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ABSTRACT

By determining, statically, where the structure of a
program requires sets of variables to share a common
representation, we can identify abstract data types, detect
abstraction violations, find unused variables, functions,
and fields of data structures, detect simple errors in
operations on abstract datatypes, and locate sites of
possible references to a value. We compute representation
sharing with type inference, using types to encode
representations. The method is efficient, fully automatic,
and smoothly integrates pointer aliasing and higher-order
functions. We show how we used a prototype tool to
answer a user’s questions about a 17,000 line program
written in C.
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INTRODUCTION

Many interesting properties of programs can be described
in terms of constraints on the underlying representation of
data values. For example, if a value is an instance of an
abstract data type, then the client code must not constrain
its representation. If a program requires that the
representations of two supposedly abstract types be the

same, there is an abstraction violation. Less obviously, the
value of a variable is never used if the program places no
constraints on its representation. Furthermore,
communication induces representation constraints: a
necessary condition for a value defined at one site to be
used at another is that the two values must have the same
representation1.

By extending the notion of representation we can encode
other kinds of useful information. We shall see, for
example, how a refinement of the treatment of pointers
allows reads and writes to be distinguished, and storage
leaks to be exposed.

We show how to generate and solve representation
constraints, and how to use the solutions to find abstract
data types, detect abstraction violations, identify unused
variables, functions, and fields of data structures, detect
simple errors of operations on abstract datatypes (such as
failure to close after open), locate sites of possible
references to a value, and display communication
relationships between program modules.

Using a new type system in which representation
information is encoded in the types, we express
representation constraints as type constraints, and obtain
and solve them by type inference. The type inference
algorithm computes new types for the variables and textual
expressions of a program, based on their actual usage—

                                                       
1 Some languages may allow a single value to be viewed as
having different types at different points in a program, for
example by implicit coercions. However these are just
views of a single underlying representation; any
meaningful transmission of data must use an agreed
common representation.



that is, their role in primitive operations—and ignores
explicit type declarations.

The type system underlying this analysis can be very
different from the type system for the source language2.
This allows us to make finer distinctions than the
language’s type system would allow, and to handle
potential sources of imprecision (such as type casts) in a
flexible way.

The inferred types amount to a set of representation
constraints. Given a variable or textual expression of
interest, we examine its inferred type and draw
conclusions about the variable’s usage and behavior, and
by finding other occurrences of the type (that is, other
values that share the representation), we can track
propagation and aliasing relationships in the global
program.

Type inference is an attractive basis for an analysis for
many reasons. It is fully automatic. It elegantly handles
complex features of rich source languages like C, such as
recursive pointer-based data structures and function
pointers. Because our type system is a straightforward
elaboration of a standard type system [9], we can employ
the standard inference algorithm with only minor
adaptation, and can be confident in the soundness of our
scheme. Although the algorithm is known to have doubly-
exponential time complexity in the worst case, in practice
its performance is excellent. It has been implemented in
compilers for Standard ML, where it has not proved to be a
bottleneck. Our application is actually less demanding,
since in contrast to their ML counterparts, C programs

                                                       
2 It is very important not to get the two notions of “type”
confused. In this paper we will normally be referring to
types in our specialized type system.

rarely use recursion or pass functions around. Our tool
usually consumes space and time little more than linear in
the size of the program being analyzed.

We have built a tool called Lackwit to demonstrate the
feasibility of applying type inference analyses to C
programs for program understanding tasks, and to
experiment with the kind and quality of information
available. The general architecture of the tool is shown in
Figure 1. The multiple downward arrows indicate that C
modules can be processed individually and fed into the
database; the fat upward arrows show where information
about the entire system is being passed. In the remaining
sections of this paper, we will describe the type inference
system, present the results of applying our tool to a real-
life C program, and discuss some user interface issues.

Our system has advantages over all other tools we know of
for analyzing source code for program understanding; see
Figure 2. Lexical tools such as grep [7], Rigi [11] and the
Reflection Model Tool [11] lack semantic depth in that
they fail to capture effects such as aliasing that are vital for
understanding the manipulation of data in large programs.
Dataflow-based tools such as the VDG slicer [4] and
Chopshop [8] do not scale to handle very large programs.
Code checking tools such as LCLint [5] do not try to
present high-level views of a large system. (Furthermore,
although LCLint does compute some semantic
information, it does not have a framework for accurate
global analysis.)

