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The need to integrate several versions of a program into a common one arises frequently, but it is a 
tedious and time consuming task to integrate programs by hand. To date, the only available tools for 
assisting with program integration are variants of text-based differential file comparators; these are 
of limited utility because one has no guarantees about how the program that is the product of an 
integration behaves compared to the programs that were integrated. 

This paper concerns the design of a semantics-based tool for automatically integrating program 
versions. The main contribution of the paper is an algorithm that takes as input three programs A, 
B, and Base, where A and 8 are two variants of Base. Whenever the changes made to Base to create 
A and B do not “interfere” (in a sense defined in the paper), the algorithm produces a program M 
that integrates A and B. The algorithm is predicated on the assumption that differences in the 
behavior of the variant programs from that of Base, rather than differences in the text, are significant 
and must be preserved in M. Although it is undecidable whether a program modification actually 
leads to such a difference, it is possible to determine a safe approximation by comparing each of the 
variants with Base. To determine this information, the integration algorithm employs a program 
representation that is similar (although not identical) to the dependence graphs that have been used 
previously in vectorizing and parallelizing compilers. The algorithm also makes use of the notion of 
a program slice to find just those statements of a program that determine the values of potentially 
affected variables. 

The program-integration problem has not been formalized previously. It should be noted, however, 
that the integration problem examined here is a greatly simplified one; in particular, we assume that 
expressions contain only scalar variables and constants, and that the only statements used in programs 
are assignment statements, conditional statements, and while-loops. 
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1. INTRODUCTION 

Programmers are often faced with the task of integrating several related, but 
slightly different, variants of a system. One of the ways in which this situation 
arises is when a base version of a system is enhanced along different lines, either 
by users or maintainers, thereby creating several related versions with slightly 
different features. To create a new version that incorporates several of the 
enhancements simultaneously, one has to check for conflicts in the implemen- 
tations of the different versions and then merge them in a manner that combines 
their separate features. 

The task of integrating different versions of programs also arises as systems 
are being created. Program development is usually a cooperative activity that 
involves multiple programmers. If a task can be decomposed into independent 
pieces, the different aspects of the task can be developed and tested independently 
by different programmers. However, if such a decomposition is not possible, the 
members of the programming team must work with multiple, separate copies of 
the source files, and the different versions of the files must be merged into a 
common version. 

The program-integration problem also arises in a slightly different guise when 
a family of related versions of a program has been created (for example, to 
support different machines or different operating systems), and the goal is to 
make the same enhancement or bug-fix to all of them. Such a change cannot be 
developed for one version and blindly applied to all other versions, since the 
differences among the versions might alter the effects of the change. 

Anyone who has had to reconcile divergent lines of development will recognize 
these situations and appreciate the need for automatic assistance. Unfortunately, 
at present, the only available tools for integration are variants of differential file 
comparators, such as the UNIX@ utility d$.. The problem with such tools is that 
they implement an operation for merging files as strings of text. 

A text-based approach has the advantage of being applicable to merging 
documents, data files, and other text objects as well as to merging programs. 
Unfortunately, this approach is necessarily of limited utility for integrating 
programs because the manner in which two programs are merged is not safe. One 
has no guarantees about the way the program that results from a purely textual 
merge behaves in relation to the behavior of the programs that are the arguments 
to the merge. The merged program must, therefore, be checked carefully for 
conflicts that might have been introduced by the merge. 

@ UNIX is a trademark of AT&T Bell Laboratories. 
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This paper describes a radically different approach based on the assumption 
that any change in the behavior, rather than the text, of a variant with respect 
to the base program is significant and must be preserved in the merged program. 
We present an algorithm, called Integrate, that could serve as the basis for 
building an automatic program-integration tool. Algorithm Integrate takes as 
input three programs A, B, and Base, where A and B are two variants of Base.’ 
Algorithm Integrate either determines that the changes made to Base to produce 
A and B may interfere (in a sense defined in Sections 2 and 4.4), or it produces 
a new program M that integrates A and B with respect to Base. To find those 
components of a program that represent potentially changed behavior, algorithm 
Integrate makes use of dependence graphs, similar to those that have been ,used 
previously for representing programs in vectorizing and parallelizing compilers 
[2, 4, 11, 221, and an operation on these graphs called program slicing [24, 301. 

A preliminary implementation of a program-integration tool based on the 
algorithm presented here has been embedded in a program editor created using 
the Synthesizer Generator [25, 261. Data-flow analysis on programs is carried 
out according to the editor’s defining attribute grammar and used to construct 
the programs’ dependence graphs. An integration command invokes the integra- 
tion algorithm, reports whether the variant programs interfere, and, if there is 
no interference, creates the integrated program. 

