
An Empirical Evaluation of Test Case Filtering Techniques
Based On Exercising Complex Information Flows

David Leon
Electrical Engineering & Computer

Science Department
Case Western Reserve University

Cleveland, OH 44106

dzl@cwru.edu

Wes Masri
Computer Science Department
American University of Beirut
Beirut, Lebanon 1107 2020

wm13@aub.edu.lb

Andy Podgurski
Electrical Engineering & Computer

Science Department
Case Western Reserve University

Cleveland, OH 44106

podgurski@case.edu

ABSTRACT
Some software defects trigger failures only when certain complex
information flows occur within the software. Profiling and
analyzing such flows therefore provides a potentially important
basis for filtering test cases. We report the results of an empirical
evaluation of several test case filtering techniques that are based
on exercising complex information flows. Both coverage-based
and profile-distribution-based filtering techniques are considered.
They are compared to filtering techniques based on exercising
basic blocks, branches, function calls, and def-use pairs, with
respect to their effectiveness for revealing defects.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging –
Debugging aids, Monitors, Testing tools; D.4.6 [Operating
Systems]: Security and Protection – Information flow controls.

General Terms
Reliability, Experimentation.

Keywords
Test case filtering, dynamic information flow analysis, dynamic
slicing, program dependences, software testing, observation-based
testing.

1. INTRODUCTION
The idea of identifying and exercising information flows within a
program is a long-standing theme in software testing research.
Early work in this area focused on test data adequacy criteria that
require exercising different kinds of data flows between program
statements [30]; subsequent research addressed the more general
concepts of program dependences [20], which include both data
dependences and control dependences, and program slices [1],

which are closely related. Podgurski and Clarke showed that for a
program statement s1 to affect the execution behavior of another
statement s2, there must be a (static) chain of data and/or control
dependences connecting s2 to s1 [28]. Thus, if information flows
from s1 to s2, then s2 is directly or indirectly dependent on s1. All
of these concepts are important in testing because they reflect
interactions between different program elements. Failures in
deployed software are often associated with interactions that were
not anticipated or tested by developers. However, basic software
testing techniques such as functional testing, statement coverage,
and branch coverage focus on exercising individual software
features or program elements and may fail to exercise interactions
that are critical to revealing certain program defects.

In principle, the conditions that cause a particular defect to trigger
a failure may involve arbitrarily complex interactions between
program elements. However, it is feasible to exercise only a
limited number of different interactions during testing. The
number of possible n-way interactions grows rapidly with n. It is
often very difficult to create test data manually to exercise all
interactions of a given type – even simple ones – and it follows
from basic computability results that no general algorithmic
solution to this problem exists. It is more tractable to instrument
a program to profile interactions (record when they occur), to run
the instrumented program on a test suite, and to filter the test
cases based on the resulting profiles.

Test case filtering involves selecting a manageable number of
tests to use from a large, existing test suite that contains redundant
tests or is too large to use in its entirety [5][24].1 Examples of
such test suites include “legacy” test suites employed in
regression testing and test suites obtained using inexpensive but
possibly imprecise methods such as automatic test generation,
capture of inputs in the field, or simulation. A subset of the test
suite is selected based on an assessment of how likely it is to
reveal any latent defects in the program under test. This
assessment involves analysis of profiles of test executions.
Various kinds of profiles can be used for this purpose, such as
ones reflecting control flow, data flow, input or variable values,
object states, event sequences, and timing.

1 We use the term “test case filtering” in preference to “test case

selection” because the later is often used in the literature to refer
to techniques for creating test cases.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE’05, May 15–21, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-58113-963-2/05/0005...$5.00.

412

There are two main reasons for filtering test cases: (1) to reduce
the number of test cases that must be executed and (2) to reduce
the number of test executions for which it is necessary to
manually determine correct output or to audit (check) actual
output. When the test cases to be filtered are automated and self
validating, only reason (1) is relevant, and the filtering process
does not involve executing test cases with the current version of
the software under test. Reason (2) applies with respect to
captured or simulated operational inputs and other test cases for
which checking results entails manual effort. It is reasonable to
execute such test cases with the software version to be tested, in
order to collect execution profiles for use in filtering, since the
cost of manually determining or auditing output typically
dominates the cost of executing tests. Ideally, the filtering
process is largely automated. An important special case of test
case filtering is regression test filtering (often called regression
testing selection in the literature) in which a regression test suite
is filtered [31]. In regression test filtering, coverage profiles
obtained when testing previous versions of the software may be
used in filtering tests for use with the current version.

Some techniques for test case filtering are based on exercising
data flows or program dependences [28][36], and test data
adequacy criteria based on these notions can be recast as filtering
criteria. The potential value of such techniques depends on the
prevalence of software defects that are triggered only by certain
kinds of information flows. This value must be balanced against
the cost of collecting and analyzing profiles of such flows, which
increases with the complexity of the flows. Filtering techniques
based on exercising simple data flows, such as definition-use (def-
use) pairs have been subjected to empirical evaluation (see
Section 2). To our knowledge, the effectiveness of test case
filtering techniques based exercising more complex information
flows, such as ones involving a combination or sequence of
dynamic data and/or control dependences, has not been evaluated
empirically.

