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Why Program Representations� Initial representations
• Source code (across languages).
• Binaries (across machines and platforms).
• Source code / binaries + test cases.� They are hard for machines to analyze.
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Program Representations� Static program representations
• Abstract syntax tree;
• Control flow graph;
• Program dependence graph;
• Call graph;
• Points-to relations.� Dynamic program representations
• Control flow trace, address trace and value trace;
• Dynamic dependence graph;
• Whole execution trace;
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(1) Abstract syntax tree� An abstract syntax tree (AST) is a finite, labeled, 
directed tree, where the internal nodes are labeled 
by operators, and the leaf nodes represent the 
operands of the operators.

Program chipping.
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(2) Control Flow Graph (CFG)� Consists of basic blocks and edges
• A maximal sequence of consecutive instructions such that 

inside the basic block an execution can only proceed from 
one instruction to the next (SESE).

• Edges represent potential flow of control between BBs.
• Program path.B1B2 B3B4

� CFG = <V, E, Entry, Exit>� V = Vertices, nodes 
(BBs)� E = Edges, potential flow 
of control E ⊆ V × V� Entry, Exit ∈V, unique 
entry and exit
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(2) An Example of CFG

1:     sum=0

2:     i=1

3:     while ( i<N) do 

4: i=i+1

5: sum=sum+i

endwhile

6:   print(sum) 

3:  while ( i<N) do 

1:  sum=0

2:  i=1

4:  i=i+1

5:  sum=sum+i

6:  print (sum)

• BB- A maximal sequence of consecutive instructions such 
that inside the basic block an execution can only proceed 
from one instruction to the next (SESE).
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(3) Program Dependence Graph (PDG)–
Data Dependence� S data depends T if there exists a control flow path 

from T to S and a variable is defined at T and then 
used at S.
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(3) PDG – Control Dependence� X dominates Y if every possible program path from 
the entry to Y has to pass X.

• Strict dominance, dominator, immediate dominator.

1:     sum=0

2:     i=1

3:     while ( i<N) do 

4: i=i+1

5: sum=sum+i

endwhile

6:   print(sum) 

3:  while ( i<N) do 

1:  sum=0

2:  i=1

4:  i=i+1

5:  sum=sum+i

6:  print (sum)
DOM(6)={1,2,3,6}   IDOM(6)=3
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(3) PDG – Control Dependence� X post-dominates Y if every possible program path 
from Y to EXIT has to pass X.

• Strict post-dominance, post-dominator, immediate post-
dominance.

1:     sum=0

2:     i=1

3:     while ( i<N) do 

4: i=i+1

5: sum=sum+i

endwhile

6:   print(sum) 

3:  while ( i<N) do 

1:  sum=0

2:  i=1

4:  i=i+1

5:  sum=sum+i

6:  print (sum)
PDOM(5)={3,5,6}   IPDOM(5)=3
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(3) PDG – Control Dependence� Intuitively, Y is control-dependent on X iff X directly determines 
whether Y executes (statements inside one branch of a 
predicate are usually control dependent on the predicate)

• there exists a path from X to Y s.t. every node in the path other 
than X and Y is post-dominated by Y

• X is not strictly post-dominated by Y

Sorin Lerner

X

Y

Not post-dominated by Y

Every node is post-dominated by Y



CS590F Software Reliability

(3) PDG – Control Dependence

1:     sum=0

2:     i=1

3:     while ( i<N) do 

4: i=i+1

5: sum=sum+i

endwhile

6:   print(sum) 

3:  while ( i<N) do 

1:  sum=0

2:  i=1

4:  i=i+1

5:  sum=sum+i

6:  print (sum)CD(5)=3

CD(3)=3, tricky!