To the best of our knowledge, the program-integration problem has not been 
formalized previously. It should be noted, however, that the integration problem 
examined here is a greatly simplified one; in particular, algorithm Integrate 
operates under the simplifying assumptions that expressions contain only scalar 
variables and constants and that the only statements used in programs are 
assignment statements, conditional statements, and while-loops. 

The paper is organized into seven sections. Section 2 discusses criteria for 
integratability and interference. Section 3 illustrates some of the problems that 
can arise when programs are integrated using textual comparison and merging 
operations. 

Sections 4.1 through 4.5 correspond to the five steps of algorithm Integrate. 
The first step is to build the dependence graphs that represent the programs 
Base, A, and B (the dependence graph that represents program P is denoted by 
Gp). Section 4.1 defines program dependence graphs and the operation of program 
slicing. The second step, discussed in Section 4.2, uses program slicing to 
determine sets of affected points of GA and Ga as computed with respect to GBase. 
These sets capture the essential differences between Base and the variant 
programs. The third step, described in Section 4.3, combines GA and Ge to create 
a merged dependence graph GM, making use of the sets of affected program points 
that were computed by the second step. The fourth step uses GA, GB, the affected 
points of GA and Ga, and GM to determine whether A and B interfere with respect 
to Base; interference is defined and discussed in Section 4.4. The fifth step, which 
is carried out only if A and B do not interfere, determines whether GM corresponds 
to some program and, if it does, creates an appropriate program from GM. 

1 In fact, the approach we describe can accommodate any number of variants, but for the sake of 
exposition we consider the common case of two variants A and B. 
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Although, as we have shown in [X3], the problem of determining whether Gnn 
corresponds to some program is NP-complete, we conjecture that the backtrack- 
ing algorithm given for this step in Section 4.5 will behave satisfactorily on actual 
programs. Section 4.6 summarizes algorithm Integrate, states a theorem that 
characterizes how the semantics of the integrated program relates to the seman- 
tics of programs Base, A, and B, and discusses the algorithm’s complexity. 

Section 5 discusses applications of program integration in program- 
development environments. Section 6 describes related work, concentrating on 
the technical differences between the kind of dependence graphs we employ and 
the dependence representations that have been defined by others. Section 7 
discusses some of the issues we have addressed in extending our work and 
outlines some problems for future research. 

2. CRITERIA FOR INTEGRATABILITY AND INTERFERENCE 

Two versions A and B of a common Base may, in general, be arbitrarily different. 
To describe the integrated version IV, we could say that the developers of A and 
B each have in mind their own specification and that M should be constructed so 
as to satisfy both specifications. For example, following the view of specificatioi;s 
as pairs of pre- and post-condition predicates [8, 131, given programs A and B 
that satisfy {PAI A {QA) and {PB) B (QB), respectively, A and B are integratable 
if there exists a program M that halts such that (PA ) M (QA 1 and (PB) M (QB ). 

Under certain circumstances, it is not possible to integrate two programs; 
we say that such programs interfere. One source of interference for the inte- 
gration criterion given above can be illustrated by restating the criterion 
as follows: M integrates A and B if M halts and satisfies the three triples 
PA A PBJ M (QA A QBL PA A l&l M (QAI, and {&I A SPA) M iQ~1. A and B 
interfere if the formula PA A PR is satisfiable, but QA A QB is unsatisfiable; under 
this circumstance, it is impossible to find an M that halts, such that the 
specification (PA A PB) M (QA A QB1 is satisfied. 

An integration criterion based on program specifications leaves a great deal of 
freedom for constructing a suitable M, but would be plagued by the familiar 
undecidable problems of automated program synthesis. Moreover, the require- 
ment that programs be annotated with specifications would make such an 
approach unusable with the methods of system development currently in use. 
Consequently, this integration criterion is not suitable at the present time as the 
basis for building a usable program-integration system. 

Given the problems inherent in specification-based integration, we chose to 
investigate a different definition of the program-integration problem (with a 
different interference criterion). While specification-based integration ignores 
program Base, Base plays an important role in our approach. Our basic assump- 
tion is that any change in the behavior of the variants with respect to Base is 
significant and must be preserved in M. A further assumption is that the 
integrated version M must be composed of exactly the statements and control 
structures that appear as components of Base, A, and B. 