EXAMPLE

Consider the trivial program in Figure 4. Suppose that a
programmer is interested in the value pointed to by r. Our
analysis will determine that the contents of s and r may be
the same value, but that the value pointed to by r cannot be
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copied to or referenced by any of the other variables in this
program. The analysis will also determine that the
relationship between r and s occurs because of a call from
g to f; the tool can display the information graphically, as
in Figure 3.

ANALYSIS OF THE EXAMPLE

The analysis assigns extended types to variables; the types
encode information about representations. In C, the
declared type of a variable usually determines its
representation, but that is simply a matter of convenience.
The program would still operate correctly if we had several
different representations of int, provided that each version
of int had the same semantics and that they were used
consistently3. Intuitively, we could determine consistency
by augmenting the declared type with the representation,
and type-checking the program.

Figure 5 shows a consistent augmentation of the trivial
program of Figure 4. The names superscripted with capital
letters indicate polymorphic type variables: for any choice
of representations intA and intB, the function f would type-
check; we might just as well have different versions of f for
each choice of intA and intB. We are thus free to assign q
and s different representations. Note that because of the
reference to the global variable x, the first argument of f is
not polymorphic; its representation is fixed across different
calls to f. These observations introduce context sensitivity
into our analysis, since a polymorphic type variable may be
instantiated differently at different call sites.

From the type signatures of f and g in Figure 5, we can
extract information about the behavior of the functions and
how they are connected. For example, because g allows

                                                       
3 Of course we do not propose implementing such a
scheme. This is merely a pedagogical device.

different representations for the values pointed to by q and
r, we can conclude that g does not cause the two locations
to be aliased, nor does it copy any values from one to the
other.

Examining the calls to f in the body of g shows us how
data flows between the two functions. If we are interested
in tracking the contents of q passed into g, we can simply
look for all the occurrences of its type intY; this includes
occurrences of intB, since one of the occurrences of intB is
instantiated to intY (in the first call to f). We find that
values may be propagated to t1, and to the contents of
arguments c and d of f.

Furthermore, suppose that we specify that the arguments of
all primitive arithmetic operations have representation
intn. Then Figure 5 is still consistent. If p is intended to be
an abstract file descriptor, we can see from its annotated
type alone that no arithmetic operations can be performed
on it (because it does not have to have type intn); we can
conclude that abstraction is preserved.

THE MOTIVATION FOR TYPE INFERENCE

To reduce the incidental sharing of representations, which
lead to spurious connections, we would like to compute the
most general assignment of representations to variables
that is consistent with the communication patterns of the
program. Viewing the representations themselves as types,
this is the problem of type inference [9].

In the program above, type inference would proceed as
follows. Let x have type intJ, and p1 have type intK. In f,
because of the assignment of a to x, x and a must have the
same type, so a has type intJ. *c and *d must have the
same type, so let their types be “pointer to intB”. b is
unconstrained so let it have type intA. Now we observe that

int x;
int p1;
void f(int a, int b, int * c, int * d)
{ x = a;
  *c = *d;
}
void g(int p, int * q, int * r, int * s)
{ int t1 = 2;
  int c1 = 3, c2 = 4;

  p = p1;
  x++;
  f(c1, p, &t1, q);
  f(c2, 4, r, s);
}

Figure 4: Trivial program

intn x;
intz p1;
void f(intn a, intA b, intB * c, intB *
d)
{ x = a;
  *c = *d;
}
void g(intY * q, intX * r, intX * s)
{ intY t1 = 2;
  intn c1 = 3, c2 = 4;
  intz p;
  p = p1;
  x++;
  f(c1, p, &t1, q);
  f(c2, c2, r, s);
}

Figure 5: Trivial program annotated with
representations



the choices of intA and intB are arbitrary, and therefore f is
polymorphic in intA and intB.

