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Motivation

● Multithreaded programming common 
programming technique
– Many operating systems support threads

– Many applications are multithreaded

● Multithreaded programming is difficult and error 
prone
– Nondeterministic execution makes debugging a 

headache

– Timing-dependent errors difficult to locate



  

Program Analysis Solutions

● Remove burden from programmer
● Static Analysis is problematic
– Requires statically reasoning about program's 

semantics

– Many techniques do are not scalable (i.e. 
enumerating all possible interleavings)

● Dynamic Analysis
– Dynamic race detection (i.e. Eraser)

– Dynamic atomicity checker (i.e. Atomizer)



  

Outline
● Eraser: Detecting Data Races
– Background (Data races and previous work)

– Improving Locking Discipline

– Implementation and Performance

– Experience

● Atomizer: Atomicity Checker
– Background (Eraser and Lipton's theory of reduction)

– Theory of Reduction

– Implementation and Evaluation

● Conclusion



  

Data Race

● Lock: simple synchronization object used for 
mutual exclusion
– Operations on lock mu are lock(mu) and unlock(mu)

– Only owner of lock is allowed to release it

– Lock is either available or owned by some thread

● Data race: occurs when two concurrent threads 
access a shared variable and when..
– At least one access is a write

– Threads use no explicit mechanism to prevent the 
accesses from being simultaneous



  

Detecting Data Races

● Lamport's happens-before relation
– Partial order on all events of all threads in a 

concurrent execution

– Within single thread events ordered in order that 
they occur

– Between threads, events ordered according to 
properties of synchronization objects they access

– If two threads access a shared variable, and the 
accesses are not ordered by the happens-before 
relation, a data race could have occurred



  

Detecting Data Races (2)



  

Detecting Data Races (3)

● Problems with Lamport's happens-before 
relation
– Difficult to implement efficiently because they 

require per-thread information about concurrent 
access to each shared-memory location

– Highly dependent on the interleaving produced by 
the scheduler

● Recall the previous slide



  

Detecting Data Races (4)



  

Detecting Data Races (5)

● The Lockset Algorithm
– Every shared variable access is protected by some 

lock

– Monitor all reads/writes of shared variables and 
make sure some lock protects the variable

– Must infer intention of locks (C(v) is the set of 
candidate locks for variable v)



  

Detecting Data Races (6)

● Simple Lockset algorithm is too strict
– Initialization: Shared variables are frequently 

initialized without holding any locks

– Read-shared data: Some shared variables are 
written during initialization and read-only thereafter.  
Should allow read access without locks.

– Read-write locks: Allow multiple readers to access 
a shared variable, but only a single writer

● Eraser extends Lockset algorithm to address 
these issues



  

Eraser: Improving Locking Discipline

● Initializing new variables
– Delay refinement of C(v) until after it has been 

initialized

– Consider variable initialized when it is first accessed 
by a second thread

– Until then, access have no effect on C(v)

● Multiple reads of shared variable not races
– No need to protect read-only variable

– Report races only after initialized variable has 
become write-shared by more than one thread



  

Eraser: Improving Locking Discipline 
(2)

● Virgin: variable 
allocated by not 
referenced

● Exclusive: accessed 
only by one thread 
(do not update C(v))

● Shared: read-shared 
data (update C(v) but 
do not report)

● Shared-modified: 
original rules apply



  

Eraser: Read-Write Locks
● Support for single-writer, multiple reader locks
– Locks are either in write mode or read mode

– Require for each variable v, some lock m is held in 
write mode for every write of v, and m is held in 
some mode (read or write) for every read of v

● Change to algorithm for Shared-modified state



  

Implementing Eraser

● Implemented for Digital Unix OS on the Alpha 
processor

● Uses ATOM binary modification system
● Instruments binary that includes calls to Eraser 

runtime to implement Lockset algorithm
– To maintain C(v) instrument each load and store

– To maintain lock_held(t) instrument each call to 
acquire or release a lock and thread initialization 
and finalization

– To initialize C(v) instrument call to storage allocator



  

Implementing Eraser (2)

● Treat each 32-bit word in the heap or global 
data as a possible shared variable
– Loads and stores whose address mode is indirect 

off the stack pointer are not instrumented

– No deliberate plan to support programs that share 
stack locations between threads

● For each 32-bit word in the data segment and 
heap, keep corresponding shadow word
– 2-bits for state condition