Our notion of changed behavior in program A (respectively, B) with respect to 
Base is roughly the following: if there exists an initial state and variable x for 
which the final value of x computed by Base is different from the final value 
computed by A (B), then the computation of x is considered to be a change in 
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behavior of A (B) with respect to Base. The goal of program integration is to 
produce a program M that preserves the changed behaviors of both A and B with 
respect to Base (i.e., if Base and A (B) disagree on the final value of x, then M 
agrees with A (B)) and also preserves the behaviors that are unchanged in both 
A and B with respect to Base (i.e., if Base, A, and B all compute the same final 
value of X, then M also computes that final value). Variants A and B interfere 
with respect to Base if there exists an initial state and variable x such that Base, 
A, and B each compute different final values for x. 

Although it is undecidable whether a program modification actually leads to a 
change in behavior, it is still possible to base an algorithm on this definition of 
program integration. In particular, it is possible to determine a safe approxima- 
tion of (i.e., a superset of) the set of changed computations. To compute this 
information, we use a dependence-graph representation of programs similar to 
those used previously for representing programs in vectorizing and parallelizing 
compilers [2, 4, 11, 221. We also use program slices [24, 301 to find just those 
components of a program that determine the values of potentially affected 
variables. (In both cases, these ideas have been adapted to the particular needs 
of the program-integration problem.) 

To simplify the program-integration problem to a manageable level, we allow 
ourselves two further assumptions. First, we confine our attention to a simplified 
programming language with the following characteristics:2 expressions contain 
only scalar variables and constants; statements are either assignment statements, 
conditional statements, while loops, or a restricted kind of “output statement” 
called an end statement, which can only appear at the end of a program. An end 
statement names one or more of the variables used in the program. The variables 
named in the end statement are those whose final values are of interest to the 
programmer; when execution terminates, the final state is defined on only those 
variables in the end statement. Thus a program is of the form: 

program 
stmt-list 

end(id*) 

Second, we make two assumptions about the editor used to create variants A 
and B from copies of Base. 

(1) The editor provides a tagging capability so that common components (i.e., 
statements and predicates) can be identified in all three versions. Each 
component’s tag is guaranteed to persist across different editing sessions and 
machines; tags are allocated by a single server, so that two different editors 
cannot allocate the same new tag. 

(2) The operations on program components supported by the editor are insert, 
delete, and move. When editing a copy of Base to create a variant, a newly 
inserted component is given a previously unused tag; the tag of a component 
that is deleted is never reused, a component that is moved from its original 
position in Base to a new position in the variant retains its tag from Base. 

’ We believe that our approach to program integration can be extended to more realistic programming 
languages. For example, we have made some progress in extending the algorithm to handle languages 
with procedure calls [I91 and with pointer variables [15]. 
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A tagging facility meeting these requirements can be supported by language- 
based editors, such as those that can be created by such systems as MENTOR 
[9], GANDALF [12, 231, and the Synthesizer Generator [25, 261. 

An additional goal for an integration tool, although one of secondary impor- 
tance, is ensuring that the program M that results from integrating A and B 
resembles A and B as much as possible. There is one aspect of this goal that is 
not addressed by the algorithm described in this paper. In particular, when the 
final step of the integration algorithm determines the order of statements in M, 
it does not make direct use of the order in which statements occur in A or B. 
Consequently, it may not preserve original statement order, even in portions of 
the programs that are unaffected by the changes made to the base program to 
create A and B. Our integration method cloes preserve the original variable names 
used in A, B, and Base; however, as discussed briefly in Section 4.5, it may be 
desirable to abandon this property and permit the final step of the integration 
algorithm to perform a limited amount of variable renaming. 

3. THE PERILS OF TEXT-BASED INTEGRATION 

Integrating programs via textual comparison and merging operations is accom- 
panied by numerous hazards. This section describes some of the problems that 
can arise, and underscores them with an example that baffles the UNIX program 
diff3. (Diff3 is a relative of diff that can be used to create a merged file when 
supplied a base file and two variants.) 

One problem is that character- or line-oriented textual operations do not 
preserve syntactic structure; consequently, a processor like diff3 can easily 
produce something that is syntactically incorrect. Even if the problem of syn- 
tactically erroneous output were overcome, there would still be severe drawbacks 
to integration by textual merging, because text operations do not take into 
account program semantics. This has two undesirable consequences: 

(1) If the variants of the base program do interfere (under a semantic criterion), 
diff3 still goes ahead and produces an “integrated” program. 

(2) Even when the variants do not interfere (under a semantic criterion), the 
integrated program created using diff3 is not necessarily an acceptable 
integration. 