Now, in g we perform arithmetic on x, so x must be of type
intn and we have intJ = intn. We find that p has the same
type as p1, which is intK. In analyzing the function calls,
we obtain types for the function’s actual arguments by
instantiating the polymorphic type variables of its formal
arguments. In the first call to f we instantiate intA to be
some fresh variable intW and intB to be some fresh intY; we
find that c1 must have type intn, p is intW, and t1 and q are
intY and “pointer to intY” respectively. Since p is
simultaneously intK and intW, we must set intW = intK. In
the second call to f we instantiate intA to be some fresh
variable intV and intB to be some fresh intX; then we find
that c2 has type intn, intV must be intn, and r and s are both
“pointer to intX”. Because intX and intY were arbitrary
choices, the previous derivation is valid for all possible
values of intX and intY, and therefore g is polymorphic in
all its arguments. Finally, we note that p1 is of some type
intK where intK is arbitrary but fixed (intuitively, we cannot
have different versions of p1 with different representations,
because that would destroy the sharing implied by global
data). Therefore we set intK to be some arbitrary
representation intz; for maximum generality, we must
make each such choice unique.

TYPE INFERENCE

The inference procedure is formalized in a simple
polymorphic type system. Monotypes τ and polytypes σ
obey the following productions:

σ ::= τ (Monomorphic type)
| ∀α.σ1 (Polymorphic quantification)

τ ::= α (Type variable)
| τ1 →β τ2 (Function)
| τ1 refβ (Reference (pointer))
| (τ1, τ2, ..., τn)

β (Tuple)
| intβ (Scalar)4

α is a metavariable that ranges over an infinite set of type
variables. Ignoring the β tags (described below), this is a
completely standard polymorphic type system. We use the
standard inference algorithm W [9, 2] to compute the types
of all variables of a source program (with no initial type
declarations). Roughly speaking, W works by assigning
variables to types and unifying type expressions as the
program structure requires, in the manner described
informally above. W is defined for a simple functional

                                                       
4 In fact, we use a number type that includes all integer
and floating-point values, but int simplifies the
presentation.

language; we provide a translation from C into such a
language (see our technical report [12] for details).

W computes a type for each language construct,
proceeding by structural induction over the abstract syntax
tree. (Constructs such as statements that have no
associated value are assigned a special type.) A type is
assigned to a construct by an inference rule. We shall
illustrate some contrived rules for C to give the flavor of
the analysis, even though our tool does not work directly
with C constructs.

Here is the rule for assignment:

e1:τ        e2:τ (Assignment)

e1 = e2:τ
This means that in order to compute a type for the
assignment operator, we must first satisfy the constraint of
the rule antecedent: e1 and e2 must have some common
type τ . Then we can conclude that the result of the
assignment has the same type τ  (C allows chained
assignments). Thus when we detect an assignment
operator, we introduce the constraint that e1, e2 and “e1 =
e2” must all have the same type.  The rule for equality tests
is similar:

e1:τ        e2:τ (Equality test)

e1 == e2:τ′
The result of the comparison need not be the same type as
the comparison arguments, so the only constraint is that e1

and e2 must be the same type. (We do not require the result
to be a Boolean, because we are interested in relationships
between variables, not type checking per se.)

Dereferencing a pointer converts an expression whose type
is “reference to type τ ”  to an expression of type τ :

e1:τ ref (Dereference)

*e1:τ
An if-statement imposes no special constraints; the rule is
necessary simply to invoke the recursive application of
inference rules to its constituent statements:

e1:τ        s2:τ′        s3:τ′ (If)5

if (e1) then s2 else s3:τ′
Finally, the rule for function call is as expected, with the
types of actual and formal arguments matching:

                                                       
5 Actually, τ ′  is constrained to be a continuation, a
function type that takes a dummy argument and returns the
same type as the result of the enclosing C function. See our
technical report [8] for details.



e1:(τ′, τ′′) → τ     e2:τ′     e3:τ′′ (Binary Function Call)

e1(e2, e3):τ

THE TAGS

Note that the type expressions given in the productions
above include superscripted tags marked β. These are used
to track the identity of type constructors. A fresh tag is
generated whenever a type constructor is introduced in a
new constraint. Whenever we find that two types are
constrained to be identical, we unify their two type
constructors and merge their tags; thus the tags partition
the set of occurrences of type constructors. For example, if
two variables have ref constructors with different tags,
then they are not aliases6,7. If two variables are tuples with
the same tag, then they must be structures of the same
abstract type (or abstraction violations have occurred). The
tags are simple to implement on top of algorithm W: they
can be treated merely as an extra parameter of the type
constructor, and then no change to the algorithm is
required.

