Program Representations

Xiangyu Zhang

Q Initial representations
« Source code (across languages).
« Binaries (across machines and platforms).
« Source code / binaries + test cases.

a They are hard for machines to analyze.

CS590F Softwar e Reliability

Q Static program representations
« Abstract syntax tree;
« Control flow graph;
« Program dependence graph;
« Call graph;
« Points-to relations.

a Dynamic program representations
« Control flow trace, address trace and value trace;
« Dynamic dependence graph;
« Whole execution trace;

CS590F Softwar e Reliability

O An abstract syntax tree (AST) is a finite, labeled,
directed tree, where the internal nodes are labeled

by operators, and the leaf nodes represent the
operands of the operators.

Source: AST:
for i =1 to 10 do Lo
ettt =it —5— i//lo/ \._
end /_\
[] *
/ N\ /N
a 1 [] 5
Program chipping. / \
b 1

CS590F Softwar e Reliability

0 Consists of basic blocks and edges

« A maximal sequence of consecutive instructions such that
Inside the basic block an execution can only proceed from
one instruction to the next (SESE).

« Edges represent potential flow of control between BBs.
« Program path.

B1

a CFG =<V, E, Entry, Exit>

A 0 V = Vertices, nodes
2 B

B 3 (BBs)

Q E = Edges, potential flow
of control ELIV x V

a Entry, Exit LV, unique
w

CS590F Softwar e Reliability

B4

BB- A maximal sequence of consecutive instructions such
that inside the basic block an execution can only proceed
from one instruction to the next (SESE).

1: sum=0

1: sum=0 2 i=1

2 i=1 ‘

3. while (i<N) do 3: while (i<N) do 4
4. i=i+1 !

o) SUM=SuUM-+i 4: i=i+1

endwhile 5: sum=sum-+i
6: print(sum)

A\ 4

6: print (sum)

CS590F Softwar e Reliability

QO S data depends T if there exists a control flow path
from T to S and a variable is defined at T and then

used at S.
4
5
6

CS590F Softwar e Reliability

0 X dominates Y if every possible program path from

the entry to Y has to pass X.

« Strict dominance, dominator, immediate dominator.

sum=0

i=1

while (i<N) do
I=i+1

AN

sum=sum-+i
endwhile
6: print(sum)

DOM(6)={1,2,3,6} IDOM(6)=3

1: sum=0
2: =1

A

3: while (i<N) do

A

v

4: i=i+1
5: sum=sum-+i

A 4

6: print (sum)

CS590F Softwar e Reliability

O X post-dominates Y if every possible program path
from Y to EXIT has to pass X.
Strict post-dominance, post-dominator, immediate post-

dominance.

1

2. i=1

3. while (i<N) do

4 i=i+1

5 sUM=sum-+i
endwhile

print(sum)

o

PDOM(5)={3,5,6} IPDOM(5)=3

<

1: sum=0

2: =1

————

A

B

3:

while (i<N) do

A

v

4: i=i+1

P —
5: sum=sum-+i

i

A 4

6: print (sum)

CS590F Softwar e Reliability

Q Intuitively, Y is control-dependent on X iff X directly determines
whether Y executes (statements inside one branch of a
predicate are usually control dependent on the predicate)

« there exists a path from X to Y s.t. every node in the path other
than X and Y is post-dominated by Y

« Xis not strictly post-dominated by Y
«— Not post-dominated by Y

< %— Every node is post-dominated by Y

Sorin Lerner CS590F Softwar e Reliability

A node (basic block) Y is control-dependent on another X iff X

directly determines whether Y executes

there exists a path from X to Y s.t. every node in the path other

than X and Y is post-dominated by Y
X is not strictly post-dominated by Y

1;
2.
3:
4
5

1: sum=0

sum=0 2: i=1

i=1

while (i<N) do __while (i<N)do)«
I=i+1 _ I
SUM=SUM+i 4. i=i+1

endwhile <ﬂ=sum+|

print(sum)

CD()=3 6: print (sum)

CD(3)=3, tricky!

CS590F Softwar e Reliability

A node (basic block) Y is control-dependent on another X iff X
directly determines whether Y executes

« there exists a path from X to Y s.t. every node in the path other
than X and Y is post-dominated by Y

« XIs not strictly post-dominated by Y

1: sum=0

1 sum=0 = =
2. =t 3: while (i<N)do |
3. while (i<N) do

- v
4: I=I+1 4: i=i+1
5: if (1%2==0) 5: if (1i%2==0)
6 continue;
7 7: print (sum)

endwhile

8: print(sum) Y

8: print (sum)

CS590F Softwar e Reliability

A node (basic block) Y is control-dependent on another X iff X directly
determines whether Y executes

- there exists a path from X to Y s.t. every node in the path other than X and
Y is post-dominated by Y

« Xis not strictly post-dominated by Y

O Can a statement control depends on two predicates?

CS590F Softwar e Reliability

A node (basic block) Y is control-dependent on another X iff X directly
determines whether Y executes

- there exists a path from X to Y s.t. every node in the path other than X and
Y is post-dominated by Y

« Xis not strictly post-dominated by Y

O Can one statement control depends on two
predicates?

11 if(p1lp2) 1: 71
2. s1;

3 s 1. ?7p2
What if ?

11 if(p188&p2) 2.8l
2. s1;

3 82 3: 82

Interprocedural CD, CD in case of exception,...