The latter problem is illustrated by the example given below. In this example, 
diff3 creates an unacceptable integrated program despite the fact that it is only 
necessary to reorder (whole) lines to produce an acceptable one. The example 
concerns the following base program and two variants: 

Base program 
program 

if P then x := 0 fi 
if Q then x := 1 fi 
y := x 
if R then ‘w := 3 fi 
if S then w := 4 fi 
z := w 

end(y, z) 
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Variant A 
program 

if Q then x := 1 fi 
if P then x := 0 fi 
y := x 
if R then w := 3 fi 
if S then w := 4 fi 
2 := w 

endb, 2) 

Variant B 
program 

if S then w := 4 fi 
if R then w := 3 fi 
2 := w 
if P then x := 0 fi 
if Q then x := 1 fi 
y := x 

end(y, 2) 

In variant A, the conditional statements that have P and Q as their conditions 
are reversed from the order in which they appear in Base. In variant B, the order 
of the P-Q pair remains the same as in Base, but the order of the R-S pair is 
reversed; in addition, the order of the first and second groups of three statements 
have been interchanged. 

Under UNIX, a program that (purportedly) integrates Base, A, and B can be 
created by the following operations: 

diff3 -e A Base B > script 
(cat script; echo ‘l,$p’) 1 ed - A 

The first command invokes the three-way file comparator diff3; the -e flag of 
diff3 causes it to create an editor script as its output. This script can be used to 
incorporate in one of the variants (in this case, A) changes between the base 
program (Base) and the second variant (B). The second command invokes the 
editor to apply the script to variant A. 

The program that results from these operations is 

program 
ifSthenw:=4fi 
ifRthenw:=3fi 
2 := w 
ifPthenx:=Ofi 
ifQthenx:= lfi 
y := x 

end(y, 2) 

This program is exactly the same as the one given as variant B. Because it does 
not account for the differences in behavior between Base and variant A, this can 
hardly be considered an acceptable integration of Base, A, and B. 

We now try a different tactic and exchange the positions of A and B in the 
argument list passed to cliff3, thereby treating B as the “primary” variant and A 
as the “secondary” variant (d#3 is not symmetric in its first and third argu- 
ments). The program that results is 

program 
if Q then x := 1 fi 
ifPthenx:=Ofi 
y := x 

endb, z) 

Clearly, this program is unacceptable as the integration of Base, A, and B. 
This example illustrates the use of diff3 to create an editing script that merges 

three documents whether or not there are “conflicts.” Under some versions of 
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UNIX, it is also possible to have diff3 produce an editing script that annotates 
the merged document at places where conflicts occur. At such places, the script 
inserts both versions of the text, and brackets the region of the conflict by 
“<<CC<<<” and “>>>>>>>.” For instance, the outcome for the second case 
discussed above is 

program 
<<<-c-c<< B 

ifSthenw:=4fi 
ifRthenw:=3fi 
2 := w 
ifPthenx:=Ofi 

======= 

>>>>>>> A 
if Q then x := 1 fi 
ifPthenx:=Ofi 
y := x 

endb, z) 

When we apply the program-integration method that is described in this paper 
to this same example, there are several programs it might create, including the 
following three: 

program 
if S then w := 4 fi 
if R then w := 3 fi 
2 := w 
if Q then x := 1 fi 
if P then x := 0 fi 
y := x 

end& z) 

program 
if Q then x := 1 fi 
if P then x := 0 fi 
y := x 
if S then w := 4 fi 
if R then w := 3 fi 
z := w 

end(y, 2) 

program 
if Q then x := 1 fi 
if P then x := 0 fi 
if S then w := 4 fi 
if R then w := 3 fi 
y := x 
2 := w 

en+, 2) 

In contrast to the programs that result from text-based integration, any of the 
algorithm’s possible products is a satisfactory outcome for integrating Base, A, 
and B. 

4. AN ALGORITHM FOR INTEGRATING NONINTERFERING VERSIONS 
OF PROGRAMS 

4.1 The Program Dependence Graph 

Different definitions of program dependence representations have been given, 
depending on the intended application; they are all variations on a theme 
introduced in [21], and share the common feature of having an explicit represen- 
tation of data dependences (see below). The “program dependence graphs” 
defined in [ 111 introduced the additional feature of an explicit representation for 
control depepdences (see below). The definition of program dependence graph 
given below differs from [ll] in two ways. First, our definition covers only the 
restricted language described earlier, and hence is less general than the one given 
in [ 111. Second, because of the particular needs of the program-integration 
problem, we omit certain classes of data dependence edges and introduce one 
new class; reasons for these changes are provided in Section 6.1. Despite these 
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differences, the structures we define and those defined in [ll] share the feature 
of explicitly representing both control and data dependences; therefore, we refer 
to our graphs as “program dependence graphs,” borrowing the term from [ll]. 