This paper reports the results of an empirical evaluation of several
test case filtering techniques that are based on exercising complex
information flows. Information flow profiles were obtained using
a tool for dynamic information flow analysis and dynamic slicing
that we developed [26]. Both coverage-based and profile-
distribution-based filtering techniques are considered (see Section
3). The techniques are general-purpose; in particular, they are not
specific to regression test filtering. They are compared to random
sampling and to filtering techniques based on exercising basic
blocks, branches, def-use pairs, and function calls.

Section 2 surveys graph-theoretic models of information flows
proposed for use in software testing, and it describes the models
employed in our empirical evaluation. Section 3 describes
coverage-based and distribution-based test-case filtering
techniques. Section 4 reports on our empirical study and its
results. Section 5 surveys some additional related work. Section
6 presents our conclusions.

2. MODELING INFORMATION FLOWS
Software testing researchers have proposed graph theoretic
models of several types of information flows and have used them
to define testing techniques. In this section we present some
illustrative examples of such models and indicate the models
employed in our empirical evaluation. We assume the reader is

familiar with control flow graphs and program dependences (See
[26] for formal definitions of the terminology used here.)

Rapps and Weyuker define a family of test data adequacy criteria
based on exercising “du (definition-use) paths” in a program’s
control flow graph. A du-path for a variable x is a path of the
form uPv such that x is defined at u, x is used at v, and x is not
defined along path P. Such a path demonstrates that v is directly
data dependent on u with respect to x. Thus, Rapps and
Weyuker’s adequacy criteria exercise direct data dependences,
which, together with direct control dependences, are the simplest
form of information flow in programs. A number of papers
describe empirical evaluations of one or more of Rapps and
Weyuker’s criteria [9][10][11][13][36].

Some software failures are associated with more complex
interactions between program elements than those represented by
direct data or control dependences. These interactions may
correspond to a sequence or combination of direct dependences.
Some proposed testing techniques are intended to exercise such
interactions. For example, Ntafos proposed a family of test data
adequacy criteria based on exercising chains of direct data flows
(data dependences) called “k-dr interactions” [27]. Formally, a
k-dr interaction in a program’s control flow graph is a sequence
of k ≥ 2 vertices <v1, v2, …, vk> and a sequence of k – 1 variables
<x1, …, xk – 1> such that for i = 2, ..., k, vertex vi is directly data
dependent on vertex vi – 1 with respect to xi – 1. Ntafos’s required
k-tuples test data adequacy criterion is satisfied by a set T of test
data if, among other conditions, T exercises each feasible l-dr
interaction in a program’s control flow graph at least once for 2 ≤
l ≤ k.2 Ntafos empirically evaluated only the required 2-tuples
technique.

Laski and Korel proposed two test data adequacy criteria called
“context coverage” and “ordered context coverage”, which are
based on exercising combinations of direct data flows [23]. These
combinations are of two types. An (unordered) definition context
for vertex v in a control flow graph G is a set of vertices {u1, u2,
…, un} and a corresponding set of variables {x1, x2, …, xn} such
that there is a path Pv in G that can be decomposed for i = 1, 2, ...,
n into XiuiYiv, where the subpath uiYiv demonstrates that v is
directly data dependent on ui with respect to xi. An ordered
definition context for v is a sequence of vertices <u1, u2, …, un>
and a corresponding sequence of variables <x1, x2, …, xn> such
that there is a path of the form P0u1P1u2P2 ⋅⋅⋅ unPnv in G, where
for i = 1, 2, ..., n, the subpath uiPi ⋅⋅⋅ unPnv demonstrates that v is
data dependent on ui with respect to xi. Laski and Korel’s context
coverage (respectively ordered context coverage) criterion is
satisfied by a set T of test cases for a program P if T exercises
each feasible definition context (ordered definition context) in a
P’s control flow graph at least once. Laski and Korel did not
evaluate their adequacy criteria empirically.

Clarke et al [3] showed that, with certain minor modifications,
Ntafos’s required k-tuples criteria and Laski and Korel’s context
coverage and ordered context coverage criteria subsume the
family of data flow testing criteria defined by Rapps and

2 We say that an information flow relationship defined in terms of

a program’s control flow graph is feasible if it is realized by a
CFG walk whose corresponding sequence of program
instructions is executed by some input(s).

413

Weyuker, in the sense that a test set satisfying the former criteria
also satisfies the latter. This is true because the data flow
relationships exercised by the former criteria are more general
than those exercised by the latter criteria. Nevertheless, none of
the aforementioned criteria models all of the kinds of information
flows that can be associated with software failures. It is not
difficult to prove that certain program failures can be triggered
only by exercising arbitrarily complex information flows, e.g.,
arbitrarily long chains of data and/or control dependences.