– 30-bit lock set index (in Exclusive state 30 bits used 
to store ID of thread with exclusive access)



  

Implementing Eraser (3)

● Lock set index: represent set of locks by a 
small integer
– Relatively small number of distinct lock sets

– Only need one copy of each distinct lock set

– New lockset indexes created as a result of lock 
acquisitions, lock release, or through intersection 
operations

– Maintain hash table to complete lock vectors



  

Implementing Eraser (4)



  

Implementing Eraser (5)

● When race detected, Eraser indicates
– File and line number at which it was discovered

– Backtrace listing of all active stack frames

– Thread ID, memory address, type of memory 
access, and important register values such as PC 
and stack pointer

● User can also direct Eraser to log all accesses 
to particular variable that result in a change to 
its candidate lock set



  

Implementing Eraser (6)

● Removing false alarms is key to making this 
tool usable and effective

● Program annotations introduced
– Memory reuse: EraserReuse(address, size)

– Private locks: EraserReadLock(lock), 
EraserReadUnlock(lock), EraserWriteLock(lock), 
EraserWriteUnlock(lock)

– Benign races: EraserIgnoreOn(), EraserIgnoreOff()



  

Eraser Performance

● Slow down by a factor of 10 to 30 times
– Can change order of scheduled threads, affecting 

behavior of time-sensitive applications

– Could be important for very time-sensitive 
applications

● Procedure call at every load/store instruction
– Could inline monitoring code

– Could also explore opportunities for static analysis 
to reduce overhead of monitoring



  

Eraser Experience
● Large multithreaded servers written by 

experienced researchers at Digital Equipment 
Corporation's System Research Center

● Undergraduate programming assignments at 
University of Washington

● False alarms suppressed with annotations
– Detected race conditions and false alarms, then 

modified program appropriately with annotations 
and reran to locate remaining problems

– Ten iterations of this process usually sufficient to 
resolve all of a program's reported races



  

Eraser Experience: AltaVista

● Lightweight AltaVista HTTP server
– 5000 lines of C/100 locks/250 distinct lock sets

– Found benign data races (updates to global 
configuration data and statistics)

– 24 annotations to reduce reported races to zero

● AltaVista indexing engine
– 20,000 lines of C/900 locks/3600 distinct lock sets

– Introduced two race conditions from project history
● Eraser easily detected races

– 19 annotations to reduce reported races to zero



  

Eraser Experience: Vesta Cache 
Server and Petal

● Vesta: advanced software configuration 
management system
– 30,000 lines of C++/26 locks/70 different lock sets

– Found one serious data race

– 10 annotations for false warnings

● Petal distributed storage system: presents 
clients with huge virtual disk implementation by 
cluster of servers
– 25,000 lines of C/64 concurrent workers

– Found two intentional race where global variables 
containing statistics were modified without locking



  

Experience: Undergraduate 
Coursework

● Programs
– Build locks from test-and-set operation

– Build small threads package

– Build semaphores and mutexes

– Producer/consumer-style problems

● 100 runnable programs
– 10% had data races found by Eraser

– False alarm: Queue implicitly protected elements by 
accessing the queue through locked head and tail 
fields



  

Problem with Detecting Race 
Conditions



  

Problem with Detecting Race 
Conditions (2)

● Absence of race conditions not sufficient to 
ensure absence of errors due to unexpected 
interference between threads

● Authors claim recent results show subtle 
defects of similar nature are common
– NASA's Remote Agent spacecraft controller

– Comparable defects in many Java applications

● Need more systematic methods for controlling 
interference between concurrent threads



  

Atomicity

● Corresponds to natural programming 
methodology

● Provides strong, maximal, guarantee of non-
interference between threads

● Reduces challenging problem of reasoning 
about behavior in a multithreaded context to 
simpler problem of sequential behavior



  

Atomicity Requirement

● Serialized semantics: A thread can only 
perform an operation if no other thread is in an 
atomic block

● Standard semantics: Language 
implementations admit additional transitions 
sequences and behaviors

● Atomicity Requirement: Any correctly 
synchronized program execution under 
standard semantics should have an equivalent 
execution under serialized semantics



  

Lipton's Theory of Reduction

● Theory used to reduce execution paths under 
standard semantics to an equivalent serial 
execution

