
Program Representations

Xiangyu Zhang

CS590F Software Reliability

Why Program Representations� Initial representations
• Source code (across languages).
• Binaries (across machines and platforms).
• Source code / binaries + test cases.� They are hard for machines to analyze.

CS590F Software Reliability

Program Representations� Static program representations
• Abstract syntax tree;
• Control flow graph;
• Program dependence graph;
• Call graph;
• Points-to relations.� Dynamic program representations
• Control flow trace, address trace and value trace;
• Dynamic dependence graph;
• Whole execution trace;

CS590F Software Reliability

(1) Abstract syntax tree� An abstract syntax tree (AST) is a finite, labeled,
directed tree, where the internal nodes are labeled
by operators, and the leaf nodes represent the
operands of the operators.

Program chipping.

CS590F Software Reliability

(2) Control Flow Graph (CFG)� Consists of basic blocks and edges
• A maximal sequence of consecutive instructions such that

inside the basic block an execution can only proceed from
one instruction to the next (SESE).

• Edges represent potential flow of control between BBs.
• Program path.B1B2 B3B4

� CFG = <V, E, Entry, Exit>� V = Vertices, nodes
(BBs)� E = Edges, potential flow
of control E ⊆ V × V� Entry, Exit ∈V, unique
entry and exit

CS590F Software Reliability

(2) An Example of CFG

1: sum=0

2: i=1

3: while (i<N) do

4: i=i+1

5: sum=sum+i

endwhile

6: print(sum)

3: while (i<N) do

1: sum=0

2: i=1

4: i=i+1

5: sum=sum+i

6: print (sum)

• BB- A maximal sequence of consecutive instructions such
that inside the basic block an execution can only proceed
from one instruction to the next (SESE).

CS590F Software Reliability

(3) Program Dependence Graph (PDG)–
Data Dependence� S data depends T if there exists a control flow path

from T to S and a variable is defined at T and then
used at S.

1
2
3

4
5
6

7
8
9

10

CS590F Software Reliability

(3) PDG – Control Dependence� X dominates Y if every possible program path from
the entry to Y has to pass X.

• Strict dominance, dominator, immediate dominator.

1: sum=0

2: i=1

3: while (i<N) do

4: i=i+1

5: sum=sum+i

endwhile

6: print(sum)

3: while (i<N) do

1: sum=0

2: i=1

4: i=i+1

5: sum=sum+i

6: print (sum)
DOM(6)={1,2,3,6} IDOM(6)=3

CS590F Software Reliability

(3) PDG – Control Dependence� X post-dominates Y if every possible program path
from Y to EXIT has to pass X.

• Strict post-dominance, post-dominator, immediate post-
dominance.

1: sum=0

2: i=1

3: while (i<N) do

4: i=i+1

5: sum=sum+i

endwhile

6: print(sum)

3: while (i<N) do

1: sum=0

2: i=1

4: i=i+1

5: sum=sum+i

6: print (sum)
PDOM(5)={3,5,6} IPDOM(5)=3

CS590F Software Reliability

(3) PDG – Control Dependence� Intuitively, Y is control-dependent on X iff X directly determines
whether Y executes (statements inside one branch of a
predicate are usually control dependent on the predicate)

• there exists a path from X to Y s.t. every node in the path other
than X and Y is post-dominated by Y

• X is not strictly post-dominated by Y

Sorin Lerner

X

Y

Not post-dominated by Y

Every node is post-dominated by Y

CS590F Software Reliability

(3) PDG – Control Dependence

1: sum=0

2: i=1

3: while (i<N) do

4: i=i+1

5: sum=sum+i

endwhile

6: print(sum)

3: while (i<N) do

1: sum=0

2: i=1

4: i=i+1

5: sum=sum+i

6: print (sum)CD(5)=3

CD(3)=3, tricky!

