Language Bsed Information
Flow Security

Andrei Sabelfield, Andrew C. Myers

Presentation: Ashish Kundu
ashishk@cs.purdue.edu

Outline

Security requirements
Information flow — background
Language-based information flow
Open challenges

Discussion

Conclusion

Information flow?

confidential confidential
confidential open
data flow

Information flow?

Q confidential @ confidential
N\

)
/ leak?
{

confidential @ open

data flow

Information flow?

@ confidential

)
/

/
\

Q open but trusted
)
///
|
@ open but non-trusted

data flow

Information flow?
confidential encrypted: h > |

e.g. password sharing

open but trusted

open but non-trusted

data flow

Information flow?

@ confidential
) No leak

open but trusted

may flow?
leak

open but non-trusted

data flow

Explicit Information Flow

confidential
@ confidential
N
)

/ No leak
\
,/ leak
{ open but trusted
@ open
/ may flow?
7 leak
@ open but non-trusted

data flow

Property-| of IFlow

 Confidentiality: A rigorous requirement

— can confidentiality guarantee of a system be
proven?

Implicit Information Flow

true \

control flow

Implicit Information Flow

T \
true \ Leak: implicit

control flow

Implicit Information Flow

N\

e/ | Leak implcit
@ l

control flow

Property-I of IFlow

 Confidentiality: A rigorous requirement

— can confidentiality guarantee of a system be
proven?

— can explicit and implicit flows be controlled?

* Relationship with data and control
dependency ??77?

Covert channels

Implicit flows

— covert

Termination channel

— termination-sensitive confidentiality
Timing channels

— subsumes termination channel
Probabilistic channel

— PDF of output data

Resource exhaustion channel

— memory or disk space: high value for malloc()
Power channels

— related: recent work about the age of running system
— thus attack vulnerability

Properties of IFlow

* No propagation of high confidential data to

low confidential container

* Rigor: On all paths - no leak
—makes it easy for static-time solutions

Mechanisms

Access control
— controls release of information, not

propogation
—no control on “how data is used”
Language-based techniques
— Runtime: JVM — applets, sandbox
— Bytecode verifier

* no control on propagation

» Type systems

Type systems

» Compositional reasoning

—incremental construction: from a correct
system to a larger and correct system

— structural induction (will return to this later)

— objective: correct computation

— modified objective: correct confidentiality-
preserving computation

Type systems

» Compositional reasoning

—incremental construction: from a correct
system to a larger and correct system

— structural induction (will return to this later)

 Objective: correct computation

—modified objective: correct confidentiality-
preserving computation

Explicit Information Flow Explicit Information Flow
good
for static analysis
@ confidential high high high high high ‘
) \\\ \‘\:) 1) 1\“ - attice mode
/ leak ‘,x/ 7/ / / / partal order Iofnconfide(rjmlalny
“\ u* “. \ ‘\
open low high higher high higher—\
K I/_abel creep
- -/
MAC
Type checking

Static Information Flow Control
« Program analysis: Denning and Denning

* Theorem provers

» Type checking

+ Security type systems
—oridinary type: int, char
— label: static labeling on its confidentiality

semantics

» Static type checking detects leaks
— conservative: so false positive

« structural induction
—cannot completely control covert channels
» semantics — values - Undecidability

Type checking

» Security type systems
— oridinary type: int, char
— label: static labeling on its confidentiality

semantics

« Static type checking detects leaks
— conservative: so false positive

« structural induction
— cannot completely control covert channels
» semantics — values > Undecidability

Explicit Information Flow

high high high { high}
\ \
) N\)
/ / /
X / / X
\ \ \ \
low high higher {low}

Non-interference

high high high { high}

\

N \

\ \ ' \
) —— non-interference

X / / '