These considerations lead naturally to the idea of defining test
case filtering techniques in terms of even more general models of
information flows in programs. Such models are employed in
program dependence analysis [8], information flow analysis [4],
and program slicing [34], which are closely related program
analysis techniques that each support modeling of arbitrary
combinations of indirect information flows between instructions
or objects, where each indirect flow corresponds to a sequence of
one or more direct data dependences and/or direct control
dependences. Information flow analysis originated in the field of
computer security [4]. It is used to determine if information
stored in a sensitive variable or object can flow or actually has
flowed to a variable or object that is accessible to an untrusted
party. Program slicing is a debugging technique that seeks to
identify the set of program statements – called a slice – that could
be responsible for an erroneous program state that occurred at a
particular location in a program. Information flow analysis and
program slicing each have both static and dynamic variants. Both
dynamic information flow analysis [26] and dynamic slicing [21],
which involve analyzing runtime data and control dependences,
are potentially much more precise than their static counterparts,
because the outcomes of conditional branches become known at
runtime.

Podgurski and Clarke described the semantic basis for the use of
program dependence analysis in software testing, debugging, and
maintenance [28]. They showed that the presence of a syntactic
dependence (a chain of data and/or control dependences) between
two statements is a necessary but not sufficient condition for one
statement to affect the execution behavior of the other. They also
argued that the number of tests required to adequately exercise all
syntactic dependences can be impractically large, and they
suggested that information about syntactic dependences might be
useful for filtering test cases.

Thompson et al present an information flow model of fault
detection, focusing on transfer of an incorrect intermediate state
from a faulty statement to output [34]. Transfer occurs along
information flow chains, where each link in the chain involves
data dependence transfer or control dependence transfer.

Agrawal et al define a regression test filtering technique based on
dynamic slicing [1]. The dynamic slices with respect to a
program’s output are computed for all test cases in its regression
test suite. After the program is modified, the new program is run
on only those test cases whose dynamic slices contain a modified
statement. Agrawal et al also define a variant of this technique in
which “relevant” program slices are computed. A relevant
program slice is a dynamic program slice augmented to include
certain predicates on which statements in the dynamic slice are
potentially dependent. Agrawal et al did not empirically evaluate
the effectiveness of either version of their technique.

In this paper, we empirically evaluate approaches to filtering test
cases based on two closely related ways of characterizing
complex information flows, namely: (1) tracing information flows
between objects and (2) computing dynamic program slices.
Since both forms of analysis produce large amounts of raw
output, it is necessary to summarize information flows and slices
using profiles that are more compact. The form of these profiles
is described in Section 4.2.

3. FILTERING TECHNIQUES
In this section we describe two basic approaches to filtering test
cases, which were compared in our empirical study. One
approach calls for greedily selecting test cases to maximize
coverage of program elements. The other approach calls for
selecting test cases that span the profile-distribution of the
original test suite.

3.1 Coverage-based Techniques
Coverage-based filtering techniques select test cases to maximize
the proportion of program elements of a given type that are
covered (executed). These techniques are based on the
assumption that many software defects can be revealed simply by
exercising such elements, regardless of other factors. To reduce
testing costs, coverage-based filtering techniques attempt to cover
as many elements as the original test suite with as few test cases
as possible. This type of filtering is called test suite minimization
in the regression testing literature [36][37]. Selecting a minimal-
size, coverage-maximizing subset of a test suite is an instance of
the set-cover problem, which is NP-complete but which admits a
greedy approximation algorithm [14]. On each of its iterations,
the greedy algorithm selects the test that covers the largest
number of elements not covered by the previously selected tests.
In the sequel, we will refer to this technique as basic coverage
maximization to emphasize that code coverage is the basis for
selecting test cases.

3.2 Distribution-based Techniques
Distribution-based filtering techniques select test cases based on
how their execution profiles are distributed in the
multidimensional profile space [5][6][24][25]. They identify
features of the profile space, such as clusters, and use these to
guide test selection. The profile space is defined by a
dissimilarity metric, which is a function that for each pair of
profiles outputs a real number representing their degree of
dissimilarity. An example of a profile space is the n-dimensional
space defined by applying the Euclidean distance metric to
profiles that record basic-block execution counts for a program
with n basic blocks. The tester may choose a dissimilarity metric
emphasizing whatever aspects of the available profiles that he or
she believes are most relevant to revealing defects. Typical
dissimilarity metrics take the form of a (possibly weighted) sum
of difference terms, in which there is a difference term for each
profile feature (e.g., each execution count).

We consider two types of distance-based filtering techniques:
cluster filtering and failure pursuit. Cluster filtering [5] is based
on automatic cluster analysis. Cluster analysis is a multivariate
analysis method for finding groups or clusters in a population of
objects. Cluster analysis algorithms use a dissimilarity metric
such as Euclidean distance or Manhattan distance to partition the
population into clusters. Objects placed together in a cluster are

414

Table 1 – Number of unique profile features encountered during execution (unique execution counts) for the various
types of profiles. *Combines MC, MCP, BB, BBE and DUP