A node (basic block) Y is control-dependent on another X iff X
directly determines whether Y executes

• there exists a path from X to Y s.t. every node in the path other
than X and Y is post-dominated by Y

• X is not strictly post-dominated by Y

CS590F Software Reliability

(3) PDG – Control Dependence is not
Syntactically Explicit

1: sum=0

2: i=1

3: while (i<N) do

4: i=i+1

5: if (i%2==0)

6: continue;

7: sum=sum+i

endwhile

8: print(sum)

3: while (i<N) do

1: sum=0

2: i=1

4: i=i+1

5: if (i%2==0)

8: print (sum)

7: print (sum)

A node (basic block) Y is control-dependent on another X iff X
directly determines whether Y executes

• there exists a path from X to Y s.t. every node in the path other
than X and Y is post-dominated by Y

• X is not strictly post-dominated by Y

CS590F Software Reliability

(3) PDG – Control Dependence is Tricky!

A node (basic block) Y is control-dependent on another X iff X directly
determines whether Y executes

• there exists a path from X to Y s.t. every node in the path other than X and
Y is post-dominated by Y

• X is not strictly post-dominated by Y� Can a statement control depends on two predicates?

CS590F Software Reliability

(3) PDG – Control Dependence is Tricky!

A node (basic block) Y is control-dependent on another X iff X directly
determines whether Y executes

• there exists a path from X to Y s.t. every node in the path other than X and
Y is post-dominated by Y

• X is not strictly post-dominated by Y

1: if (p1 || p2)

2: s1;

3: s2;

1: ? p1

� Can one statement control depends on two
predicates?

1: ? p2

2: s1

3: s2

What if ?

1: if (p1 && p2)

2: s1;

3: s2;

Interprocedural CD, CD in case of exception,…

CS590F Software Reliability

(3) PDG � A program dependence graph consists of control
dependence graph and data dependence graph� Why it is so important to software reliability?

• In debugging, what could possibly induce the failure?
• In security

p=getpassword();

…

if (p==“zhang”) {

send (m);

}

CS590F Software Reliability

(4) Points-to Graph � Aliases: two expressions that denote the same
memory location.� Aliases are introduced by:

• pointers
• call-by-reference
• array indexing
• C unions

CS590F Software Reliability

(4) Points-to Graph � Aliases: two expressions that denote the same
memory location.� Aliases are introduced by:

• pointers
• call-by-reference
• array indexing
• C unions

CS590F Software Reliability

(4) Why Do We Need Points-to Graphs� Debugging

x.lock();
...
y.unlock(); // same object as x?� Security

F(x,y)
{

x.f=password;
…
print (y.f);

}

F(a,a); disaster!

CS590F Software Reliability

(4) Points-to Graph� Points-to Graph
• at a program point, compute a set of pairs of the form p -> x,

where p MAY/MUST points to x.m(p) {r = new C();p->f = r;t = new C();if (…) q=p;r->f = t;}
r

CS590F Software Reliability

(4) Points-to Graph� Points-to Graph
• at a program point, compute a set of pairs of the form p->x,

where p MAY/MUST points to x.m(p) {r = new C();p->f = r;t = new C();if (…) q=p;r->f = t;} p
r

f

CS590F Software Reliability

(4) Points-to Graph� Points-to Graph
• at a program point, compute a set of pairs of the form p->x,

where p MAY/MUST points to x.m(p) {r = new C();p->f = r;t = new C();if (…) q=p;r->f = t;} p
r

f
t

CS590F Software Reliability

(4) Points-to Graph� Points-to Graph
• at a program point, compute a set of pairs of the form p->x,

where p MAY/MUST points to x.m(p) {r = new C();p->f = r;t = new C();if (…) q=p;r->f = t;} p
q

r
f

t

CS590F Software Reliability

(4) Points-to Graph� Points-to Graph
• at a program point, compute a set of pairs of the form p->x,

where p MAY/MUST points to x.m(p) {r = new C();p->f = r;t = new C();if (…) q=p;r->f = t;} p
q

r
f

t
f

p->f->f and t are aliases

CS590F Software Reliability

(5) Call Graph� Call graph
• nodes are procedures
• edges are calls� Hard cases for building call graph
• calls through function pointers

Can the password acquired at A be leaked at G?

CS590F Software Reliability

How to acquire and use these
representations?� Will be covered by later lectures.