A node (basic block) Y is control-dependent on another X iff X 
directly determines whether Y executes

• there exists a path from X to Y s.t. every node in the path other 
than X and Y is post-dominated by Y

• X is not strictly post-dominated by Y
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(3) PDG – Control Dependence is not 
Syntactically Explicit

1:     sum=0

2:     i=1

3:     while ( i<N) do 

4: i=i+1

5: if (i%2==0) 

6: continue;

7: sum=sum+i

endwhile

8:    print(sum) 

3:  while ( i<N) do 

1:  sum=0

2:  i=1

4:  i=i+1

5:  if (i%2==0)

8:  print (sum)

7:  print (sum)

A node (basic block) Y is control-dependent on another X iff X 
directly determines whether Y executes

• there exists a path from X to Y s.t. every node in the path other 
than X and Y is post-dominated by Y

• X is not strictly post-dominated by Y
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(3) PDG – Control Dependence is Tricky!

A node (basic block) Y is control-dependent on another X iff X directly 
determines whether Y executes

• there exists a path from X to Y s.t. every node in the path other than X and 
Y is post-dominated by Y

• X is not strictly post-dominated by Y� Can a statement control depends on two predicates?
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(3) PDG – Control Dependence is Tricky!

A node (basic block) Y is control-dependent on another X iff X directly 
determines whether Y executes

• there exists a path from X to Y s.t. every node in the path other than X and 
Y is post-dominated by Y

• X is not strictly post-dominated by Y

1:     if ( p1 || p2 ) 

2:     s1;

3:     s2;

1:    ? p1

� Can one statement control depends on two 
predicates?

1:    ? p2

2:    s1

3:    s2

What if ?

1:     if ( p1 && p2 ) 

2:     s1;

3:     s2;

Interprocedural CD, CD in case of exception,…
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(3) PDG � A program dependence graph consists of control 
dependence graph and data dependence graph� Why it is so important to software reliability?

• In debugging, what could possibly induce the failure?
• In security

p=getpassword( );

…

if (p==“zhang”) {

send (m);

}
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(4) Points-to Graph � Aliases: two expressions that denote the same 
memory location.� Aliases are introduced by:

• pointers
• call-by-reference
• array indexing
• C unions
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(4) Points-to Graph � Aliases: two expressions that denote the same 
memory location.� Aliases are introduced by:

• pointers
• call-by-reference
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(4) Why Do We Need Points-to Graphs� Debugging 

x.lock();
...
y.unlock(); // same object as x?� Security

F(x,y) 
{

x.f=password;
…
print (y.f);

}

F(a,a); disaster!
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(4) Points-to Graph� Points-to Graph
• at a program point, compute a set of pairs of the form p -> x, 

where p MAY/MUST points to x.m(p) {r = new C();p->f = r;t = new C();if (…) q=p;r->f = t;}
r
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where p MAY/MUST points to x.m(p) {r = new C();p->f = r;t = new C();if (…) q=p;r->f = t;} p
r

f



CS590F Software Reliability

(4) Points-to Graph� Points-to Graph
• at a program point, compute a set of pairs of the form p->x, 

where p MAY/MUST points to x.m(p) {r = new C();p->f = r;t = new C();if (…) q=p;r->f = t;} p
r

f
t



CS590F Software Reliability

(4) Points-to Graph� Points-to Graph
• at a program point, compute a set of pairs of the form p->x, 
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(4) Points-to Graph� Points-to Graph
• at a program point, compute a set of pairs of the form p->x, 

where p MAY/MUST points to x.m(p) {r = new C();p->f = r;t = new C();if (…) q=p;r->f = t;} p
q

r
f

t
f

p->f->f and t are aliases
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(5) Call Graph� Call graph
• nodes are procedures
• edges are calls� Hard cases for building call graph
• calls through function pointers

Can the password acquired at A be leaked at G?
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How to acquire and use these 
representations?� Will be covered by later lectures.
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Program Representations� Static program representations� Abstract syntax tree;� Control flow graph;� Program dependence graph;� Call graph;� Points-to relations.� Dynamic program representations
• Control flow trace;
• Address trace, Value trace;
• Dynamic dependence graph;
• Whole execution trace;
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(1) Control Flow Trace

