
Helping Users Avoid Bugs in GUI Applications

Amir Michail
School of Computer Science and Engineering

University of New South Wales
Sydney, NSW, Australia, 2052

amichail@cse.unsw.edu.au

Tao Xie
Dept. of Computer Science and Engineering

University of Washington
Seattle, WA, USA, 98195

taoxie@cs.washington.edu

ABSTRACT
In this paper, we propose a method to help users avoid bugs
in GUI applications. In particular, users would use the ap-
plication normally and report bugs that they encounter to
prevent anyone — including themselves — from encounter-
ing those bugs again. When a user attempts an action that
has led to problems in the past, he/she will receive a warn-
ing and will be given the opportunity to abort the action —
thus avoiding the bug altogether and keeping the applica-
tion stable. Of course, bugs should be fixed eventually by the
application developers, but our approach allows application
users to collaboratively help each other avoid bugs – thus
making the application more usable in the meantime. We
demonstrate this approach using our “Stabilizer” prototype.
We also include a preliminary evaluation of the Stabilizer’s
bug prediction.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.5 [Testing and

Debugging]: [error handling and recovery]

General Terms
Reliability, Experimentation

Keywords
Software testing and analysis, software tools, fault evasion,
bug prediction, bug tracking system, gui applications

1. INTRODUCTION
Despite advances in testing and formal verification, appli-

cations today are still plagued with thousands of bugs. For
example, as of this writing, the Mozilla browser has around
20,000 open bugs. Bugs can be annoying in various ways.
A crash is disastrous if the user has not saved his/her work
recently. A bug may be more subtle, slowly corrupting state
— and perhaps corrupting saved files also. Moreover, bugs

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’05, May 15–21, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-58113-963-2/05/0002 ...$5.00.

could simply be wrong, unexpected, or intuitive behavior,
often frustrating the user.

The situation is even worse than this: not only do appli-
cations today contain thousands of bugs, but many of those
bugs linger for a long time. For example, bugs in the Linux
kernel have an average lifespan of 1.8 years, with the median
being around 1.25 years [2].

Given that bugs are a fact of life today and that they
often remain unresolved for a long time, what can we do
to improve this situation? Could users somehow avoid bugs
altogether — and the annoyances that come with them — by
simply avoiding the situations that trigger them? Avoiding
bugs would make the application more usable until those
bugs are eventually fixed.

The idea of avoiding bugs is not new: it is already done
manually by users. Anyone who has encountered a bug will
likely try to avoid it in the future. But such a manual ap-
proach has problems.

First, the manual approach to bug avoidance requires re-
membering the bug, which can be difficult if the application
has many bugs. Moreover, this memory burden is actually
worse than it sounds, since the user needs to remember new
bugs on each release. If a bug is fixed, the user would also
want to remember that as well to take advantage of a pre-
viously broken feature. And of course, if the user is using
many applications, then the user needs to remember bugs
(and whether they are fixed yet) for each of those applica-
tions.

Second, the manual approach to bug avoidance does not
make it easy for users to learn from other users. For exam-
ple, it would be better if a user could avoid a bug without

even encountering it once. This could be done if a user
finds out about the bug in advance from other users. But
this rarely happens. It is completely unrealistic to expect
a user to read through and remember thousands of bugs in
a bug tracking system so that he/she could avoid them —
particularly if the user is likely to encounter only a small
fraction of those bugs in his/her typical usage.

Third, the manual approach to bug avoidance requires the
user to figure out the circumstances under which a bug oc-
curs. But manually identifying the bug exposure conditions
may not be easy. Moreover, for particularly complicated
bug exposure conditions, there is much to gain by pooling
together execution context from many users to determine
the contexts in which a bug occurs.

In this paper, we propose a tool-based approach to help
users avoid bugs in GUI applications. The idea is that users
would use the application normally and report bugs that

they encounter to prevent anyone — including themselves —
from encountering those bugs again. When a user attempts
an action that has led to problems in the past, he/she will
receive a warning and will be given the opportunity to abort
the action — thus avoiding the bug altogether and keeping
the application stable.

Observe that such a tool-based approach directly addresses
the three problems of manual bug avoidance mentioned ear-
lier. First, since the user would be given a warning that a
bug is likely, the user need no longer remember bugs to avoid
them. Second, since these bug warnings would be based on
bug reports from all users, it is now possible for a user to
avoid a bug without even encountering it once.1 Third, bug
exposure conditions can be determined from bug reporting
information from multiple users using automated methods
(e.g., machine learning techniques).

We have built a system to demonstrate our approach,
which we have named “Stabilizer”, as avoiding bugs can
be seen as “stabilizing” the application. Currently, the Sta-
bilizer works with Java GUI applications.

The rest of the paper is organized as follows. Section 2
motivates our approach by example. Section 3 describes the
bug prediction method. Section 4 presents a preliminary
evaluation of bug prediction. Section 5 discusses related
work. Section 6 summarizes the paper and suggests future
work.

2. A MOTIVATING EXAMPLE
To motivate our approach, we shall run a target applica-

tion, FreeMind 0.7.1, under the Stabilizer to demonstrate
what typically happens when a bug is encountered. Free-
Mind is a “mind-mapping” tool written in Java, consisting
of 21,983 lines of code. It allows users to easily create and
modify a visually pleasing tree of concepts (e.g., for brain-
storming).

In what follows, we shall describe step-by-step what would
happen if we perform a certain sequence of actions in Free-
Mind starting with an empty Stabilizer database.

