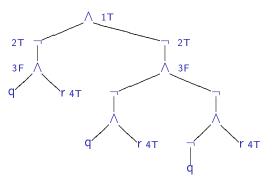
Formula:
$$\neg(q \land r) \land \neg(\neg(q \land r) \land \neg(\neg q \land r))$$

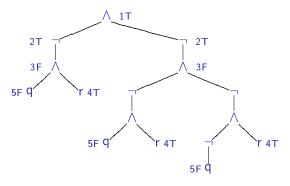


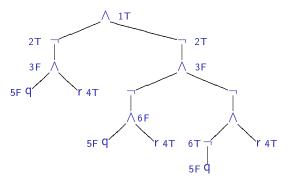
Formula:
$$\neg(q \land r) \land \neg(\neg(q \land r) \land \neg(\neg q \land r))$$

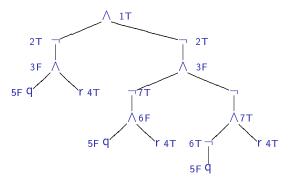


r is true in both cases

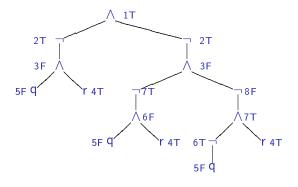








Formula:
$$\neg(q \land r) \land \neg(\neg(q \land r) \land \neg(\neg q \land r))$$



Satisfiable.

Extended algorithm

Algorithm:

- 1. Pick an unmarked node and add temporary T and F marks.
- 2. Use the forcing rules to propagate both marks.
- 3. If both marks lead to a contradiction, report a contradiction.
- 4. If both marks lead to some node having the same value, permanently assign the node that value.
- 5. Erase the remaining temporary marks and continue.

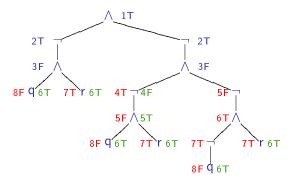
Complexity $O(n^3)$:

- 1. Testing each unmarked node: O(n)
- 2. Testing a given unmarked node: O(n)
- 3. Repeating the whole thing when a new node is marked: O(n)

Why isn't it exponential?

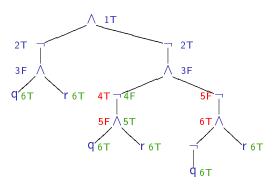
An optimization

Formula:
$$\neg(q \land r) \land \neg(\neg(q \land r) \land \neg(\neg q \land r))$$



We could stop here: red values give a complete and consistent valuation.

Another optimization



- ▶ Contradiction in the leftmost subtree.
- ▶ No need to analyze q, etc.
- ▶ Permanently mark "4T4F" as T.