CS590F Software Reliability

Program Representations� Static program representations� Abstract syntax tree;� Control flow graph;� Program dependence graph;� Call graph;� Points-to relations.� Dynamic program representations
• Control flow trace;
• Address trace, Value trace;
• Dynamic dependence graph;
• Whole execution trace;

CS590F Software Reliability

(1) Control Flow Trace

3: while (i<N) do

1: sum=0

2: i=1

4: i=i+1

5: sum=sum+i

6: print (sum)

11: sum=0

31: while (i<N) do

51: sum=sum+i

32: while (i<N) do

42: i=i+1

33: while (i<N) do

61: print (sum)

N=2:

<… xi, …>

<… 804805737, 804805a29, …>

21: i=1

41: i=i+1

52: sum=sum+i

x is a program point, xi is an execution point

CS590F Software Reliability

(1) Control Flow Trace

3: while (i<N) do

1: sum=0

2: i=1

4: i=i+1

5: sum=sum+i

6: print (sum)

11: sum=0

i=1

31: while (i<N) do

41: i=i+1

sum=sum+i

32: while (i<N) do

42: i=i+1

sum=sum+i

33: while (i<N) do

61: print (sum)

N=2:

A More Compact CFT: < T, T, F >

11 21 31 41 51 32 42 52 33 61 11 31 41 32 42 33 61

CS590F Software Reliability

(2) Dynamic Dependence Graph (DDG)
Input: N=2

51: for i=1 to N do

61: if (i%2==0) then

81: a=a+1

11: z=0

21: a=0

31: b=2

41: p=&b

1: z=0

2: a=0

3: b=2

4: p=&b

5: for i = 1 to N do

6: if (i %2 == 0) then

7: p=&a

endif

endfor

8: a=a+1

9: z=2*(*p)

10: print(z)

CS590F Software Reliability

(2) Dynamic Dependence Graph (DDG)
Input: N=2

51: for i=1 to N do

61: if (i%2==0) then

71: p=&a

81: a=a+1

91: z=2*(*p)

101: print(z)

11: z=0

21: a=0

31: b=2

41: p=&b

52: for I=1 to N do

62: if (i%2==0) then

82: a=a+1

92: z=2*(*p)

1: z=0

2: a=0

3: b=2

4: p=&b

5: for i = 1 to N do

6: if (i %2 == 0) then

7: p=&a

endif

endfor

8: a=a+1

9: z=2*(*p)

10: print(z)

One use has only one definition at runtime;
One statement instance control depends on

only one predicate instance.

CS590F Software Reliability

(3) Whole Execution Trace

5:for i=1 to N

6:if (i%2==0) then

7: p=&a

8: a=a+1

9: z=2*(*p)

10: print(z)

T F

1: z=0

2: a=0

3: b=2

4: p=&b

T

Input: N=2

11: z=0

21: a=0

31: b=2

41: p=&b

51: for i = 1 to N do

61: if (i %2 == 0) then

81: a=a+1

91: z=2*(*p)

52: for i = 1 to N do

62: if (i %2 == 0) then

71: p=&a

82: a=a+1

92: z=2*(*p)

101: print(z)

T
1

2

3

4

5

6

7

8

9

10

11

12

13

14

(3,8)(2,7)

(7,12)

(11,13)

(13,14)

(4,8)

(12,13)

(5,6)(9,10)

(10,11)

(5,7)(9,12)

(5,8)(9,13)

1

2

3

4

5,9

6,10

11

7,12

8,13

14

F

&b

&a

0

0

2

1,2

F,T

1,2

4,4

4

CS590F Software Reliability

(3) Whole Execution Trace

< tn >
S1 < v1 >

< (ts, tn) > < (ts, tn) >

Multiple streams of numbers.

CS590F Software Reliability

Program Representations� Static program representations
• Abstract syntax tree;
• Control flow graph;
• Program dependence graph;
• Call graph;
• Points-to relations.� Dynamic program representations
• Control flow trace, address trace and value trace;
• Dynamic dependence graph;
• Whole execution trace;

CS590F Software Reliability

Next Lecture – Program Analysis� Static analysis� Dynamic analysis