3:  while ( i<N) do 

1:  sum=0

2:  i=1

4:  i=i+1

5:  sum=sum+i

6:  print (sum)

11:  sum=0

31:  while ( i<N) do 

51:  sum=sum+i

32:  while ( i<N) do 

42:  i=i+1

33:  while ( i<N) do 

61:  print (sum)

N=2:

<… xi, …>

<… 804805737, 804805a29, …>

21:  i=1

41:  i=i+1

52:  sum=sum+i

x is a program point, xi is an execution point
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(1) Control Flow Trace

3:  while ( i<N) do 

1:  sum=0

2:  i=1

4:  i=i+1

5:  sum=sum+i

6:  print (sum)

11:  sum=0

i=1

31:  while ( i<N) do 

41:  i=i+1

sum=sum+i

32:  while ( i<N) do 

42:  i=i+1

sum=sum+i

33:  while ( i<N) do 

61:  print (sum)

N=2:

A More Compact CFT: < T, T, F >

11 21 31 41 51 32  42 52 33 61 11 31 41 32  42 33 61
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(2) Dynamic Dependence Graph (DDG)
Input: N=2

51: for i=1 to N do

61:  if (i%2==0) then

81:  a=a+1

11: z=0

21: a=0

31: b=2

41: p=&b

1:      z=0

2:      a=0

3:      b=2

4:      p=&b

5:      for i = 1 to N do

6:         if ( i %2 == 0) then

7:                   p=&a

endif

endfor

8:     a=a+1

9:     z=2*(*p)

10:   print(z) 
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(2) Dynamic Dependence Graph (DDG)
Input: N=2

51: for i=1 to N do

61:  if (i%2==0) then

71:  p=&a

81:  a=a+1

91:  z=2*(*p)

101:  print(z)

11: z=0

21: a=0

31: b=2

41: p=&b

52: for I=1 to N do

62:  if (i%2==0) then

82:  a=a+1

92:  z=2*(*p)

1:      z=0

2:      a=0

3:      b=2

4:      p=&b

5:      for i = 1 to N do

6:         if ( i %2 == 0) then

7:                   p=&a

endif

endfor

8:     a=a+1

9:     z=2*(*p)

10:   print(z) 

One use has only one definition at runtime;
One statement instance control depends on 

only one predicate instance.
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(3) Whole Execution Trace

5:for i=1 to N

6:if (i%2==0) then

7: p=&a

8: a=a+1

9: z=2*(*p)

10: print(z)

T F

1: z=0

2: a=0

3: b=2

4: p=&b

T

Input: N=2

11:   z=0

21:   a=0

31:   b=2

41:   p=&b

51:   for i = 1 to N do

61:   if ( i %2 == 0) then

81:   a=a+1

91:   z=2*(*p)

52:   for i = 1 to N do

62:   if ( i %2 == 0) then

71:   p=&a

82:   a=a+1

92:   z=2*(*p)

101: print(z) 

T
1

2

3

4

5

6

7

8

9

10

11

12

13

14

(3,8)(2,7)

(7,12)

(11,13)

(13,14)

(4,8)

(12,13)

(5,6)(9,10)

(10,11)

(5,7)(9,12)

(5,8)(9,13)

1

2

3

4

5,9

6,10

11

7,12

8,13

14

F

&b

&a

0

0

2

1,2

F,T

1,2

4,4

4



CS590F Software Reliability

(3) Whole Execution Trace

< tn >
S1 < v1 >

< (ts, tn) > < (ts, tn) >

Multiple streams of numbers. 
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Program Representations� Static program representations
• Abstract syntax tree;
• Control flow graph;
• Program dependence graph;
• Call graph;
• Points-to relations.� Dynamic program representations
• Control flow trace, address trace and value trace;
• Dynamic dependence graph;
• Whole execution trace;
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Next Lecture – Program Analysis� Static analysis� Dynamic analysis


