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Property-| of IFlow

 Confidentiality: A rigorous requirement

— can confidentiality guarantee of a system be
proven?
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Property-I of IFlow

 Confidentiality: A rigorous requirement

— can confidentiality guarantee of a system be
proven?

— can explicit and implicit flows be controlled?

* Relationship with data and control
dependency ??77?

Covert channels

Implicit flows

— covert

Termination channel

— termination-sensitive confidentiality
Timing channels

— subsumes termination channel
Probabilistic channel

— PDF of output data

Resource exhaustion channel

— memory or disk space: high value for malloc()
Power channels

— related: recent work about the age of running system
— thus attack vulnerability

Properties of IFlow

* No propagation of high confidential data to

low confidential container

* Rigor: On all paths - no leak
—makes it easy for static-time solutions

Mechanisms

Access control
— controls release of information, not

propogation
—no control on “how data is used”
Language-based techniques
— Runtime: JVM — applets, sandbox
— Bytecode verifier

* no control on propagation

» Type systems

Type systems

» Compositional reasoning

—incremental construction: from a correct
system to a larger and correct system

— structural induction (will return to this later)

— objective: correct computation

— modified objective: correct confidentiality-
preserving computation

Type systems

» Compositional reasoning

—incremental construction: from a correct
system to a larger and correct system

— structural induction (will return to this later)

 Objective: correct computation

—modified objective: correct confidentiality-
preserving computation
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Static Information Flow Control
« Program analysis: Denning and Denning

* Theorem provers

» Type checking

+ Security type systems
—oridinary type: int, char
— label: static labeling on its confidentiality

semantics

» Static type checking detects leaks
— conservative: so false positive

« structural induction
—cannot completely control covert channels
» semantics — values - Undecidability

Type checking

» Security type systems
— oridinary type: int, char
— label: static labeling on its confidentiality

semantics

« Static type checking detects leaks
— conservative: so false positive

« structural induction
— cannot completely control covert channels
» semantics — values > Undecidability
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Non-interference
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Semantics-based security
« variation of high input does NOT lead to
(observable) variation on low output
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Semantics-based security

« Two inputs are equivalent if they agree on low
output values
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Semantics-based security

» Two inputs are
equivalent if they
agree on low output
values
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Semantics-based security

» Two inputs are
equivalent if they
agree on low output
values
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Semantics-based security
e l:=h
« if (h=3) then I:=5 else skip
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Security Type System

. le g Vars{exp)
2 . )
[E1-2] F eap : high erp - low

. o Fexp @ low
[C1-3]  [pc] & skip |pe] Fhi=exp ToulF T—eap

[pe] ¢y [pe] b Cy Fexp : pe [pe]F C

[Ca-5] :
[pe] B C1; Co [pe] E while exp do €
Foexp:pe [plFCy [pe] B C |hegh] = C
[C6-T7) [pe] F It exp then (}‘1 else Cy - llow] F C
Security Type System Directions

» Restrictive, because it has to be secure in
an incremental and compositional manner

» Expressiveness

» Concurrency

» Covert channels

* Refining security policies

Directions
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Expressiveness

» Functions
— SLam: First-class functions [Heintze et al]
« non-interference
— First-class continuations [Zdancewic et al]
« non-interference

» Exceptions

— explicit and implicit flows
— path labeling by Myers

« JFlow by Myers: Java — Jif compiler




Concurrency

* Nondeterminism

Concurrency

» Nondeterminism: possibilistic security
condition

— set of high inputs may not affect set of low
outputs

— dependencies between variables

Concurrency

* Nondeterminism: possibilistic security

condition

— equational security property
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Concurrency

» Nondeterminism: possibilistic security condition
— partial equivalence relations

« PER: symmetric and transitive over a subset of inputs

Ws € S [HH;C;HH]s ~ [C; HH]s

Concurrency

Thread concurrency

— non-atomicity

Non-interference requirements:
— no “high” guard in a while loop
— no if with *high” guard having a while loop in its branch

termination leak
timing leak

Concurrency
» Thread concurrency

— non-atomicity

« Non-interference requirements:
— no “high” guard in a while loop
— no if with “high” guard having a while loop in its branch

+ termination leak
* timing leak

(if h =1 then Clng else skip); 1:=1 || 1:=0




Concurrency

» Thread concurrency
— non-atomicity

+ Scheduler-independent security
— uniform scheduler [Sabelfield and Sands]

» Type systems: rule out synchronization on “high”
data.
— Sabelfield

Distributed programs
non-trusted parties

* parties’ concurrency property
* failures

» Secure program partitioning: high and low

Discussion

« lllustrated Security type system : simple yet
powerful
— expressive
— precise
— easily extensible to a lattice model of access control
» Organization of the survey addresses
— all langauge-level factors clearly and precisely
— illustrates important issues and challenges with simple
examples
— considers both formal approaches and informal
aproaches in the light of the
« hard-ness
« undecidability of the geneal nature of the problem

Critique
Presentation very compact: lacking

— useful illustration and explanation of the
concepts and approaches

— relation between various approaches need to be
established

How to make the approaches such as

security type systems part of pragmatic

languages

Needed to address program certification

more detailed in a compositional framework

Some Ideas
» Slicing towards proving non-interference

» Use of SSA in checking policy-violations

Some Ideas
Error Handling: an error violation of integrity
policy

—dual of confidentiality: <high, low> :: <low’,
high’>

» Exceptions resulting in termination

—illegal flow of information?
— self-healing systems