● Right-mover: An action b, such that for any 
execution the action b performed by one thread 
is immediately followed by an action c of a 
concurrent thread, the actions b and c can be 
swapped without changing resulting state
– Example: acquire lock



  

Lipton's Theory of Reduction (2)

● Left-mover: An action c where c immediately 
follows an action b of a different thread, and the 
actions b and c can be swapped without 
changing resulting state
– Example: release lock

● Both-movers
– Example: protected read/write operations

● Non-movers
– Example: unprotected read/write operations



  

Lipton's Theory of Reduction (3)



  

Lipton's Theory of Reduction (3)

● More generally: If path through a code block 
contains a sequence of right-movers, followed 
by at most one non-mover action and then a 
sequence of left movers, the path can be 
reduced to an equivalent serial execution

● Atomizer leverages theory of reduction to verify 
atomicity dynamically



  

Checking Atomicity via Reduction

● Assume we know what lock protects each 
variable

● Develop an instrumented semantics that only 
admits code paths that are reducible

● Keep track of whether thread in right-mover or 
left-mover part of atomic block (either InRight or 
InLeft)

● Every thread starts out as InRight



  

Instrumented Operations

● Operations: read, write, acquire lock, release 
lock, begin atomic block, end atomic block

● Protected read/write access does not change 
state (InRight/InLeft)

● Unprotected read/write access outside of 
atomic block: OK, state stays the same

● Unprotected read/write access in atomic block
– If InRight change to InLeft

– If InLeft -->  WRONG



  

Instrumented Operations (2)

● Acquiring a lock:
– In atomic block: Must be InRight state or else 

WRONG

– Not in atomic block: OK, state stays the same

● Release a lock: state changed to InLeft
● Begin atomic block:
– Already in atomic block: OK, state stays the same

– Not in atomic block: State becomes IsRight

● End atomic block: OK, state stays the same



  

Inferring Locks

● Approach assumed knowledge of locks
● Infer protecting locks using same technique as 

Eraser
● If candidate lock set for variable x becomes 

empty, all accesses to that variable treated as 
non-movers

● Problem: Previous accesses to x may have 
been incorrectly classified as both-movers



  

Inferring Locks (2)

● x classified as both-
mover since protected 
by lock m

● Between operations 
another thread 
accesses x with no 
lock

● x classified as non-
mover on second 
operation of double



  

Lockset algorithm
● Thread-local: only 

accessed by local 
thread

● Thread-local (2): 
ownership transferred 
to second thread 
(common initialization 
pattern in Java)

● Shared Read
● Shared Modified



  

Implementation

● Instruments Java source code
● Programmer-supplied annotations for atomic 

blocks
● Supports annotations to suppress spurious 

warnings, ignore races on specific fields, etc.
● Heuristics to automatically decide atomic blocks
– All public/protected methods of a class

– All synchronized blocks and methods



  

Extensions

● Eliminating false positives: classification of lock 
operations are sometimes overly conservative

● Extensions to Atomizer
– Re-entrant locks: Acquire is a both-mover, since it 

cannot interact with other threads

– Thread-local locks: If lock used by only a single 
thread, acquire and release are both-movers

– Thread-local locks (2): Eliminates false alarms 
caused when one thread creates and initializes 
protected object and transfers ownership of the 
object and protecting locks to another thread



  

Extensions (2)

● More extensions to Atomizer
– Protected locks:  Threads always hold some lock 

m1 before acquiring m2, operations on m2 are 
both-movers

– Reader/Writer locks (same as Eraser)
● Read both-mover if current thread holds at least one of 

the write-protecting locks; otherwise non-mover
● Write both-mover if holding some (read or write) lock; 

otherwise non-mover



  

Evaluation



  

Evaluation (2)

● Atomizer identified a number of potentially 
damaging errors in mature software

● Instrumented Java libraries
– In synchronized method PrintStream.println(String s)

– Two threads can write to variable out which could 
cause the output stream to be corrupted

– Atomizer caught error with no programmer 
intervention and pinpointed exact location in program 
where bug could manifest itself



  

Evaluation (3)



  

Conclusions
● Developing multithreaded software difficult
● Eraser: Dynamically detect race conditions
– Extends Lockset algorithm

– Experience shows effective

● Atomizer: Dynamically checks for atomicity
– Removing race conditions is not enough

– Atomicity fundamental design principle in 
multithreaded program

– Uses theory of reduction to ensure atomicity 
requirement



  

Questions?