First, we start up the Stabilizer system. Currently, this
is done as follows: (1) start up the Stabilizer server then
(2) start up the Stabilizer client. The Stabilizer server is
responsible for maintaining a central database of bug avoid-
ance data. The Stabilizer client provides the GUI to the
Stabilizer system and is responsible for making use of bug
avoidance data for bug prediction. (In Figure 1, the client
is the window on the left.) Second, we start up the tar-
get application, FreeMind, using the Stabilizer runner. (In
Figure 1, the target application, FreeMind, is the window
on the right.) The Stabilizer runner does on-the-fly Java
byte-code instrumentation of the target application and will
abort GUI callbacks if asked to do so by the client.

When an application is started with the Stabilizer runner,
the Stabilizer client will download bug avoidance data from

1One may wonder whether users could even agree on what
constitutes a bug. After all, some users may report features
as bugs simply because they do not understand them. We
believe that for many classes of bugs, such agreement is
possible, but demonstrating this is left for future work. Note
however that (1) our approach can still be used with only
a single user where no such agreement is necessary; and (2)
our approach can make use of collaborative filtering so that
warnings are given for bugs reported by users with similar
bug reporting history.

the Stabilizer server. (In this example, the server database is
empty at application startup.) When the user reports a bug
(or “not bug” as explained below), the client keeps track of
this new bug avoidance data. The client is also responsible
for making bug predictions based on the data downloaded
from the server and also any additional bug avoidance data
accumulated in this particular application execution. When
the user quits the application, the client updates the server
database with the new bug and “not bug” reports.

Returning to our example, when we start up FreeMind un-
der the Stabilizer, we perform the following actions: (1) we
create a new mind map (which automatically gets a root
node with text “New Mindmap”); (2) we change zoom level
from 100% to 200%; (3) we give the root node a child by
pressing F10 to access the menu, then using the keyboard
to select menu item Edit⇒New Child Node; and (4) we type
“a” as the text for the newly created child node. So far we
have not observed any bugs. (Figure 1 shows the results of
the actions performed thus far.)

Next, we attempt to delete the child node just created. So
we press F10 to access the menu, then use the keyboard to
select the menu item Edit⇒Node⇒Remove Node. But now
we observe a bug: instead of the child node being deleted,
we see that a sibling node was created instead. So now the
root has two children.

At this point, with the cursor still in the edit field of
the newly created node, we press F11, a Stabilizer keyboard
shortcut for reporting a bug from within the target appli-
cation. When we do so, the Stabilizer pops up a “Report
Bug” dialog. (See Figure 2.) When reporting a bug, we
provide a text description by explaining what happened in
words and we also provide a visual description by zooming
in on the relevant parts of the before and after screenshots.2

(See Figure 2.) Although before and after screenshots of the
entire screen are taken automatically by the Stabilizer, the
user can additionally manually zoom in on the interesting
part of each screenshot using the mouse.

After pressing Okay button on the “Report Bug” dialog,
we immediately get a warning dialog giving us the option
of aborting a FreeMind action. The warning dialog shows
us past bug reports (and also “not bug” reports as we shall
see shortly) ordered by increasing distance to the current
context on which the bug prediction is made. (See Figure 3
for another warning dialog that will appear later in this ex-
ample.)

This bug warning (not shown in figures) is based on one
bug report, namely the one we just made. The warning
stems from a “focus lost” event from the child node edit
field. The reason this warning is given is that bug prediction
takes into account past events by default. In this case, the
bug report we just made shares some event history with the
“focus lost” event.

We decide to allow the “focus lost” event to be processed,
so we click Continue Action on the warning dialog. Indeed,
after allowing execution to continue, we encounter no bug.

2A minimum separation of δ (with default 1 second) is re-
quired between screenshots. So, if a screenshot is taken on
an event e arriving at time te, a screenshot will also be taken
on a subsequent event e′ arriving at time te′ if and only if
te′ − te ≥ δ. When reporting a bug, the before screenshot
will be the most recent screenshot taken upon the arrival of
an event. The after screenshot will be taken when the user
initiates the bug report.

Figure 1: Running FreeMind under the Stabilizer.

Figure 2: Reporting a bug.

Figure 3: A bug warning.

So we click on the Report Not Bug button in the client GUI
to indicate that the previous warning was in error – thus
improving the Stabilizer’s bug prediction. (The “Report Not
Bug” dialog is similar to the “Report Bug” dialog shown in
Figure 2.3)

Now, we still wish to delete the child node as well as the
new one that was created due to a bug. So we try to do it in
a different way by using FreeMind’s popup menu rather than
the menubar at the top. Perhaps the node deletion bug may
not occur. (In a real-life scenario with many users running
FreeMind under the Stabilizer, it would be natural for some
of those people to use the popup menu to delete a node.)
Indeed, clicking the right mouse button for the popup menu
(rather than F10 for the menubar at the top) and selecting
the menu item Node⇒Remove Node does indeed delete the
child as expected. So we delete both children in this way,
leaving only the root node.

Now, we try to create a child node again for the root.
Creating a child using the menubar at the top was not a
problem before, so we try it again by pressing F10 to access
the menubar, but doing so results in a warning. This is
not surprising since F10 is in the history of the bug report
that we made earlier. (If another user received this warning
— unaware of our actions, “bug”, and “no bug” reports —
he/she could look at the warning dialog’s list of “bug” and
“no bug” reports, which are sorted by increasing distance to
the current situation.) At this point, we click on Continue

Action to ask the Stabilizer to process the F10 event and
allow us to access the menu. As no bug subsequently occurs,
we file a “not bug” report.