[{ { {

{ { \ \

\ \ \ hl

low high higher {low }

no explicit or implicit path
from any high to any low

Non-interference

high high high { high}

\

\ \ \
) \ .)
) —— non-interference
X / / X
((((
\ \ \ -
low high higher {low}

no explicit or implicit path

No dependency: data or control +——— from any high 1o any low

Semantics-based security
« variation of high input does NOT lead to
(observable) variation on low output

input state s = (sp, 5

v - - . -
[€]:5—S5. S, =SU{l}and L g5

\
\
Al

output state 5" = sy, 57) +

Semantics-based security

« Two inputs are equivalent if they agree on low
output values

input state s = (sp, 5)
/

/
v

jfiu :§—8 §, —SU{lland L g8

\
outpu.t .st.ate s' = S ~i)_ +

Semantics-based security

» Two inputs are
equivalent if they
agree on low output
values

.\7"_-41. 53 & S, 51 =f, 853 —> H_{:]]-“l =5 HC-'].‘:‘Q

Semantics-based security

» Two inputs are
equivalent if they
agree on low output
values

1,80 € S.51 =p 5o == [C]s1 rep [C]s2

L(ifi=>5then h:=ht+lelsel:=1+41)

Semantics-based security
e l:=h
« if (h=3) then I:=5 else skip

‘Wsy,82 € 8,81 =1 850 = [C]]sl =43 [[C]SQ

Security Type System

. le g Vars{exp)
2 .)
[E1-2] F eap : high erp - low

. o Fexp @ low
[C1-3] [pc] & skip |pe] Fhi=exp ToulF T—eap

[pe] ¢y [pe] b Cy Fexp : pe [pe]F C

[Ca-5] :
[pe] B C1; Co [pe] E while exp do €
Foexp:pe [plFCy [pe] B C |hegh] = C
[C6-T7) [pe] F It exp then (}‘1 else Cy - llow] F C
Security Type System Directions

» Restrictive, because it has to be secure in
an incremental and compositional manner

» Expressiveness

» Concurrency

» Covert channels

* Refining security policies

Directions

static Toninterference
certification [40]. [62] 47]. [49]. [50]

declassification
2]. [4]. [64]. [65]

Admissibility
168]. [69]
Telative

sccurity [70]

quantifative
security
(731, [74]

Tiondeterminist
[

17, [66]

i
i . \ v
expressivencss concufrency covert channels security policies

Expressiveness

» Functions
— SLam: First-class functions [Heintze et al]
« non-interference
— First-class continuations [Zdancewic et al]
« non-interference

» Exceptions

— explicit and implicit flows
— path labeling by Myers

« JFlow by Myers: Java — Jif compiler

Concurrency

* Nondeterminism

Concurrency

» Nondeterminism: possibilistic security
condition

— set of high inputs may not affect set of low
outputs

— dependencies between variables

Concurrency

* Nondeterminism: possibilistic security

condition

— equational security property

Ws € S [HH;C; HH|s =~ [C; HH]s

Concurrency

» Nondeterminism: possibilistic security condition
— partial equivalence relations

« PER: symmetric and transitive over a subset of inputs

Ws € S [HH;C;HH]s ~ [C; HH]s

Concurrency

Thread concurrency

— non-atomicity

Non-interference requirements:
— no “high” guard in a while loop
— no if with *high” guard having a while loop in its branch

termination leak
timing leak

Concurrency
» Thread concurrency

— non-atomicity

« Non-interference requirements:
— no “high” guard in a while loop
— no if with “high” guard having a while loop in its branch

+ termination leak
* timing leak

(if h =1 then Clng else skip); 1:=1 || 1:=0

Concurrency

» Thread concurrency
— non-atomicity

+ Scheduler-independent security
— uniform scheduler [Sabelfield and Sands]

» Type systems: rule out synchronization on “high”
data.
— Sabelfield

Distributed programs
non-trusted parties

* parties’ concurrency property
* failures

» Secure program partitioning: high and low

Discussion

« lllustrated Security type system : simple yet
powerful
— expressive
— precise
— easily extensible to a lattice model of access control
» Organization of the survey addresses
— all langauge-level factors clearly and precisely
— illustrates important issues and challenges with simple
examples
— considers both formal approaches and informal
aproaches in the light of the
« hard-ness
« undecidability of the geneal nature of the problem

Critique
Presentation very compact: lacking

— useful illustration and explanation of the
concepts and approaches

— relation between various approaches need to be
established

How to make the approaches such as

security type systems part of pragmatic

languages

Needed to address program certification

more detailed in a compositional framework

Some Ideas
» Slicing towards proving non-interference

» Use of SSA in checking policy-violations

Some Ideas
Error Handling: an error violation of integrity
policy

—dual of confidentiality: <high, low> :: <low’,
high’>

» Exceptions resulting in termination

—illegal flow of information?
— self-healing systems