The program dependence graph (or PDG) for a program P, denoted by Gp, is a 
directed graph whose vertices are connected by several kinds of edges.3 Program 
dependence graph Gp includes four kinds of vertices: 

(1) For each assignment statement and control predicate that occurs in program 
P, there is a vertex labeled with the assignment or predicate. 

(2) There is a distinguished vertex called the entry uertex. 
(3) For each variable x: for which there is a path in the standard control-flow 

graph for P on which x is used before being defined (see [l]), there is a vertex 
called the initial definition of x. This vertex represents an assignment to x 
from the initial state. The vertex is labeled “x := InitialState(x 

(4) For each variable x named in P’s end statement, there is a vertex called the 
final use of x. This vertex represents an access to the final value of x computed 
by P, and is labeled “FinalUse(x 

We assume that vertices of PDGs are also labeled with an additional piece of 
information (which is not shown in our examples). Recall that we have assumed 
that the editor used to modify programs provides a tagging capability. Vertices 
of a PDG are labeled with the tags of the corresponding program components. 

The edges of Gp represent dependences between program components. An edge 
represents either a control dependence or a data dependence. Control dependence 
edges are labeled either true or false, and the source of a control dependence 
edge is always the entry vertex or a predicate vertex. A control dependence edge 
from vertex u1 to vertex u2, denoted by u1 -+c u2, means that, during execution, 
whenever the predicate represented by u1 is evaluated and its value matches the 
label on the edge to uz, then the program component represented by u2 will be 
executed (although perhaps not immediately). A method for determining control 
dependence edges for arbitrary programs is given in [ll]; however, because we 
are assuming that programs include only assignment, conditional, and while 
statements, the control dependence edges of Gp can be determined in a much 
simpler fashion. For the language under consideration here, the control depen- 
dence edges reflect a program’s nesting structure; program dependence graph Gp 
contains a control dependence edge from vertex u1 to vertex u2 iff one of the 
following holds: 

(1) u1 is the entry vertex, and u2 represents a component of P that is not 
subordinate to any control predicate; these edges are labeled true. 

(2) u, represents a control predicate, and v2 represents a component of P 
immediately subordinate to the control construct whose predicate is repre- 
sented by u, . If v1 is the predicate of a while-loop, the edge u1 +c up is labeled 
true; if v1 is the predicate of a conditional statement, the edge v1 +c v2 is 

3A directedgraph G consists of a set of uertices V(C) and a set of edges E(G), where E(G) C V(G) x 
V(G). Each edge (b, c) E E(G) is directed from b to c; we say that b is the source and c the target of 
the edge. 
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labeled true or false according to whether u2 occurs in the then branch or 
the else branch, respectively.4 

Note that initial-definition and final-use vertices have no incoming control 
dependence edges. 

A data dependence edge from vertex u1 to vertex u2 means that the program’s 
computation might be changed if the relative order of the components represented 
by u1 and v2 were reversed. In this paper, program dependence graphs contain 
two kinds of data dependence edges, representing flow dependences and def-order 
dependences. 

The data dependence edges of a program dependence graph are computed using 
data-flow analysis. For the restricted language considered in this paper, the 
necessary computations can be defined in a syntax-directed manner (see [14]). 

A program dependence graph contains a flow dependence edge from vertex u1 
to vertex up iff all of the following hold: 

(1) u1 is a vertex that defines variable X. 
(2) u2 is a vertex that uses X. 
(3) Control can reach u2 after u1 via an execution path along which there is no 

intervening definition of x. That is, there is a path in the standard control- 
flow graph for the program [l] by which the definition of x at u1 reaches the 
use of x at ua. (Initial definitions of variables are considered to occur at the 
beginning of the control-flow graph, and final uses of variables are considered 
to occur at its end.) 

A flow dependence that exists from vertex u1 to vertex u2 will be denoted by 
v, +f u2. (When it is necessary to indicate that a dependence is due to a particular 
variable X, it will be denoted by u1 -7 uz). 