Next, we press F10 again and indeed there is no bug warn-
ing this time. We then select the menu item Edit⇒New Child

Node. At this point, we get another warning, this time about

3When reporting a “not bug”, the before screenshot will be
a screenshot taken at the time of the previous warning. The
after screenshot will be taken when the user initiates the
“not bug” report.

the “new child” event. Again, this occurs because this event
was in the history of the bug report made earlier. Since
“new child” worked for us before, we would expect it to
work again, so we click Continue Action and indeed a child
is created with no bug. So we file a “not bug” report.

Now, we type the text “b” in the new child and press
return. We get a warning on the return event. We ignore
the warning and click Continue Action. No bug subsequently
occurs and we file a “not bug” report.

At this point, we try to delete this child (with text “b”)
using the menubar via F10. Recall that this led earlier to
a bug where a child is added instead. So we press F10,
but no warning occurs. We then use the keyboard to select
Edit⇒Node⇒Remove Node. We now get a warning as ex-
pected. (See Figure 3. Observe that this warning includes
both “bug” and “not bug” reports. The “bug” report has a
lower distance to the current context as expected. Inciden-
tally, the “not bug” report refers to the one we filed after
the “focus lost” warning.) Inspecting the bug report in the
warning dialog, we see that it looks very similar to the cur-
rent situation, so we click Abort Action, thus avoiding the
bug. We then use the popup menu to delete the child. We
get no warning and the child is correctly deleted.

It turns out that the bug in question actually affects all
menu items under Edit⇒Node in the menubar: if you access
any of those menu items using the keyboard (e.g., starting
with F10), a new sibling node will be created. So indeed, it
makes sense to give warnings when F10 is followed by a “new
sibling” event. The reason is this: even though there does
exist a menu item Edit⇒Node⇒New Sibling Node, there are
many other menu items under under Edit⇒Node as well, so if
we see F10 followed by a “new sibling” event, the user prob-
ably picked some menu item other than Edit⇒Node⇒New

Sibling Node, in which case there will be a bug. So a warning
makes sense in this context as it is likely that a bug would
occur.

3. BUG PREDICTION
The Stabilizer’s bug prediction problem is this: given an

application state S and an event e, would processing event
e in state S likely result in a bug given past bug and “not
bug” reports?

We shall use a bounded execution history to approximate
the current application state S, which we describe in Sec-
tion 3.1. The way in which the bounded history is used
for bug prediction is explained in Section 3.2. The way in
which the bug and “not bug” reports are used to provide
training data for bug prediction is explained in Section 3.3.
The actual bug prediction itself uses a distance weighted
nearest neighbor learner, which is described in Section 3.4.
The distance measure used for the learner is presented in
Section 3.5. Finally, we describe support for manual bug
prediction for those situations where learning is not work-
ing well (e.g., when our approximation to the state S is not
good enough) in Section 3.6 .

Please note that the Stabilizer prototype intercepts (and
possibly aborts) event callbacks. However, to simplify the
exposition, sometimes we will not distinguish between events
and their callbacks.

3.1 Bounded History
There are two obvious ways in which execution history

could improve bug prediction. First, if a sequence of two
or more actions is required to trigger a bug, then a history
(provided it is long enough) would allow us to predict a bug
when the sequence of those two or more actions is observed.
Second, history can help us even when only one user initi-
ated action is sufficient to trigger a bug. In particular, a user
initiated action may actually result not only in one event
(e.g., “new sibling” in FreeMind) but an “event burst” (e.g.,
“new sibling” quickly followed by a “focus gained” event for
the edit field in the new sibling node). If the user subse-
quently reports a bug, the most recent event will not in fact
be the one that initiated the action. History allows us to
take into account previous events and give warnings on ear-
lier events that initiate actions (e.g., “new sibling” rather
than the subsequent “focus gained”).

We keep track of two separate bounded histories: one
for events and the other for code (either function calls or
basic blocks). Both histories are handled in the same way
as described below. (The size of the event history is 10 by
default, while the size of the code history is 100 by default.)

Let H = (h1, . . . , hn) denote a bounded history of size n.
We shall define the history H in a way so that no item
occurs multiple times in H, but at the same time, some
sense of sequence is still preserved. In this way, more fre-
quent items (e.g., more frequent events or function calls)
will not dominate the bounded history. We shall use the
notation H + x to denote the addition of a new item x to
H = (h1, . . . , hn). If item x is not already in H, then the
first item h1 in H is removed and item x is appended to the
end: H + x = (h2, . . . , hn, x). If item x is already in H, say
H = (. . . , hi, x, hj . . .), then it is simply moved to the end:
H + x = (. . . , hi, hj , . . . , x).

Note that a sense of sequence is preserved in the history
H = (h1, . . . , hn). In particular, suppose hi precedes hj in
H = (. . . , hi, . . . , hj , . . .). Then it must be the case that
the latest addition of hj was done after the latest addition
of hi. Note also that if we add distinct items x1, . . . , xk in
that order to H = (h1, . . . , hn) where k ≤ n, then x1, . . . , xk

will be the most recent items in the history (irrespective of
whether some of those items were already in the history)
while also retaining their order: (· · · ((H + x1) + x2) + · · ·+
xk) = (. . . , x1, x2, . . . , xk).

3.2 Validating Events
Let He and Hc denote the current event and code histo-

ries, respectively. He consists of all accepted events (i.e.,
those for which either no warning occurred or a warning did
occur yet the user continued) and Hc contains either func-
tion calls or basic blocks leading up to the most recent event
in He. Any more recent function calls/basic blocks are tem-
porarily kept elsewhere and will be added to Hc later when
an event following them is accepted and added to He.