We supply type signatures for the built-in primitives and
any library functions that are called; these signatures are
the only information about external code that we require.
Since such signatures are also the result of the analysis,
this makes our techniques modular (and contributes to
scalability). By adjusting the signatures, we can customize
the analysis to compute different kinds of information.

The basic signatures are listed in Appendix 1. The only
interesting signature is for the cast operator. We treat
“cast” as the identity function, in the hope that casts are
merely being used to work around the lack of
polymorphism in C’s type system (and so the program will
still be typable in our type system). If this is not true, we
still handle the program, albeit with some loss of accuracy:
we report any type errors, display their context, and
continue the analysis. The user is able to check whether
the results they are interested in have been compromised.
In our Morphin example below (17,000 lines), there are
just two “bad” type casts, neither of which affected the
results for any of the queries the user requested.

The reader familiar with type theory may be interested in
the following details. Recursive types are treated as infinite

                                                       
6 See Steensgaard’s work on points-to analysis [14].
Similarly, comparing the tags on function types with the
tags on declared functions gives us an analysis of higher-
order control flow.
7 Actually in the polymorphic type system we must use a
more complicated relation than just tag equality; see
below.

regular trees (see Cardone and Coppo [2] for details). We
do not use polymorphic recursion; that is, let and letrec
bindings are the only places where we perform
polymorphic generalization. We use a value restriction on
polymorphic lets to make side-effects safe [16]. Our
representation tags correspond closely to the region
variables of region inference [15].

OBTAINING AND DISPLAYING GLOBAL
INFORMATION

The result of the type inference phase is a mapping from
source variables and functions to type signatures in our
extended type system. We provide ways to extract
interesting information and display it graphically in a way
that has a clear relationship to the source program.

Our basic approach is to produce a graph summarizing the
information about a single component of a variable (see
Figure 6 below). The nodes of the graph represent global
declarations, and the edges represent the use of one
declaration by another in the text of the program. Arrows
point from the using declarations to the used declarations.
When the tool has determined, by inspecting signatures
(see below), that a use cannot transmit the value of the
queried component, then we omit the corresponding edge.
By eliminating unreachable nodes, we show just the part of
the program that is able to access the value. A value is
transmitted by passing a data structure containing it as a
parameter in a function call, or by returning such a data
structure from a function call, or by referencing global data
(containment includes reachability through pointers).

The inspection of signatures used to filter the edges works
as follows. The user has specified a global variable,
function result, function parameter or local variable, or
some component thereof (a chain of pointer dereferences
and/or structure fields). Because any accesses to run-time
values of the component must agree on the representation,
the types of the components through which accesses are
made must have tags that are “compatible” with the tag on
the type of the queried component. In a monomorphic type
system, the compatibility relation is just tag equality, but
with polymorphism we have to consider that a
polymorphic tag may be instantiated to some other tag,
which means the same run-time value could be accessible
through different tags. (For example, in Figure 5, the value
of s is accessed with tags B and X.) Therefore we define
two tags S and T to be compatible if there is some tag U
such that the program exhibits a chain of instantiations
from S to U and a chain of instantiations from T to U (the
chains may be empty). Note that this relation is symmetric
but not transitive. In Figure 5, for example, B is
compatible with X and Y, but X is not compatible with Y,



and as a result, we can infer that values may be passed
from q or r to c or d, but not between q and r.

We determine the set of “tags of interest” that are
compatible with the tag of the queried component, and
locate the declarations whose signatures contain
occurrences of tags of interest. Declarations whose
signatures do not contain any occurrences of tags of
interest do not transmit any interesting values when they
are used, so those uses are omitted from the graph. Since
polymorphic signatures can be instantiated to different
types at different usage sites, we also omit uses when the
type at the usage site does not contain any tags of interest.

There is a difficult tradeoff between detail and clarity in
choosing what kinds of information to display for each
node and edge. We have found it useful to visually
distinguish functions from global data, and to highlight
nodes that are “interesting” (for example, functions that
directly access the representation of some variable).
Clearly it would be beneficial to have an interactive
display, which we plan to add in future work.