Flow dependences are further classified as loop independent or loop carried [3]. 
A flow dependence u1 jf uz is carried by loop L, denoted by u1 +=lc(L) v2, if in 
addition to (l), (a), and (3) above, the following also hold: 

(4) There is an execution path that both satisfies the conditions of (3) above 
and includes a backedge to the predicate of loop L; and 

(5) Both vi and u2 are enclosed in loop L. 

A flow dependence v, +f u2 is loop independent, denoted by vl +li v2, if in 
addition to (l), (2), and (3) above, there is an execution path that satisfies (3) 
above and includes no backedge to the predicate of a loop that encloses both v1 
and u2. It is possible to have both u1 -+lc(L) u2 and u1 +=li uz. 

A program dependence graph contains a def-order dependence edge from vertex 
u1 to vertex u2 iff all of the following hold: 

(1) u1 and u2 are both assignment statements that define the same variable. 
(2) u1 and u2 are in the same branch of any conditional statement that encloses 

both of them. 

4 In other definitions that have been given for control dependence edges, there is an additional edge 
for each predicate of a while statement-each predicate has an edge to itself labeled true. By 
including the additional edge, the predicate’s outgoing true edges consist of every program element 
that is guaranteed to be executed (eventually) when the predicate evaluates to true. This kind of 
edge is unnecessary for our purposes, and hence is left out of our definition. 
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program 
sum := 0. 
x:=1; ’ 
aldlc x < 11 do 

sYn:=sum+x: 
x:=x+1 

end 
end(x.sum) 

Fig. 1. An example program, which sums the integers from 1 to 10 and leaves the result 
in the variable sum, and its program dependence graph. The boldface arrows represent 
control dependence edges, dashed arrows represent def-order dependence edges, solid arrows 
represent loop-independent flow dependence edges, and solid arrows with a hash mark 
represent loop-carried flow dependence edges. 

(3) There exists a program component us such that u1 +f u3 and u2 +f u3. 
(4) u1 occurs to the left of u2 in the program’s abstract syntax tree. 

A def-order dependence from u1 to u2 is denoted by u1 +&(u3) u2. 
Note that a program dependence graph is a multigraph (i.e., it may have more 

than one edge of a given kind between two vertices). When there is more than 
one loop-carried flow dependence edge between two vertices, each is labeled by a 
different loop that carries the dependence. When there is more than one def- 
order edge between two vertices, each is labeled by a vertex that is flow-dependent 
on both the definition that occurs at the edge’s source and the definition that 
occurs at the edge’s target. 

Example. Figure 1 shows an example program and its program dependence 
graph. The boldface arrows represent control dependence edges; dashed arrows 
represent def-order dependence edges; solid arrows represent loop-independent 
flow dependence edges; solid arrows with a hash mark represent loop-carried flow 
dependence edges. 

4.1.1 Def-order Dependences uersus Anti- and Output Dependences. Previous 
program dependence representations have included flow dependence edges as 
well as edges for two other kinds of data dependences, called antidependences 
and output dependences. (All three kinds may be further characterized as loop 
independent or loop carried.) Def-order dependences have not been previously 
defined. The definition of program dependence graphs given in Section 4.1 omits 
anti- and output dependences in favor of def-order dependences. Our reasons for 
using this definition are discussed in Section 6.1; this section merely clarifies the 
differences among these three kinds of dependences. 

For flow dependences, antidependences, and output dependences, a program 
component up has a dependence on component u1 due to variable x only if 
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execution can reach v2 after v, and there is no intervening definition of x along 
the execution path by which vz is reached from vl. There is a flow dependence if 
vi defines x and v2 uses x (a “write-read” dependence); there is an antidependence 
if v1 uses x and v2 defines x (a “read-write” dependence); there is an output 
dependence if v1 and vz both define x (a “write-write” dependence). 

Although def-order dependences resemble output dependences in that they are 
both “write-write” dependences, they are two different concepts. An output 
dependence v1 +O v2 between two definitions of x can hold only if there is no 
intervening definition of x along some execution path from v1 to vz; however, 
there can be a def-order dependence v1 +& vz between two definitions even if 
there is an intervening definition of x along all execution paths from v, to up. 
This situation is illustrated by the following example program fragment, which 
demonstrates that it is possible to have a program in which there is a dependence 
v1 +&, v2 but not v1 -+, v2, and vice versa: 

PI x := 10 

[ii 
if P then 

x:= 11 

;t; 
x := 12 

fi 
161 y := x 

The one def-order dependence, [l] +&,([S]) [4], exists because the assignments to 
x in lines [l] and [4] both reach the use of x in line [6]. In contrast, the output 
dependences are [l] +,, [3] and [3] dO [4], but there is no output dependence 
111 -0 [41. 