Whenever an event x in the target application is about
to be processed, its callback is intercepted by the Stabi-
lizer runner. The runner then issues a “validate x” request
to the Stabilizer client to determine whether it should pro-
ceed with or abort event x’s callback. Whenever the Sta-
bilizer client receives the “validate x” request, it performs
a prediction based on the event and code histories, namely
(He +x, (· · · ((Hc +y1)+y2)+ · · ·+yk)) where y1, y2, . . . , yk

denote function calls/basic blocks not yet added to Hc that
precede event x, to determine whether a bug is likely to oc-
cur based on past data. (See Section 3.4.) Note that x is
not an accepted event at this point, so it is not already part
of the history He. We shall use (Hp

e , Hp
c) to denote the his-

tories used for prediction, namely (He + x, (· · · ((Hc + y1) +
y2) + · · · + yk)).

If the client predicts that a bug is likely, then a warning
dialog will appear allowing the user to either abort or con-
tinue the action. If the user chooses to abort the action, the
client will inform the Stabilizer runner to abort the current
action and event x’s callback will not be executed. Now if
the client predicts that a bug is not likely or it predicts that
a bug is likely but the user continues the action anyway,
then the client will perform the same processing in both
cases. Namely, the client updates the histories as follows:
He := Hp

e , Hc := Hp
c . Now that x’s callback has been

accepted, it is now the most recent event in He and any
calls/basic blocks leading up to x have been added to Hc.

3.3 Bug and “Not Bug” Reports
If the user reports a bug, then a training example con-

sisting of the current event and code histories, He and Hc

respectively, is added to the training data. Specifically,
(He, Hc, ”bug”) is added to the training set, where “bug”
is the classification of this training example. Note that Hc

contains only the code history leading up to the most recent
event (since at bug prediction time we would not have the
code that will execute after the event).

If the client predicts that a bug is likely and issues a bug
warning, then the user continues the action anyway despite
the bug warning, and yet the action turns out to be ap-
parently bug-free, then the user can report “not bug” to
tell the Stabilizer that the warning should not have oc-
curred in this context. In this case, a training example
consisting of the event and code histories used for predic-
tion at the time of the previous warning, which we denote
as Hp,w

e and Hp,w
c , are added to the training data. Specif-

ically, (Hp,w
e , Hp,w

c , ”not bug”) is added to the training set,
where “not bug” is the classification of this training exam-
ple. Note that Hp,w

e ends with the most recent event ew

to yield a warning (which is not necessarily the most re-
cent event encountered) and Hp,w

c contains the code history
leading up to ew.

3.4 Distance Weighted Nearest Neighbor Learner
Bug prediction is done using the distance weighted nearest

neighbor learner [9, pp. 233–234]. The idea is to consider
the “closest” k training examples to see whether a bug is
likely or not, for some constant k ≥ 1. More precisely, we
use a distance measure 0 ≤ d((Hp

e , Hp
c), (H ′

e, H
′

c) ≤ 1 to
determine how close each training example (H ′

e, H
′

c, type) is
to the event and code histories used for prediction, (Hp

e , Hp
c).

(See Section 3.5 for our definition of d.)
Distance weighted nearest neighbor prediction is done as

follows. If the distance to the closest training example is 0,
then we take a majority vote on the classification among
only those training examples of distance 0 to (Hp

e , Hp
c). So

if the majority say there is a bug, then we predict a bug.
Otherwise, we predict no bug.

If the distance to the closest training example is greater
than 0, then we consider the closest k training examples
to (Hp

e , Hp
c), say (H ′

e,1, H
′

c,1, type1), . . . , (H
′

e,k, H ′

c,k, typek),
where we exclude training examples of maximum distance 1.
(The number of such training examples may be less than k

if there is insufficient training data. Also, by default, the
Stabilizer actually considers all neighbors with distance less
than 1, which is reasonable as we shall take into account
the distance to each of those neighbors when making a pre-
diction. However, users can if they wish specify a k value
to restrict the numbers of neighbors considered to only the
closest k ones with distance < 1.)

We then compute two scores, one for the classification
“bug” and the other for the classification “not bug”. Let X

denote the set of training examples among (H ′

e,1, H
′

c,1, type1),
. . ., (H ′

e,k, H ′

c,k, typek) where typei is “bug”. Let Y denote
the set of training examples among (H ′

e,1, H
′

c,1, type1), . . .,
(H ′

e,k, H ′

c,k, typek) where typei is “not bug”. The “bug”
score is computed by

X

(H′

e
,H′

c
,“bug”)∈X

1

d((Hp
e , H

p
c), (H ′

e, H ′
c))2

and the “not bug” score is computed by

X

(H′

e
,H′

c
,“not bug”)∈Y

1

d((Hp
e , H

p
c), (H ′

e, H
′
c))2

.

If the “bug” score is greater, we predict a bug, otherwise we
predict a “not bug”.

3.5 Distance Measure used in Learner
As before, we let Hp

e and Hp
c denote the event and code

histories used for prediction and we let H ′

e and H ′

c denote a
training example event and code histories. Since our bounded
histories do not contain duplicate items, we shall at times
treat histories as sets, as there will be no confusion given
the context.