 MC MCP BB BBE DUP *ALL IFP SliceP

javac 1,022 2,123 3,655 4,307 9,620 11,315 66,829 -

Javac700 818 1,333 2,164 2,413 4,793 5,681 25,247 194,840

Xerces 361 690 1,725 1,982 3,812 4,519 6,547 84,565

JTidy 195 243 1,355 1,645 3,680 4,362 11,061 235,925

more similar to one another than to objects in other clusters.
Cluster filtering uses cluster analysis to partition a set of tests into
clusters based on the dissimilarity of their profiles. One or more
test are selected for audit from each cluster or from particular
clusters. A cluster filtering procedure is defined by a choice of
clustering algorithm, dissimilarity metric, cluster count, and
sampling method. An example of a sampling method is one-per-
cluster (OPC) sampling, which calls for selecting exactly one test
from each cluster. One-per-cluster sampling economically
exercises each program behavior represented by a cluster, and it
also favors the selection of unusual executions, which tend to be
placed in isolated clusters. Failure-pursuit sampling is an
adaptive extension of cluster filtering that is based on the
observation that failed tests are often clustered together in small
clusters [6]. Failure pursuit sampling calls for selecting the k
nearest neighbors of any failures found by auditing the initial
subset of tests. If any additional failures are found, each of their k
nearest neighbors is selected, and so on, until no additional
failures are found. (In the experiments reported in this paper, k =
5 is used.)

4. EMPIRICAL RESULTS
In this section we describe the subject programs and test suites
used in our experiments. Then we describe the profile types that
were used. Finally, we present and discuss the experimental
results.

4.1 Subject Programs and Test Suites
In our experiments we applied test-case filtering techniques with
different profile types on test suites for three Java programs: the
javac Java compiler, version 1.3.1_02-b02 [17]; the Xerces XML
parser, version 2.1 [38]; and the JTidy HTML syntax checker and
pretty printer, version 3 [18].

javac was tested with the Jacks test suite [15], which tests
compliance with the Java Language Specification [16]. The Jacks
test suite comprises 3,140 tests among which 223 caused javac to
fail.

Xerces was tested by using part of the XML Conformance Test
Suite [39], which provides a set of metrics for determining
conformance to the W3C XML Recommendation. There are
2000 tests in the XML TS contributed by several organizations
such as Sun and IBM. We used 1663 tests in our experiments

resulting in 10 failures. Note that we chose to exclude 337 tests
because it was difficult to determine with certainty whether those
tests were expected to pass or fail. Xerces was configured to
check only the syntax and not the semantics of the input XML
files, i.e., to simply check whether the files were well-formed.

JTidy was tested using 500 files downloaded from the Google
Groups (groups.google.com) using a web crawler. Out of the 500,
5 were XML files and the rest were HTML files. JTidy failed on
24 of these test cases.

The defects causing the failures were investigated manually and
the failures were classified into groups believed to have been
caused by the same defect. For javac, 67 distinct defects were
believed to have caused the 223 failures. (The failure
classification for javac was done as part of previous work in order
to validate an automated technique for classifying failures; see
[29] for details). For Xerces, 5 distinct defects were believed to
have caused the 10 failures. For JTidy, 5 distinct defects were
identified, where 2 of them cause failures only in combination
with another defect. Therefore, in our analysis of the JTidy
profiles we treated each distinct combination as a defect on its
own. This resulted in 6 defects for JTidy, 3 of which are
combination defects.

4.2 Profiling
This section describes the profile types used in our experiments,
then briefly describes the tools we built to generate them. Finally,
for each combination of subject program and profile type, we
show the number of unique profile features encountered during
test suite execution (unique execution counts).

Program profiles identify the frequency of execution of certain
program features that are thought to be relevant to whether
executions succeed or fail. Such program features vary in
complexity and the cost of profiling them varies accordingly. In
our experiments, we profiled several program features of varying
complexity. The profile types we used are listed and described
below:

• Method calls (MC): Number of times each method was
executed.

• Method call pairs (MCP): Number of times each method M1
calls another method M2, for every combination of M1 and
M2 for which this count is nonzero.

415

Table 2 – Results for conducting basic coverage
maximization.

 Profile
Type

% Tests
Selected

% Defects Selected/
Defects

javac MC 1.63 13.7 5.59

 MCP 5.23 22.6 10.85

 BB 7.8 28.5 12.83

 BBE 10.05 32.8 14.40

 DUP 18.22 62.5 13.64

 ALL 19.3 63.2 14.30

 IFP 18.77 68.1 12.92

Javac700 MC 5.21 15.05 10.10

 MCP 11.17 21.7 15.01

 BB 13.95 35.95 11.32

 BBE 17.17 46.12 10.85

 DUP 31.87 69.19 13.43

 ALL 32.66 72.85 13.07

 IFP 30.24 60.53 14.57

 SliceP 60.28 91.67 19.18

Xerces MC 0.83 0 -

 MCP 3.57 24.22 49.160

 BB 9.78 40 81.51

 BBE 11.73 46.98 83.25

 DUP 15.94 60 88.58

 ALL 16.72 60 92.911

 IFP 10.43 70.28 49.51

 SliceP 20.63 100 68.8

JTidy MC 2.71 33.33 6.79

 MCP 5.63 42.6 11.02

 BB 9.26 50 15.44

 BBE 11.45 83.33 11.45

 DUP 18.33 66.67 22.91

 ALL 19.04 83.33 19.04

 IFP 13.25 66.67 16.56

 SliceP 37.09 100.00 30.91

• Basic-blocks (BB): Number of times a basic block was
executed.