OBTAINING LOCAL INFORMATION

We can use type inference to compute local information.
For example, we often wish to determine whether or not a
function directly accesses a piece of data, rather than just
passing it to another function. To do this, we apply type
inference to a single global function, ignoring constraints
induced by other global declarations that it references. For
example, in Figure 6, we determine that the definition of
map_mgr_convert_pixel_coords does not directly access
the representation of the vehicle object, even though it
calls a function that does.

RESULTS (1)

We have used our tool to analyze Morphin, a robot vehicle
control program consisting of over 17,000 lines of C code,
with 252 functions and 73 global variables. Morphin is to
be restructured and adapted to support new features. The
developer responsible for this work asked us to determine
where and how certain structures were used, if at all. In
the course of answering his questions, Lackwit also
highlighted some representation exposures.



We computed results for queries of the form “Which
functions in the program could directly access the
representation of component X of variable Y?” Figure 6
shows the results of a query on the “current vehicle” field
of the map_manager_global global variable (we also allow
queries involving local variables and function parameters).

The shaded nodes are the definitions that directly access
representations; that is, whose code constrains the
representation of the value in question. In this case, the
value in question is a structure, and the shaded nodes
constrain the type by accessing fields of the structure.

Given that the “veh_” functions are operations on the
vehicle abstract data type, it is easy to see that abstraction

may be violated in the functions map_mgr_process_image,
map_mgr_process_geometry_range_window, and
map_mgr_comp_range_window, but nowhere else.

Lackwit built the constraint database from the 17,000 lines
of source in 274 seconds (wall-clock time). The database is
about 15MB. Type inference took 78 seconds, about 23
seconds of which was user-level CPU time. Individual
queries are then answered almost instantaneously. These
numbers are for a 90Mhz Pentium with 32MB of RAM
running Windows NT. As we will discuss in below, certain
optimizations could dramatically improve performance.
The process of building the database can be carried out

map_mgr_process_image

veh_free_queues map_mgr_comp_range_window map_mgr_process_geometry_range_window veh_copy

world_destroy

map_manager_global

veh_get_old_mast_body_transveh_get_adaptation_speed veh_get_max_safe_curv veh_get_turn_react_time

phys_io_event_dispatch

veh_get_plan_window map_mgr_convert_pixel_coords

world_create

Figure 6: *(map_manager_global->cur_veh)



independently for each source module; thus the potential
performance bottlenecks are all in the solver.

The type inference algorithm processes functions one at a
time, iteratively computing a signature for each function
and adding it to a “type environment”. While processing a
function, the main operation is unification of types, the
cost of which is proportional to the smaller of the sizes of
the descriptions of the types8. The number of unifications
performed is proportional to the size of the code for the
body of the function, which is preserved (to within a
constant factor) by the translator. Therefore, if the size of
the inferred types is bounded, the solver takes time and
space little more than linear in the size of the program.
The types are small in practice.

To attempt to characterize the sizes of query results, we
computed for every possible query an upper bound
approximation of the number of nodes of the graph we
would produce (see Figure 7). Figure 8, Figure 9, and

                                                       
8 Actually, because we must maintain equivalence classes
of type variables using union-find with path compression,
there is a superlinear component of α(n), where α is the
inverse Ackermann function. For all practical purposes,
α(n) < 6.

Figure 10 show the sizes of results of queries on all
pointers, structures and scalars respectively. The large
spikes at the right-hand sides of Figure 7 and Figure 10
are due to a set of integer variables that are grouped
together by chains of arithmetic operations; queries that hit
this set (about 65% of all queries on integer-valued
components) will probably produce too much information
to be useful. However, queries on structures and pointers
will produce results of manageable size.

EXTENSIONS TO THE TYPE SYSTEM

We can analyze a broader range of program properties by
extending the type system in simple ways. For example, it
is useful to know whether a memory location is never read
or never written, or whether a piece of dynamically-
allocated storage is never allocated or never deallocated, or
where these effects might occur. We encode such
properties by introducing specialized type constructors and
a subtype relation (see Figure 11). Primitives such as
“assign” and “deref” now constrain their arguments to be
“written” refs and “read” refs respectively.