We compute a normalized distance between the prediction
event and code histories and the training example event and
code histories, denoted by 0 ≤ d((Hp

e , Hp
c), (H ′

e, H
′

c) ≤ 1.
This is done as follows. If the event added most recently
to Hp

e (i.e., the last in the sequence) is not present in H ′

e,
then d((Hp

e , Hp
c), (H ′

e, H
′

c) = 1 and the procedure for deter-
mining distance is completed at this point. The rationale

here is that a bug warning, if any, would be about the most
recent event and so this event is absolutely critical to bug
prediction. Thus, we require that the most recent event be
present in H ′

e to give a distance d((Hp
e , Hp

c), (H ′

e, H
′

c) that
is less than one.

If the event added most recently to Hp
e (i.e., the last in the

sequence) is present in H ′

e, then we compute the standard
cosine similarity from information retrieval [11, p. 185] of
Hp

e and H ′

e:

Se(H
p
e , H

′

e) =

P

x∈H
p

e ∩H′

e

wp
e (x)w′

e(x)
q

P

x∈H
p

e

w
p
e (x)2

q

P

x∈H′

e

w′
e(x)2

where the weight of an item x, denoted by wp
e (x) for Hp

e

and w′

e(x) for H ′

e, is set to ri−1
e , where x is the ith item in

the corresponding history and the ratio re ≥ 1 is a constant.
(Values of re > 1 give greater weight to more recent items
in the histories. We use re = 1.5 by default.)

We also compute the cosine similarity of the code histo-
ries, Hp

c and H ′

c:

Sc(H
p
c , H

′

c) =

P

x∈H
p

c ∩H′

c

wp
c (x)w′

c(x)
q

P

x∈H
p

c

w
p
c (x)2

q

P

x∈H′

c

w′
c(x)2

where the weight of an item x, denoted by wp
c (x) for Hp

c

and w′

c for H ′

c, is set to ri−1
c , where x is the ith item in the

corresponding history and ratio rc ≥ 1 is a constant. (We
use rc = 1.1 by default.)

We then compute the combined similarity as follows:

S((Hp
e , H

p
c), (H ′

e, H
′

c) = αS(Hp
e , H

′

e) + (1 − α)S(Hp
c , H

′

c),

for some constant 0 ≤ α ≤ 1 that is used to determine how
important the event history similarity score is with respect
to the code history similarity score. (We used α = 1 for
the motivating example in Section 2, which means that the
code histories were ignored. When we do use both event
and code histories, we typically use α = 0.5, as is done in
the evaluation configurations that make use of code history
in Section 4.)

Finally, the distance d is defined as follows:

d((Hp
e , H

p
c), (H ′

e, H
′

c) = 1 − S((Hp
e , H

p
c), (H ′

e, H
′

c).

3.6 Support for Manual Bug Prediction
In situations when learning is not effective (e.g., because

our approximation to the state is insufficient), the user can
override automated bug prediction. In particular, when fil-
ing a bug report, the user can specify “always warn”. More-
over, when filing a “not bug” report, the user can specify
“never warn”. When looking at neighbors, if among the
closest ones there is a neighbor with “always warn”, then
a warning will be given regardless of the other neighbors.
Otherwise, if among the closest ones there is a neighbor with
“never warn”, then a warning will not be given regardless
of the other neighbors. This feature should only be used as
a last resort when learning is ineffective in a particular con-
text. (It is not used in the motivating example in Section 2
nor is it used in the evaluation in Section 4.)

4. EVALUATION OF BUG PREDICTION
This section presents the preliminary experiment conducted

to evaluate the Stabilizer’s bug prediction. We first describe
the experimental subjects, including the subject programs,

mutants, and tests. We then discuss the experiment de-
sign. We finally present the experimental results and discuss
threats to validity.

4.1 Subjects
The subjects used in the experiment had been previously

developed and used by Memon et al. in evaluating different
types of GUI test oracles [8]. The subject programs include
four GUI applications. The first three columns of Table 1
show the program names, the number of lines of code, and
the number of classes, respectively. For each application,
Memon et al. created 100 mutants (i.e., 100 versions each
of which is seeded with a bug) based on the collected bugs
introduced during the development of these four applica-
tions. They used an automated tool to generate 600 test
cases for each application (independently of the mutants).
They also developed a GUI test replayer for running these
tests automatically.

A mutated method is a mutant’s method that is seeded
with a bug. To automatically determine whether an exe-
cution exposes a bug in a mutated method, we manually
inspect the original code and mutated code, and derive the
bug-exposure condition under which the execution of the
mutated code can cause differences in the program state or
return value at the exit of the mutated method. At an ap-
propriate location within the mutated method, we manually
insert a piece of code that informs the Stabilizer runner when
the bug-exposure condition is satisfied.

A bug-triggering callback for a mutant is a callback that at
least once directly or indirectly invoked the mutated method
during the executions of the 600 tests. Note that one par-
ticular execution of a bug-triggering callback does not nec-
essarily expose a bug or even cover the mutated method.
To control the scale of the experiment, for each mutant, we
select all those tests that execute at least one triggering call-
back for the mutant (no matter whether these tests expose
bugs) and use the Stabilizer to run the selected tests on the
mutant. Because unselected tests for a mutant exercise ap-
plication features irrelevant to the buggy code, we expect
that our experimental results shall be similar to the ones of
running all 600 tests for each mutant.