4.1.2 Program Slices. For a vertex s of a program dependence graph G, the 
slice of G with respect to s, written as G/s, is a graph containing all vertices on 
which s has a transitive flow or control dependence (i.e., all vertices that can 
reach s via flow or control edges): V(G/s) = (w E V(G) ] w +$ s]. We extend 
the definition to a set of vertices S = Ui si as follows: V(G/S) = V(G/(U, si)) = 
U; V(G/si), It is useful to define V(G/u) = 0 for any v @ G. 

The edges in the graph G/S are essentially those in the subgraph of G induced 
by V(G/S), with the exception that a def-order edge v +d&) w is only included 
if, in addition to v and w, V(G/S) also contains the vertex u that is directly flow 
dependent on the definitions at v and w. In terms of the three types of edges in 
a PDG, we have 

U i(v +‘do(u) w) E E(G) 1 u, u, w E V(G/S)l 

Example. Figure 2 shows the graph that results from slicing the program 
dependence graph from Figure 1 with respect to the final-use vertex for x. 

4.1.3 Program Dependence Graphs and Program Semantics. In choosing which 
dependence edges to include in our program dependence graphs, our goal has 
been to characterize partially programs that have the same behavior-two ine- 
quivalent programs should not have the same program dependence graph, al- 
though two equivalent programs may have different program dependence graphs. 
ACM Transactions on Programming Languages and Systems, Vol. 11, No. 3, July 1989. 



Integrating Noninterfering Versions of Programs l 357 

pr”gr*lll 
x := I: 
al~lle x < 11 do 

x:=x+1 
end 

cnd(x ) 

Fig. 2. The graph that results from slicing the example from Figure 1 with respect 
to the final-use vertex for X, together with the one program to which it corresponds. 

This property is crucial to the correctness of our program-integration algorithm. 
In particular, the final step of the algorithm reconstitutes the integrated program 
from a program dependence graph. Because this graph may correspond to more 
than one program, we need to know that all such programs are equivalent. 

The relationship between a program’s PDG and the program’s execution 
behavior has been addressed in [ 17,181. It is shown in [ 17,181 that if the program 
dependence graphs of two programs are isomorphic, then the programs have the 
same behavior. It is also shown that if any of the different kinds of edges included 
in our definition of program dependence graphs were omitted, programs with 
different behavior could have the same program dependence graph. The concept 
of “programs with the same behavior” is formalized as the concept of strong 
equivalence, defined as follows: 

Definition. Two programs P and Q are strongly equivalent iff for any state U, 
either P and Q both diverge when initiated on (T or they both halt with the same 
final values for all variables. If P and Q are not strongly equivalent, we say they 
are inequivalent. 

The term “divergence” refers to both nontermination (for example, because of 
infinite loops) and abnormal termination (for example, because of division by 
zero). 

The main result of [17, 181 is the following theorem (we use the symbol = to 
denote isomorphism between program dependence graphs): 

THEOREM (Equivalence Theorem [17, 181). If P and Q are programs for which 
Gp = G,, then P and Q are strongly equivalent. 

Restated in the contrapositive, the theorem reads: Inequivalent programs have 
nonisomorphic program dependence graphs. 

The relationship between a program’s PDG and a slice of the PDG has been 
addressed in [27]. We say that G is a feasible program dependence graph iff G is 
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the program dependence graph of some program P. For any S G V(G), if G is a 
feasible PDG, the slice G/S is also a feasible PDG; it corresponds to the program 
P’ obtained by restricting the syntax tree of P to just the statements and 
predicates in V(G/S) [27]. 

THEOREM (Feasibility of Program Slices [27]). For any program P, if Gs is a 
slice of Gr (with respect to some set of vertices), then Gs is a feasible PDG. 

Example. Figure 2 shows t,he one program that corresponds to the graph 
that results from slicing the graph in Figure 1 with respect to the final-use 
vertex for x. 

The significance of a slice is that it captures a portion of a program’s behavior 
in the sense that, for any initial state on which the program halts, the program 
and the slice compute the same sequence of values for each element of the slice 
[27]. In our case, a program point may be (1) an assignment statement, (2) a 
control predicate, or (3) a final use of a variable in an end statement. Because a 
statement or control predicate may be reached repeatedly in a program, by 
“computing the same sequence of values for each element of the slice,” we mean: 
(1) for any assignment statement the same sequence of values is assigned to the 
target variable; (2) for a predicate the same sequence of Boolean values is 
produced; and (3) for each final use the same value for the variable is produced. 