This is easy to implement when the properties are a vector
of boolean values and all constraints are of the form
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“property p is true”9. We simply use our existing type
inference procedure and attach additional parameters to
the type constructors, one for each boolean. Operations
that constrain a property of their arguments or results use
the special type yes as the appropriate parameter of the
type constructor, otherwise they have a type variable. For
example, if we give a pointer to α the type “(α, read,
written) ref”, then the signature of “deref” becomes
“∀α.∀β.(α, yes, β) ref → α”.

When type inference is finished and we have the
signatures of all the functions and local and global
variables, we can easily inspect them to discover
anomalous types, such as memory locations that are never
read (the “read” parameter is a type variable), or dynamic
storage that may be allocated but is never deallocated (the
“allocated” parameter is yes but the “deallocated”
parameter is a type variable).

If the condition of interest can be written in the form “P
and not Q” (this includes all the examples we have
presented), then we do not report an anomaly unless one
actually exists (assuming that there is no “dead code” – for
every call to a primitive operation in the program, there is
some input that will cause it to be executed). For if a type
has property P, then there must be some call to a primitive
operation that constrains the type to have that property,
and since there is no dead code, there is some execution
that invokes this operation (so there will be a run-time
value V with property P). If the type does not have
property Q, then there is no operation that constrains the

                                                       
9 Although “all properties are true” will always be a
solution, we will recover the most general solution. For
example, we may discover that a program is consistent
with a memory location being either “read” or “unread”, in
which case we may legitimately treat it as “unread” (and
eliminate the offending variable or structure element).

type to be Q, and so the run-time value V cannot obtain
property Q.

Although we do not report spurious anomalies, we can
only give an upper bound approximation to the actual
site(s) of any problems, based on the occurrences of the
type tag as described above. And of course, we may miss
some anomalies if they depend on which control paths are
taken in the program.

RESULTS (2)

We used these techniques to perform two specialized
analyses: detection of data that is never read, and detection
of memory leaks. These correspond to checking, for each
type that is a memory location, whether the location is
created (by a variable entering scope or by dynamic
allocation) and not read, or whether the location is
dynamically allocated and not dynamically deallocated. All
reported candidates were shown to be non-spurious by
manual inspection of the source code.

Lackwit reported nine global variables and ten local
variables that are never read. In addition, it reported that
six local variables are structures containing some fields
that are never read.

Checking for memory leaks, Lackwit reported that six
global variables refer to dynamic data structures that are
never freed. (These do not cause problems in practice,
since they are freed by the operating system when the
process terminates, but they are a symptom of poor
programming style.) It also discovered two fields of data
structures that are pointers to memory that is never freed.
These are a genuine problem, because these pointers are
updated in a frequently-executed loop.

CURRENT STATUS AND FUTURE WORK

The Lackwit front end is currently written in C and C++,
and is based on the PCCTS toolkit [13]. The database is
simply a sequential binary file, implemented by hand in C.
The solver and query engine are also written in C;
currently the query language is very simple and a bit
unwieldy. The query engine outputs relational tables in a
text format. A Perl script converts these tables to a graph,
in the process performing the postprocessing analyses
described above. We use the “dot” graph-drawing tool [6]
to produce the graph.

Performance is currently good, but could be greatly
improved. In particular, the recursive-descent parser
should be rewritten as an LALR parser for speed. We
would gain a lot of performance at the cost of flexibility
and simplicity by eliminating our intermediate language
and generating constraints directly from the C abstract
syntax (as Steensgaard does [14]). Most importantly,

ref

ref (read) ref (written)

ref (read and written)

Figure 11: Read/write attributes for memory locations
(arrows point from supertypes to subtypes)



simplifying constraints in the front end would produce at
least an order of magnitude saving in the size of the
database and the processing time of the solver. This is
important because the solver is the potential performance
bottleneck as the number of source files increases.

To make the tool easy to use, we need a better query
interface, preferably providing the program source code as
context. The tables output by the query engine can be very
large, suggesting that most of the postprocessing should be
folded into the query engine (to reduce output and parse
time). Perhaps our biggest problem is the graph-drawing
program, “dot”. It does not scale well to large, highly-
connected systems. We would like to explore the use of
interactive visualizations or other techniques to present the
data in a more useful way.