A bug is deterministic with respect to a bug-triggering
callback c if whenever c is executed, the bug is guaranteed
to be exposed within the execution of c, and is nondeter-

ministic with respect to c if the bug is exposed by at least
one but not all executions of c among the executions of 600
tests. Because deterministic bugs are trivial for the Stabi-
lizer to predict, we select a mutant in the experiment if the
mutant contains a nondeterministic bug with respect to one
of its bug-triggering callbacks. However, we do not select
a mutant if the number of selected tests for the mutant is
fewer than 20 because the Stabilizer assumes a repeated use
of a bug-triggering callback; we do not select a mutant with
all 600 selected tests because the mutant might contain a
bug that is not related to event callbacks. The last three
columns of Table 1 show the number of mutants containing
only deterministic bugs, (selected) mutants containing inde-
terministic bugs, and the average number of selected tests
for a selected mutant, respectively. The third application,
TerpPaint, has no selected mutants because none of its mu-
tants satisfy our selection criteria.

program loc classes det indet tests
mutants mutants

TerpWord 1747 9 17 2 170

TerpPresent 4769 4 5 9 56

TerpPaint 9287 42 8 0 –

TerpSheet 9964 25 3 6 152

Table 1: Subject programs used in the experiment

4.2 Experiment Design
The objectives of the experiment are to investigate the

following research questions:

• RQ1: Can event history or code history (i.e., regular
method calls or basic blocks) be useful in improving
the automated bug prediction?

• RQ2: Can lower-level execution information be useful
in improving the automated bug prediction (i.e., the
arguments of event callbacks or the arguments/returns
of regular method calls4)?

• RQ3: Can the Stabilizer’s automated bug prediction
be improved over time?

To answer these questions, we at first define a default
configuration to be using only events and event callback ar-
guments in prediction and setting the event history size as
10. We then design eight configurations for the experiment:

• Configuration 1: default configuration excluding event
callback arguments.

• Configuration 2: default configuration.

• Configuration 3: default configuration with the ad-
dition of regular method calls.

• Configuration 4: default configuration with the ad-
dition of regular method calls with argument/return
values.

• Configuration 5: default configuration with the ad-
dition of basic blocks.

• Configuration 6: default configuration with the event
history size set to five.

• Configuration 7: default configuration with the event
history size set to two.

• Configuration 8: default configuration with the event
history size set to one (i.e., only the most recent event
is used for prediction).

The code history size is set to be 100 for configurations 3,
4, and 5, where code information is used.

To characterize the effectiveness of automated bug pre-
diction, we use two measures: precision and recall, which
are standard measures from information retrieval [11]. In
our context, precision is defined to be the number of cor-
rectly predicted buggy events divided by the total number
of bug warnings. Recall is defined to be the number of cor-
rectly predicted buggy events divided by the total number of
events that were actually buggy. Note that these two mea-
sures do not involve the total number of events encountered,

4We collect the label and the type of the component associ-
ated with an event as the argument of the event’s callback.
For example, when a user selects an Edit menu, the callback
argument is collected as “Edit#javax.swing.JMenu#”.
For a method argument or return, besides its runtime-type
name, we collect its value in a string form if it is a primitive
type, collect “null” if it is a null reference, and collect “not
null” if it is a non-null reference.

buggy or not. For each combination of selected mutants and
eight configurations, we calculate precision and recall over
the whole period of running all selected tests for the selected
mutant. Note that the execution of each combination starts
with an empty Stabilizer database. In addition, to answer
the last question (RQ3), from the sequence of executed call-
backs, we first remove those events that were never predicted
to be buggy and then divide the remaining sequence into two
parts of equal size. Then we calculate precision and recall
for the second part by considering all those callbacks that
are executed within the second part.

Normally, whenever the Stabilizer client is asked to vali-
date an event, it sends the runner an “abort” or “proceed”
to tell it whether the event callback should be aborted or ex-
ecuted. However, “abort” is only sent after a bug warning in
which the user has decided to abort the action. “proceed”
is sent either if there is no bug warning, or there is a bug
warning and the user has decided to continue the action.
However, to build an automated evaluation setup, we need
to take human users out of the loop. Consequently, we need
to simulate the user’s behavior on a bug warning dialog. For
the purposes of automated evaluation, whenever the client is
asked to validate an event callback c, instead of popping up
a bug warning dialog, it simply continues the action (thus
corresponding to the case where a human user would ignore
the warning and continue the action). During the execution
of the action, if no bug-exposure condition is satisfied but c

was earlier predicted to be buggy, a “not bug” is automat-
ically reported; if a bug-exposure condition is satisfied but
c was earlier predicted not to be buggy, a “report bug” is
automatically reported.

4.3 Experimental Results
Figures 4-7 use boxplots to present the experimental re-

sults. The box in a boxplot shows the median value as the
central line, and the first and third quartiles as the lower
and upper edges of the box. The whiskers shown above and
below the boxes technically represent the largest and small-
est observations that are less than 1.5 box lengths from the
end of the box. In practice, these observations are the lowest
and highest values that are likely to be observed.

Figures 4 and 5 show the precision and recall for the mu-
tants with the eight configurations over the whole period.
From Figures 4 and 5, we have observed that the Stabilizer
can achieve around an 80% median for precision and recall.
The results for configurations 3, 4, and 5 suggest that code
history may not be useful in improving bug prediction. The
results for configurations 2, 6, 7, and 8 (with event-history
sizes of 10, 5, 2, and 1) suggest that a larger event-history
size may not be useful in improving bug prediction. The
results of configurations 1, 2, 3, and 4 suggest that detailed
execution information may not be useful in improving bug
predication.

However, we have observed in our experimentation with
FreeMind that event history can be important for bug pre-
diction (e.g., to take into account context and handle event
bursts).