• Basic-block edges (BBE): Number of times control flows
from basic-block B1 to basic-block B2, for every
combination of B1 and B2 for which this count is nonzero.

• Def-use pairs (DUP): Number of times a statement U uses a
variable defined by statement D, for each combination of D
and U for which the count is nonzero.

• Information flow pairs (IFP): Number of times information
from x flowed into y (as demonstrated by a sequence of
dynamic data and/or control dependences leading from y to
x), for each combination of x and y for which this count is
nonzero. Here x and y are local variables, global (static)
variables, or fields of a class instance. Note that when
computing the IFP profiles the inter-procedural control
dependences were not tracked.

• Slice pairs (SliceP): Number of times a statement s1 appears
in a slice computed for statement s2, for each combination of
s1 and s2 for which this count is nonzero.

Note that if the above descriptions are used directly, the resulting
profiles contain a large amount of redundant information. For
example, in the subject programs there are groups of basic blocks
that were always executed together, and therefore their counts
were the same in each execution. This redundant information was
removed by replacing each group of profiles features that always
had the same value (count) by a single feature. For example,
when Javac700 was tested, close to 3.6 million distinct slice pairs
were detected. These were replaced by 194,840 unique features.
Table 1 shows for each program and profile type the number of
unique profile features (unique counts) that were generated while
running the test suites. For example, there were 84,565 different
combinations of statements making up the SliceP profiles for
Xerces, where each combination is made up of two statements s1
and s2, such that at least one slice computed at s2 contained s1.
The column titled ALL shows the combined counts of MC, MCP,
BB, BBE and DUP. This combined count is less than the sum of
its components counts because of the removal of duplicates
described above. As expected, Table 1 shows that profile types
that characterize more complex program features have higher
unique execution counts.

In order to generate the IFP and SliceP profiles we extended our
existing tool for dynamic information flow analysis and dynamic
slicing [26], which we call DIFA. The DIFA tool was originally
designed to detect and debug insecure information flows in
programs. It instruments the program’s byte code classes and/or
jar files in order to monitor program execution and computes
slices and information flows as the program runs. For the purpose
of our experiments, i.e., generating IFP and SliceP profiles, we
added an optional capability that records the information flows
and slices right after they get computed.

In order to generate the MC, MCP, BB, BBE and DUP profiles we
built a specialized tool. Like the DIFA tool, this tool instruments
the target byte code and then monitors program execution in order
to profile the given program features.

Note that because of memory requirements, the 3,140 SliceP
profiles generated for javac could not be analyzed to completion.
Therefore, we present two sets of results for javac: one set based
on all 3,140 Jacks tests that does not include SliceP and another
set based on the first 700 Jacks tests that does include SliceP.

416

0

20

40

60

80

0 200 400 600 800
Tests

%
 D

ef
ec

ts

Random M C M CP
BB BBE DUP
ALL IFP

Figure 1 - Basic coverage maximization and random
sampling results for javac.

0

20

40

60

80

100

0 200 400 600
Tests

%
 D

ef
ec

ts

Random M C M CP
BB BBE DUP
ALL IFP SliceP

Figure 2 - Basic coverage maximization and random
sampling results for java700.

0
20
40
60
80

100
120

0 100 200 300 400
#Tests

%
D

ef
ec

ts

Random MC MCP
BB BBE DUP
ALL IFP SliceP

Figure 3 - Basic coverage maximization and random
sampling results for Xerces.

0

20

40

60

80

100

120

0 50 100 150 200 250
Tests

%
 D

ef
ec

ts

Random M C M CP
BB BBE DUP
ALL IFP SliceP

Figure 4 - Basic coverage maximization and random
sampling results for JTidy.

The former will be referred to as the javac data set; the latter will
be referred to as the javac700 data set. For javac700, 24 distinct
defects were believed to have caused 128 failures. A matrix of
the SliceP counts for this data set uses about 1GB of memory.

4.3 Basic Coverage Maximization
Experiments
The results of conducting basic coverage maximization are shown
Table 2. For example, in the case of Xerces/SliceP, the greedy
selection algorithm demonstrated that no more than 20.63% of the
original test suite was needed to exercise all of the dynamic slice
pairs exercised by the original test suite, and these tests revealed
all the defects revealed by the original test suite. Note that the
greedy algorithm can sometimes encounter ties (multiple tests that
each cover the maximal number of program elements not covered
by previously selected tests). The way ties are broken affects the
number of tests selected. To address this, we ran 1000

replications on each program/profile-type combination, first
randomly shuffling the order of the tests. For each replication we
recorded how many tests were selected and how many failures
and defects were found. The data shown in Table 2 was obtained
by averaging the results of 1000 different executions of the
greedy coverage maximization algorithm, which explains why the
columns showing the number of selected tests and the number of
revealed defects contain fractions. Figures 1, 2, 3 and 4 compare
variations of basic coverage maximization (based on different
types of profiles) to random sampling with respect to each
technique’s average efficiency for revealing defects.