We intend to experiment with alternative type systems. We
may be able to incorporate recent work on type inference
of ill-behaved programs. We would like to encode more
information in types to increase the scope and accuracy of
these techniques. Another interesting problem is to enrich
the type system to handle a wider class of source
languages, for example by adding subtyping for object-
oriented languages.

RELATED WORK

Our basic analysis technique is similar to “region
inference”, used by Tofte and Taplin [15] to improve the
space efficiency of implementations of functional
languages. The store is partitioned into distinct “regions”,
and each value is associated with a region, in the same
way that we associate values with representation types;
however, we have no analogue to their approximation of
the side effects of functions. To our knowledge, we are the
first to use these techniques for program understanding.

Other researchers have been investigating type inference
methods for inferring properties of C programs. In [14]
Steensgaard presents a method based on type inference
that yields an almost-linear time “points-to” analysis. That
algorithm is monomorphic (context-insensitive) and does
not distinguish elements of compound structures, but
variants have been constructed that overcome these
limitations.

Wright and Cartwright [17] use polymorphic type
inference to analyze Scheme programs. Their system is
similar to ours because they infer all type information,
without relying on any declarations, and they infer types in
a richer type system than the language itself provides. Our
extension with vectors of attributes is a simple case of their
unions of “prime types”. Unlike us, they do not try to
distinguish different occurrences of the same type
constructor.

Bowdidge and Griswold’s “star diagram” tool aids in
encapsulating abstract data types [1]. They assume that
there is a single global variable to be abstracted, but they
discuss extending their method to operate on data
structures with multiple instances. They consider operating
on all data structures of a certain type, but comment “The
potential shortcoming of this approach is that two data
structures of the same representation type, particularly two
arrays, might be used for sufficiently different purposes
that they are not really instances of the same type
abstraction”. Our method provides an answer to this
problem.

Muller et al. [11] have proposed a reverse engineering
technique in which first a static analysis is performed, and
then the graphical output is visualized and manipulated by
the user with the help of various automatic tools, to reveal
and impose structure. Our analysis is more powerful than
that incorporated in their Rigi tool, but we would certainly
benefit greatly from such visualization and manipulation
techniques.

LCLint [5] is a tool that finds inconsistencies between C
programs and simple specifications. There is some overlap
between the properties they are able to check and ours (for
example, some abstraction violations and unused data), but
their methods cannot simultaneously distinguish different
instances of the same C type and handle complex data
structures. On the other hand, their checks incorporate
more information, such as flow-sensitive dataflow analysis,
so they will catch many errors that we cannot. The two
tools are complementary.
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APPENDIX 1: BUILT-IN SIGNATURES

The following primitives are used by the translator.

Primitive Signature
ref t → t refα

assign t refα → t → ()
deref t refα → t
mk-tuplen t1 → t2 → ... tn → (t1, t2, ... , tn)

α

elem-tuplen,k  (t1, t2, ... , tn)
α → tk

ref-arrayn
10  (t, t, ... , t)α → t refβ

copy-array11  (t refα → t) → t refα → t refβ

undefined-scalar12 T
NULL t refα

cast t → t
scalarn intα

pointer-arithop t refβ → intα → t refβ

                                                       
10 This is used to translate array initializers.
11 This is used when we assign a structure value that
contains an array.
12 This is used to initialize scalars that aren’t initialized in
C. This allows us to store pointers in them, allowing us to
handle programs that use integers polymorphically as
integers or pointers.



unary-arithop intα → intα

binary-arithop intα → intα → intα

binary-relationalop intα → intα → intβ

pointer-relationalop t refβ → t refβ → intα

pointer-unaryop t refβ → intα

Pointer arithmetic operators: pointer add, pointer subtract

Unary arithmetic operators: negate, bitwise not, logical
not, unary plus

Binary arithmetic operators: add, subtract, multiply,
divide, modulus, left shift, right shift, bitwise and, bitwise
or, bitwise xor

Binary relational operators: less than, greater than, equal,
less than or equal, greater than or equal, not equal

Pointer relational operators: less than, greater than, equal,
less than or equal, greater than or equal, not equal

Pointer unary operators: logical not