In summary, further investigation is still needed to see
whether exploiting more program information could help
improve bug prediction.

Figures 6 and 7 show the precision and recall for the mu-
tants with the eight configurations over the second part of
the period. By comparing them with the results in Figures 4

Conf 1 Conf 2 Conf 3 Conf 4 Conf 5 Conf 6 Conf 7 Conf 8

0
20

%
40

%
60

%
80

%
10

0%

Figure 4: Precision for the eight configurations over

the whole period.

Conf 1 Conf 2 Conf 3 Conf 4 Conf 5 Conf 6 Conf 7 Conf 8

0
20

%
40

%
60

%
80

%
10

0%

Figure 5: Recall for the eight configurations over

the whole period.

and 5, we have observed that both the precision and recall
are improved over time and the recall is improved more sig-
nificantly over time.

4.4 Threats to Validity
The threats to external validity primarily include the de-

gree to which the subject programs, bugs, and tests are rep-
resentative of true practice. Although the GUI applications
used in the experiment are fairly large with complex GUIs,
they do not reflect a wide spectrum of possible GUI appli-
cations. In addition, the total number of selected mutants
in the experiments is only 17 and the sequence of callbacks
executed by a test is often short. These threats could be
reduced by more experiments on wider types of subjects in
future work. The threats to internal validity are instru-
mentation effects that can bias our results. Faults in our
prototype and the test replayer might cause such effects. To
reduce these threats, we manually inspected many collected
traces for each subject. In addition, the selection of mutants

Conf 1 Conf 2 Conf 3 Conf 4 Conf 5 Conf 6 Conf 7 Conf 8

0
20

%
40

%
60

%
80

%
10

0%

Figure 6: Precision for the eight configurations over

the second part of the period.

Conf 1 Conf 2 Conf 3 Conf 4 Conf 5 Conf 6 Conf 7 Conf 8

0
20

%
40

%
60

%
80

%
10

0%

Figure 7: Recall for the eight configurations over

the second part of the period.

and their tests in the experiment might also cause instru-
mentation effects. Threats to construct validity arise when
manually derived bug-exposure conditions might not reflect
the actual bug-exposure conditions when buggy code is used
by real users. In the future, we plan to conduct case studies
with the Stabilizer being used by real users.

5. RELATED WORK
The cooperative bug isolation project developed by Liblit

et al. [7] collects predicate and crash information about de-
ployed software from a set of runs produced by users. They
develop the predicate elimination and statistical debugging
techniques to identify a predicate as a bug-exposure con-
dition for a crash-causing bug. Our approach operates at
deployment sites too, but focuses on a narrower range of ap-
plications: GUI applications. Our approach considers any
undesirable behavior as a bug, whereas the cooperative bug
isolation project is mainly concerned with program crashes.

Comparing to bug isolation in general, the final results
(prediction results) of our approach are directly used by
application users, whereas the final results (fault-exposure
conditions) of bug isolation are mainly used by developers
(the cooperative bug isolation project deliberately makes its
approach to be unobtrusive to user behavior). Data avail-
able for predicting a buggy event callback are limited to
the execution information before a buggy event callback,
whereas data available for finding bug-exposure conditions
in bug isolation are all the execution information before the
bug-exposure site (even after the application has started the
execution of the buggy event callback). In this regard, we
speculate that the bug prediction problem in our particu-
lar setting might be more challenging than the bug isolation
problem in general. On the other hand, bug isolation needs
to produce human-understandable bug-exposure conditions,
which could be used but not required in bug prediction; in
this regard, bug isolation is more challenging.

Given a faulty run and a larger number of correct runs,
Manos and Reiss [10] select the correct run whose basic block
profiling is closest to the faulty run. They then compare
the structural spectra of the selected correct run and the
buggy run, and report the suspicious parts of the program as
buggy portions. Given an event callback to be executed and
a set of historical runs of the same callback, our approach
predicts whether the callback to be executed is buggy using
the nearest-neighbor strategy.

Given a failing test, Zeller and Hildebrandt [12] develop
the Delta Debugging algorithm to systematically generate
and run test inputs that are slightly different from the fail-
ing test input, in order to isolate the parts in the input
that cause the failure. Different from their approach, our
approach does not proactively generate tests to exercise the
callback to be predicted but takes advantage of historical ex-
ecution information exercised by users. Our approach pro-
vides mechanisms to share the collective knowledge of user
executions among various sites alleviating the problem of
lacking enough data for prediction.

Elbaum et al. [4] empirically investigate the relationship
between anomalies and failures by evaluating the predictive
capabilities of various anomaly detection schemes in the con-
text of failure analysis. They use behaviors exposed by in-
house integration testing to define normal behaviors. Then
they detect anomalies by detecting deviations from normal
behaviors. We can view characteristics of a callback’s pass-
ing runs as normal behaviors and characteristics of its failing
runs as abnormal behaviors. Given a program behavior, El-
baum et al.’s approach detects its deviations from normal
behaviors, whereas our approach determines whether it is
more similar to historical normal behaviors (passing runs)
or abnormal behaviors (failing runs).

Demsky and Rinard [3] develop an approach for dynam-
ically detecting and repairing data structures that violate
specified consistency constraints, rather than attempting to
increase the reliability of the code manipulating the data
structures. Their approach enables a program to continue
to run successfully within its designed operating envelope.
Our approach takes a similar perspective on making buggy
code usable: we dynamically predict and prevent the exe-
cution of buggy code before it gets fixed. However, without
requiring any specification, we attempt to prevent a GUI
application from entering a corrupted state instead of ag-
gressively repairing an already-corrupted state.