Figure 1 shows that with the javac data set, coverage
maximization revealed defects more efficiently than random
sampling did for all profile types. As expected, when the
granularity of the elements being covered was finer, more tests
were required and more defects were revealed. A significant
jump in efficiency was observed when def-use pairs and

417

0

20

40

60

80

100

120

0 100 200 300 400 500 600
#Tests

%
D

ef
ec

ts

MC ALL IFP SliceP
Coverage Random MCP BB
BBE DUP

Figure 5 - OPC sampling, coverage maximization and random sampling results for Xerces.

information flow pairs were covered, although large numbers of
tests were required to maximize coverage of these elements. Note
that maximizing coverage of these elements was about as efficient
as maximizing coverage of ALL, that is, of MC, MCP, BB, BBE,
and DUP combined.

The results for javac700 shown in Figure 2 differ considerably
from the ones for javac. For example, basic coverage
maximization was more efficient than random sampling only for
SliceP, DUP and ALL. In addition, maximizing coverage of DUP
and ALL revealed somewhat more defects than maximizing
coverage of IFP. The good performance of random sampling in
this case may be attributable to the large proportion of failures in
this data set (0.18).

Figure 3 shows that with Xerces, basic coverage maximization
performed better than random sampling except for with MC
profiling. It also shows that maximizing SliceP coverage revealed
all defects. Note however that maximizing IFP coverage revealed
about 70% of the defects with only half as many tests.

Finally, Figure 4 shows that with JTidy, basic coverage
maximization performed better than random sampling for all
profile types. Maximizing BBE coverage revealed more defects
than maximizing IFP coverage. This is possible because IFP
profiles record only information flows between variables, while
BBE profiles record branches involving basic blocks that do not
include definitions of variables. Maximizing IFP coverage
revealed about as many defects as maximizing DUP coverage

though the former required fewer tests. Maximizing SliceP
coverage revealed all defects but required 37% of all tests to be
selected.

It should be noted that both of the two rightmost columns of Table
2 need to be considered when comparing the performance of one
profile type to that of another. For example, for javac the ratio of
number of tests selected to number of defects revealed is smallest
for maximization of MC coverage (a favorable finding), but the
percentage of revealed defects is unacceptably small. For JTidy
on the other hand, maximizing SliceP coverage revealed all the
defects but caused the aforementioned ratio to be considerably
higher than for the other profile types.

4.4 Distribution-based Filtering Experiments
Previous experiments with cluster filtering and failure-pursuit
sampling [5][6][24], which involved using only basic profiling
techniques, suggested that it was most effective to use the
proportional dissimilarity metric with javac and to use the
proportional-binary dissimilarity metric with Xerces and JTidy.
Hence, we did so in evaluating the usefulness of cluster filtering
and failure-pursuit sampling with profiles reflecting complex
information flows. The proportional metric compares two
profiles based on the number of times profile features were
exercised. It applies the n-dimensional Euclidean distance metric
to profiles in which each feature value has been normalized to
account for the range of values that the corresponding feature of
the original profile took on. The proportional-binary metric is

418

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160 180 200
Tests

%
 D

ef
ec

ts

MC ALL IFP Slice

Coverage Random MCP BB

BBE DUP

Figure 6 – Failure-pursuit sampling, coverage maximization and random sampling results for JTidy.

similar, but it replaces each feature of a profile with two features:
one normalized as above and another that is binary and takes on
the value 1 if the original value was positive. The second feature
is included to increase the dissimilarity between executions that
exercise particular program elements and those that do not.

In our experiments with cluster filtering and failure pursuit the
agglomerative hierarchical clustering method [5] was used to
cluster executions. The number of clusters was varied to
correspond to the following percentages of the size of the test
suite: 1%, 2.5%, 5%, 10%, 25%, and 30%. In the case of one-
per-cluster sampling, for every program and profile type
combination the experiments involved the following steps: (1)
choosing k, (2) clustering executions, (3) randomly selecting a
single test from each of the k clusters, and (4) recording the
number of failures and defects revealed. The process of selecting
the tests was replicated 1000 times and the results were averaged,
which explains why the results presented include fractions. In the
case of failure-pursuit sampling, steps (1)-(4) above were
followed by the selection of additional tests as described in
Section 3.2.

In our experiments, distribution-based filtering produced better
results than random sampling did, but its performance did not
depend substantially on the type of profile used. This is
illustrated by Figure 5, which shows the one-per-cluster sampling
results for Xerces, and by Figure 6, which shows the failure-
pursuit results for JTidy. (For clarity, coverage maximization
results obtained with different profile types are depicted with the
same symbol.) The results suggest that with distribution-based

filtering, using coarser profiles such as MC profiles may be as
effective as using more complex profiles and more economical.
Finally, it is not clear whether distribution-based filtering
techniques generally perform better than coverage maximization
when the number of tests selected with the latter is increased by
using profiles of finer granularity.

5. ADDITIONAL RELATED WORK
Bates and Horwitz define test data adequacy criteria based on the
program dependence graph, and they propose techniques based on
program slicing to identify components of the modified program
that can be tested with existing test cases and to identify
components that may have been affected by the modification [2].
The adequacy criteria they define do not address indirect flows.
Rothermel and Harrold present an approach to regression testing
based on slicing, which uses a program dependence graph to
identify changed def-use pairs [32]. Gupta et al present a similar
approach that requires only partial data flow analysis following
program changes and does not depend on a def-use history [12].

