

- Confidentiality: A rigorous requirement
 - can confidentiality guarantee of a system be proven?
 - can explicit and implicit flows be controlled?
- Relationship with data and control dependency ???

Ashish Kundu CS590F Purdue 02/12/07

Properties of IFlow

- No propagation of <u>high</u> confidential data to <u>low</u> confidential container
- Rigor: On all paths no leak – makes it easy for static-time solutions

Mechanisms

- Access control

 controls release of information, not propogation
 propogation
- no control on "how data is used"
- Language-based techniques
 - Runtime: JVM applets, sandbox
 - Bytecode verifier
 no control on propagation
- Type systems

Ashish Kundu CS590F Purdue 02/12/07

Type systems

Ashish Kundu CS590F Purdue 02/12/07

- Compositional reasoning
 - incremental construction: from a correct system to a larger and correct system
 - structural induction (will return to this later)
 - objective: correct computation
 - modified objective: correct confidentialitypreserving computation

Ashish Kundu CS590F Purdue 02/12/07

Type systems

- Compositional reasoning
 - incremental construction: from a correct system to a larger and correct system
 - structural induction (will return to this later)
- Objective: correct computation

 modified objective: correct confidentialitypreserving computation

- conservative: so false positive
 - structural induction
- cannot completely control covert channels
 semantics values → Undecidability

Security Type System
$[E1-2] \vdash exp: high \qquad \frac{h \notin Vars(exp)}{\vdash exp: low}$
$\begin{bmatrix} \mathbf{C1-3} \end{bmatrix} [pc] \vdash skip \qquad [pc] \vdash h := exp \qquad \frac{\vdash exp : low}{[low] \vdash l := exp}$
$ \begin{bmatrix} C4-5 \end{bmatrix} \frac{[pc] \vdash C_1 [pc] \vdash C_2}{[pc] \vdash C_1; C_2} \qquad \frac{\vdash exp: \ pc [pc] \vdash C}{[pc] \vdash while \ exp \ do \ C} $
$ \begin{bmatrix} \mathbf{C6-7} \end{bmatrix} \frac{\vdash exp: pc [pc] \vdash C_1 [pc] \vdash C_2}{[pc] \vdash \text{if } exp \text{ then } C_1 \text{ else } C_2} \frac{[high] \vdash C}{[low] \vdash C} $
Ashish Kundu CS590F Purdue 02/12/07

- Nondeterminism: possibilistic security condition
 partial equivalence relations
- PER: symmetric and transitive over a subset of inputs

 $\forall s \in S. \llbracket HH; C; HH \rrbracket s \approx \llbracket C; HH \rrbracket s$

Ashish Kundu CS590F Purdue 02/12/07

Concurrency

- Thread concurrency
 non-atomicity
- Scheduler-independent security
 uniform scheduler [Sabelfield and Sands]
- Type systems: rule out synchronization on "high" data.
 - Sabelfield

Distributed programs

- · non-trusted parties
- · parties' concurrency property
- failures
- · Secure program partitioning: high and low

Ashish Kundu CS590F Purdue 02/12/07

Discussion

- Illustrated Security type system : simple yet
 powerful
 - expressive
 - precise
 - easily extensible to a lattice model of access control
- Organization of the survey addresses
 - all langauge-level factors clearly and precisely
 - illustrates important issues and challenges with simple examples
 - considers both formal approaches and informal aproaches in the light of the
 - hard-ness
 - · undecidability of the geneal nature of the problem
 - Ashish Kundu CS590F Purdue 02/12/07

Critique

- · Presentation very compact: lacking
 - useful illustration and explanation of the concepts and approaches
 - relation between various approaches need to be established
- How to make the approaches such as security type systems part of pragmatic languages
- Needed to address program certification more detailed in a compositional framework

Ashish Kundu CS590F Purdue 02/12/07

Some Ideas

- Slicing towards proving non-interference
- Use of SSA in checking policy-violations

Some Ideas

- Error Handling: an error violation of integrity policy
 - dual of confidentiality: <high, low> :: <low', high'>
- · Exceptions resulting in termination
 - illegal flow of information?
 - self-healing systems