Our approach is related to intrusion detection research in
computer security. In our case, we attempt to avoid bugs,
rather than intrusions. However, our use of a supervised
learner (nearest neighbor) on a bounded execution history
is similar to the sliding window nearest neighbor method
used in intrusion detection systems [6].

Finally, our use of before/after screenshots to visually de-
scribe application state at a very high level of abstraction
is similar to work done on editable graphical histories [5]
and the DRT design recovery tool for interactive graphical
applications [1].

6. CONCLUSIONS
In this paper, we have proposed a tool-based approach

to help users avoid bugs in GUI applications. The idea is
that users would use the application normally and report
bugs (and also “not bugs”) that they encounter to prevent
anyone — including themselves — from encountering those
bugs again. When a user attempts an action that has led
to problems in the past, he/she will receive a warning and
will be given the opportunity to abort the action — thus
avoiding the bug altogether and keeping the application sta-
ble. We have illustrated our approach by example using our
Stabilizer prototype, explained how the Stabilizer’s bug pre-
diction works, and presented a preliminary evaluation of the
Stabilizer’s bug prediction.

One may wonder whether the bug prediction precision and
recall numbers reported in Section 4 are good enough to use
the tool in practice. After all, it might be that the tool
would be more annoying than useful. We plan to improve
bug prediction significantly in future work. An obvious way
to improve bug prediction is to look at more of the applica-
tion state (e.g., values of variables). However, we will likely
first explore a simpler approach that uses our existing event
and code histories. Specifically, we believe that bug predic-
tion will be much easier to do if we know how the execution
will proceed after the event to be validated. Consequently,
we propose looking into the future to see what would actu-
ally execute if we were to process some event e — without

committing the GUI application to processing e. This could
be done by “forking” off a child process to handle event e

in a way that does not affect the parent process. We could
then use the experimental child process execution to more
accurately predict whether a bug is likely for the parent if
the user does not abort e.

Observe that such an approach using lookahead can also
alleviate problems with “event bursts”. (See Section 3.1.)
In such a burst, a single user action triggers multiple events
in rapid succession. Such bursts can cause user confusion.
In particular, the first event may be quite generic and only
a subsequent event in the burst may be indicative of a bug.
Moreover, some of these events can be low-level and not eas-
ily understood by users (e.g., “lost focus”). Of course, we
would like to avoid requiring users to abort precisely the
right event in the middle of an event burst. If we use looka-
head in the manner just described above, we could restrict
the event validation process to only the first event in an
event burst: if a subsequent event in the burst is responsi-
ble for a bug, we will see it in the lookahead. In this way, we
would not need to issue warnings about events that do not
initiate a burst (which is confusing to users and could leave
the application in a bad state if the wrong event is aborted).

For future work, we would also like to test the Stabilizer

with many users, including non-technical ones. After all,
it is not even obvious that average users would understand
the tool, and even if they do, whether they would agree
on what is a bug and what is not. The Stabilizer proto-
type was designed with distributed operation in mind, so
implementation-wise, supporting multiple users on different
computers will be easy and we plan to do this soon. How-
ever, evaluation of Stabilizer usage with multiple users will
require some thought. In particular, we would like to get
some sense of how to predict the “stabilization time” of an
application given a host of factors: the number of users, the
number of bugs, the size of the application, etc.

Acknowledgments
We would like to thank Atif Memon and Qing Xie for their
assistance in our use of the TerpOffice benchmarks.

7. REFERENCES
[1] K. Chan, Z. Liang, and A. Michail. Design recovery of

interactive graphical applications. In Proc. 25th

International Conference on Software Engineering,
pages 114–124, 2003.

[2] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler.
An empirical study of operating systems errors. In
Proc. 18th ACM Symposium on Operating Systems

Principles, pages 73–88, 2001.

[3] B. Demsky and M. Rinard. Automatic detection and
repair of errors in data structures. In Proc. 18th ACM

SIGPLAN Conference on Object-Oriented Programing,

Systems, Languages, and Applications, pages 78–95,
2003.

[4] S. Elbaum, S.Kanduri, , and A. Andrews. Anomalies
as precursors of field failures. In Proc. International

Symposium of Software Reliability Engineering, pages
108–118, 2003.

[5] D. Kurlander and S. Feiner. Editable graphical
histories. In IEEE Workshop on Visual Languages,
pages 127–134, 1988.

[6] T. Lane and C. E. Brodley. Temporal sequence
learning and data reduction for anomaly detection.
ACM Transactions on Information and System

Security, 2(3):295–331, 1999.

[7] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan.
Bug isolation via remote program sampling. In Proc.

ACM SIGPLAN 2003 Conference on Programming

Language Design and Implementation, pages 141–154,
2003.

[8] A. M. Memon, I. Banerjee, and A. Nagarajan. What
test oracle should I use for effective GUI testing? In
Proc. 18th IEEE International Conference on

Automated Software Engineering, pages 164–173, 2003.

[9] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[10] M. Renieris and S. P. Reiss. Fault localization with
nearest neighbor queries. In Proc. 18th IEEE

International Conference on Automated Software

Engineering, pages 30–39, 2003.

[11] I. H. Witten, A. Moffat, and T. C. Bell. Managing

Gigabytes: Compressing and Indexing Documents and

Images. Morgan Kaufmann, 1999.

[12] A. Zeller and R. Hildebrandt. Simplifying and
isolating failure-inducing input. IEEE Trans. Softw.

Eng., 28(2):183–200, 2002.