A number of empirical studies comparing different regression test
selection or prioritization techniques in terms of their defect-
detection effectiveness have been reported recently. (Note that
the study reported in this paper does not address regression testing
techniques in particular and does not make use of information
about program changes.) Wong et al [36][37] studied the
effectiveness of several test-suite reduction techniques. Graves et
al examined the costs and benefits of several regression test
selection techniques, including test suite minimization (greedy

419

coverage maximization), a dataflow technique, a safe technique,
and random selection [11]. In separate studies, Elbaum, et al [7]
and Rothermel et al [33] compared several test case prioritization
techniques, including ones based on code coverage, estimated
fault proneness, and other factors. Kim and Porter evaluated
several regression test selection techniques and a technique and a
prioritization technique of their own invention that exploits
historical execution data [19]. None of the selection or
prioritization techniques considered in the aforementioned studies
address complex information flows.

Distribution-based filtering and prioritization techniques are
examples of observation-based testing, which is described by
Leon et al in [25] . Cluster filtering and several variants of it are
presented and evaluated empirically by Dickinson et al [5].
Failure pursuit sampling is presented and compared empirically to
cluster filtering by Dickinson et al [6]. Leon and Podgurski
present an empirical comparison of four different techniques for
filtering or prioritizing large test suites: test suite minimization,
prioritization by additional coverage, cluster filtering with one-
per-cluster sampling, and failure pursuit sampling [24]. None of
this work addresses complex information flows.

6. CONCLUSIONS
We have empirically evaluated several test case filtering
techniques that are based on exercising complex information
flows, including both coverage-based and profile-distribution-
based filtering techniques. They were compared empirically to
filtering techniques based on exercising basic blocks, branches,
function calls, and def-use pairs, with respect to their
effectiveness for revealing defects. For three of the four data sets
(javac, javac700, and JTidy), maximizing coverage of information
flows between objects required about as many tests and revealed
about as many defects as maximizing coverage of definition-use
pairs. On the remaining data set, the former technique required
fewer tests and found more defects than the latter. Maximizing
coverage of slice pairs revealed more defects than other coverage-
based filtering techniques, at substantial additional cost in terms
of test set and profile size. No clear difference in effectiveness
was found between distribution-based filtering techniques (one-
per-cluster and failure-pursuit sampling) and coverage
maximization. Moreover, the effectiveness of the distribution-
based techniques did not depend strongly on the type of profiling
used. Thus, we found little evidence to justify the use of
distribution-based filtering techniques based on exercising
complex information flows. To confirm or refine these results, it
will be necessary to conduct similar empirical studies with a
variety of other subject programs and test sets.

7. REFERENCES
[1] Agrawal H., Horgan J., Krauser E., London S.

Incremental Regression Testing. Proceedings of the IEEE
Conference on Software Maintenance (Montreal, Canada,
1993).

[2] Bates, S. and Horwitz, S. Incremental Program Testing
Using Program Dependence Graphs. 20th ACM
Symposium on Principles of Programming Languages
(January 1993), 384-396.

[3] Clarke, L. A., Podgurski, A., Richardson, D. J., and Zeil,
S. J. A formal evaluation of data flow path selection

criteria. IEEE Transactions on Software Engineering,
Vol. 15, No. 11 (November 1989), 1381-1332.

[4] Denning D.E. and Denning P.J. Certification of programs
for secure information flow. Communication of the ACM
20, 7 (1977), 504-513.

[5] Dickinson, W., Leon, D., and Podgurski, A. Finding
failures by cluster analysis of execution profiles. 23rd
Intl. Conf. on Software Engineering (Toronto, May 2001),
339-348.

[6] Dickinson, W., Leon, D., and Podgurski, A. Pursuing
failure: the distribution of program failures in a profile
space. 10th European Software Engineering Conf. and
9th ACM SIGSOFT Symp. on the Foundations of
Software Engineering (Vienna, September 2001), ACM
Press, 246-255.

[7] Elbaum, S., Malishevsky, A.G., and Rothermel, G. Test
case prioritization: a family of empirical studies. IEEE
Transactions on Software Engineering 28, 2 (February
2002), 159-182.

[8] Ferrante J., Ottenstein K.J., and Warren J.D.. The Program
Dependence Graph and its Use in Optimization. ACM
Transactions on Programming Languages and Systems 9,
3 (October 1987), 319-349.

[9] Frankl, P. and Iakounenko, O. Further Empirical Studies
of Test Effectiveness. 6th ACM SIGSOFT International
Symposium on the Foundations of Software Engineering
(Lake Buena Vista, FL, Nov. 1998), 153-162.

[10] Frankl, P. G. and Y. Deng. A Comparison of Delivered
Reliability of Branch, Data Flow, and Operational Testing:
A Case Study. 2000 International Symposium on
Software Testing and Analysis (Portland, OR, August
2000), 124-134.

[11] Graves, T. L, Harrold, M. J., Kim, J. M., Porter, A., and
Rothermel, G. An empirical study of regression test
selection techniques. ACM Transactions on Software
Engineering and Methodology 10, 2 (April 2001), 184-
208.