CS590F Softwar e Reliability

a A program dependence graph consists of control
dependence graph and data dependence graph

a Why it is so important to software reliability?
« In debugging, what could possibly induce the failure?
e In security

p=getpassword();
if (p=="zhang”) {

send (m);

}

CS590F Softwar e Reliability

0 Aliases: two expressions that denote the same
memory location.

QO Aliases are introduced by:
e pointers
« call-by-reference
e array indexing
« C unions

|
CS590F Softwar e Reliability

0 Aliases: two expressions that denote the same
memory location.

QO Aliases are introduced by:
e pointers
« call-by-reference
e array indexing
« C unions

|
CS590F Softwar e Reliability

0 Debugging

x.lock();

y.unlock(); // same object as x?

Q Security
F(x,y)
{

x.f=password;

|.o.r.int (y.0);
}

F(a,a); disaster!

CS590F Softwar e Reliability

Q0 Points-to Graph

« at a program point, compute a set of pairs of the form p -> x,
where p MAY/MUST points to x.

m(p) {
—> r = new C(),; I
p->f=r;
t = new C(); é
if (...)
a=p;,
r->f =t;
}

CS590F Softwar e Reliability

Q0 Points-to Graph

« at a program point, compute a set of pairs of the form p->x,
where p MAY/MUST points to x.

m(p) {
r = new C();
—> p->f=r;

r
_ . p é

t = new C(); f

if (...) \O_’

a=p;
r->f =1t

¥

CS590F Softwar e Reliability

Q0 Points-to Graph

« at a program point, compute a set of pairs of the form p->x,
where p MAY/MUST points to x.

m(p) {
r = new C(); I
p->f=r; D
—> t = new C(); f é
if (...) \O_’ /£>
q=p;
r->f =1t t
}

CS590F Softwar e Reliability

Q0 Points-to Graph

« at a program point, compute a set of pairs of the form p->x,
where p MAY/MUST points to x.

m(p) {

r = new C(); I

p->f=r; D

t = new C(); f

if (...) \70_’ /£>
- 9= g

r->f =t . t
}

CS590F Softwar e Reliability

Q0 Points-to Graph

« at a program point, compute a set of pairs of the form p->x,
where p MAY/MUST points to x.

m(p) {
r = new C(); I
p->f=r;

t = new C(); p\: f f

if (...) 7

*
*
*
*
*
*
*
“
*

q=p; g ¢

- ->f =t

¥

p->f->f and t are aliases

CS590F Softwar e Reliability

a Call graph
« nodes are procedures
« edges are calls A
O Hard cases for building call graph]]
« calls through function pointers B c
Ve
D E
F
Can the password acquired at A be leaked at G?
G

CS590F Softwar e Reliability

a Will be covered by later lectures.

CS590F Softwar e Reliability

Q Static program representations
Abstract syntax tree;

Control flow graph;

Program dependence graph;

Call graph;

Points-to relations.

NN X X X

a Dynamic program representations
Control flow trace;

- Address trace, Value trace;

« Dynamic dependence graph;

« Whole execution trace;

CS590F Softwar e Reliability

1: sum=0
2: i=1

A

3: while (i<N) do

v

4: i=i+1
5: sum=sum-+i

A

y

6: print (sum)

N

I II II II [

X IS a program point, X; is an execution point

<... 8048057,,, 804805a,,, ...>

CS590F Softwar e Reliability

N

1: sum=0
2: i=1

A

3: while (i<N) do

v
4: i=i+1
5: sum=sum-+i

A

I I I I [

y

6: print (sum)

11 21 31 41 51 32 42 52 33 61 11 31 41 32 42 33 61
A More Compact CFT: < T, T, F>

CS590F Softwar e Reliability

Input: N=2

z=0
a=0
b=2
p=&b
fori=1toNdo
if (1 %2 ==0) then
p=&a

7\

N o R w2

™

endif
endfor

8. a=a+1
9: z=2*("p)
10: print(z)

CS590F Softwar e Reliability

Input: N=2
L e [1:2=0]
> aso [2:8=0]
3 poo [3:b=2]
4 peab [4:p=8D]
5 fori=1toN do 5y fori=t foNdo |
6 i (i%2==0)then [6, if (i%2==0) then |
. 0-8a [8;: a=a+ |
endif _
ondfor [5, forl=TtoNdo |
8: a=a+i _
9: z=2*("p) _
10: print(z) _
One use has only one definition at runtime; _

One statell"nent instance control deéoends on
only one predicate instance.

CS590F Softwar e Reliability

3 3 b=2

4 4. p=8&b

5 5. fori=1toNdo

6 6, if(i%2==0)then @l
8y a=atD (19,

8 9, z=2*("p)

9 5, fori=1toNdo 1

10 6,: if (i %2 ==0)then

11 7,0 p=&a

12 8, a=a+l

13 9, z=2*("p)

14 10,: print(z) (13, 14)1 4

CS590F Softwar e Reliability

Multiple streams of numbers.

CS590F Softwar e Reliability

Q Static program representations
« Abstract syntax tree;
« Control flow graph;
« Program dependence graph;
« Call graph;
« Points-to relations.

a Dynamic program representations
« Control flow trace, address trace and value trace;
« Dynamic dependence graph;
« Whole execution trace;

CS590F Softwar e Reliability

Q Static analysis

a Dynamic analysis

CS590F Softwar e Reliability