[12] Gupta, R., Harrold, M. J., and Soffa, M. L. Program
Slicing-Based Regression Testing Techniques. Journal of
Software Testing, Verification, and Reliability 6, 2 (June
1996), 83-112.

[13] Harold, M. J., Rothermel, G., Sayre, K., Wu, R., and Yi,
L. An Empirical Investigation of the Relationship
Between Spectra Differences and Regression Faults.
Journal of Softare Testing, Verification, and Reliability,
10, 3 (September 2000).

[14] Hochbaum, D. S. (editor). Approximation algorithms for
NP-hard problems. PWS Publishing, Boston, MA, 1997.

[15] Jacks, IBM, Jacks Project,
www.ibm.com/developerworks/oss/cvs/jacks/, 2002.

[16] Java Language Specification, Sun Microsystems,
java.sun.com/docs/books/jls/second_edition/html/j.title.do
c.html, 2000.

[17] javac, Sun Microsystems Inc., Java™ 2 Platform,
Standard Edition, java.sun.com/j2se/1.3/, 1995 – 2002.

420

[18] JTidy, jtidy.sourceforge.net, World Wide Web Consortium
(Massachusetts Institute of Technology, Institut National
de Recherche en Informatique et en Automatique, Keio
University), 1998-2000.

[19] Kim, J. M. and Porter, A. A history-based test
prioritization technique for regression testing in resource
constrained environments. 2002 International Conference
on Software Engineering (Orlando, FL, May 2002).

[20] Korel, B. The Program Dependence Graph in Static
Program Testing. Information Processing Letters 24
(January 1987), 103-108.

[21] Korel B. and Laski J. Dynamic Program Slicing.
Information Processing Letters 29 (October 1988), 155-
163.

[22] Korel B. and Yalamanchili S. Forward Computation of
Dynamic Program Slices. ISSTA (1994), 66-79.

[23] Laski, J. W. and Korel, B. A Data Flow Oriented Program
Testing Strategy. IEEE Transactions on Software
Engineering 9, 3 (May 1983), 347-354.

[24] Leon, D. and Podgurski, A. A Comparison of Coverage-
Based and Distribution-Based Techniques for Filtering
and Prioritizing Test Cases. International Symposium on
Software Reliability Engineering (Denver, CO, November
2003), 442-454.

[25] Leon, D., Podgurski, A., and White, L.J. Multivariate
visualization in observation-based testing. Proceedings of
the 22nd International Conference on Software
Engineering (Limerick, Ireland, June 2000), ACM Press,
116-125.

[26] Masri, W., Podgurski, A., and Leon, D. Detecting and
Debugging Insecure Information Flows. 15th. IEEE
International Symposium on Software Reliability
Engineering, ISSRE 2004. St. Malo, France Nov 2-5,
2004.

[27] Ntafos, S. C. On Required Element Testing. IEEE
Transactions on Software Engineering 10, 6 (November
1984), 795-803.

[28] Podgurski A. and Clarke L. A Formal Model of Program
Dependencies and its Implications for Software Testing,
Debugging, and Maintenance. IEEE TSE, 16(9):965-979,
September 1990.

[29] Podgurski. A., Leon, D., Francis, P., Masri, W., Minch,
M., Sun, J. and Wang, B. Automated support for
classifying software failure reports. To appear in 2003
International Conference on Software Engineering
(Portland, OR, May 2003).

[30] Rapps, S. and E. J. Weyuker. Selecting Software Test
Data Using Data Flow Information. IEEE Transactions on
Software Engineering 11, 4 (April 1985), 367-375.

[31] Rothermel, G. and Harrold, M.J. A Safe, Efficient
Algorithm for Regression Test Selection, 1993 Conference
on Software Maintenance (September 1993), pages 358-
367.

[32] Rothermel, G. and Harrold, M. J. Selecting Tests and
Identifying Test Coverage Requirements for Modified
Software. 1994 International Symposium on Software
Testing and Analysis (August 1994), 169-184.

[33] Rothermel, G., Untch, R., Chu, C., and Harrold, M.J.
Prioritizing test cases for regression testing. IEEE
Transactions on Software Engineering 27, 10 (October
2001), 929-948.

[34] Thompson, M. C., Richardson, D. J., and Clarke, L. A.
An Information Flow Model of Fault Detection.
International Symposium on Software Testing and
Analysis (Cambridge, MA, June 1993), 182-192.

[35] Weiser M. Program Slicing. IEEE Transactions On
Software Engineering 10, 4 (1984), 352-357.

[36] Wong, W. E., Horgan, J. R., London, S., and Mathur, A.
P. Effect of test set size minimization and fault detection
effectiveness. Software Practice and Experience 28, 4
(April 1998), 347-369.

[37] Wong, W. E., Horgan, J. R., Mathur, A. P., and Pasquini,
A. Test set size minimization and fault detection
effectiveness: a case study in a space application. 21st
Annual International Computer Software and Applications
Conference (Washington, D.C., August 1997), 522-528.

[38] Xerces. The Apache XML Project: xml.apache.org/xerces-
j.

[39] XML Conformance Test Suite. www.w3.org/XML/Test

421