THEOREM (Slicing Theorem [27]). Let Q be a slice of program P with respect 
to a set of vertices. If u is a state on which P halts, then for any state u’ that 
agrees with (T on all variables for which there are initial-definition vertices 
in Go: (1) Q halts on (r’, (2) P and Q compute the same sequence of values at each 
program point of Q, and (3) the final states agree on all variables for which there 
are final-use vertices in Go. 

4.2 Determining the Differences in Behavior of a Variant 

In this section, we characterize (an approximation to) the difference between the 
behavior of Base and its variants. Since we do not know the specification of 
Base or its variants, we assume that any and only changes in the behavior of a 
variant with respect, to Base are significant. The program dependence graphs are 
a convenient representation from which to determine these changes. 

Recall the assumption made in Section 4.1 that the vertices of a PDG are 
labeled with the tags maintained by the editor on program components. These 
tags provide a means for identifying PDG vertices that correspond in all three 
versions. It is these tags that are used to determine “identical” vertices when we 
perform operations on vertices from different PDGs (e.g., V(G’) - V(G)). 
Similarly, when we speak below of “identical slices,” where the slices are actually 
taken in different graphs, we mean that the slices are isomorphic under the 
mapping provided by the editor-supplied tags. 

If the slice of variant GA at vertex u differs from the slice of GBase at vertex v 
(i.e., they are different graphs), then values at v are computed in a different 
manner by the respective programs. This means that the values at v may 
differ, and we take this as our definition of changed behavior. We define 
the affected points APA,Base o f GA as the subset of vertices of GA whose slices 
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in GBase and GA differ: 

AP,s+se = (u E V(G) I (&se/~) Z (GIu)J. 

The slice Ga/APA,B,s, captures the behavior of A that differs from Base. Note 
that when there is a vertex u that is present in GBase but not in GA, any vertex 
still present in GA that in GBose depends on u is an affected point of GA ; thus, 
although such “deleted” vertices are not themselves affected points, they may 
have indirect effects on APA,Base (and hence on GA/APa,BaSe). 

Example. Figure 1 shows a program that sums the integers from 1 to 10 and 
its corresponding program dependence graph. We now consider two variants of 
this program, shown in Figure 3 with their program dependence graphs: 

(1) In variant A, two statements have been added to the original program to 
compute the product of the integer sequence from 1 to 10. 

(2) In variant B, one statement has been added to compute the mean of the 
sequence. 

These two programs represent noninterfering extensions of the original summa- 
tion program. The set APA,Base contains three vertices: the assignment vertices 
labeled “prod := 1” and “prod := prod * x” as well as the final-use vertex for 
prod. Similarly, APB,Base contains two vertices: the assignment vertex labeled 
“mean := sum/lO” and the final-use vertex for mean. Figure 4 shows the slices 
WAP.mw and Ge/APe,B,,,, which represent the changed behaviors of A and B, 
respectively. 

There is a simple technique to determine AP A,Base that avoids computing all of 
the slices stated in the definition. The technique requires at most two complete 
examinations of GA, and is based on the following three observations: 

(1) All vertices that are in GA but not in Gsase are affected points. 
(2) Each vertex w of GA that has a different set of incoming control or flow edges 

in GA than in G Ba9e gives rise to a set of affected points-those vertices that 
can be reached via zero or more control or flow edges from w. 

(3) Each vertex w of GA that has an incoming def-order edge w ’ +&,(u) w that 
does not occur in GBase gives rise to a set of affected points-those vertices 
that can be reached via zero or more control or flow edges from u. 

The justification for observation (1) is straightforward: for w E V(Ga) - 
V(GB,,,), G&w is the empty graph, whereas w E V(GJw), so GA/w is not 
empty. The justification for observation (2) is also straightforward. By the 
definition of slicing, when w differs in incoming flow or control edges, GA/w and 
Ge,,,/w cannot be the same, hence w itself is affected. For any vertex u that is 
(directly or indirectly) flow or control dependent on w in GA, the slice GA/u 
contains the subgraph GA/w. Therefore, if w is affected, all successors of w in GA 
via control and flow dependences are also affected. 

The justification for observation (3) is more subtle. When a def-order 
edge w ’ +dO(UJ w occurs in GA but not in GBase, then the slice GA/u will include 
both w ’ and w and the def-order edge between them, while GHase/u will not 
include this edge. Hence u is affected. The reverse situation, where w ’ -do(u) w 
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P%rm 
prod := 1; 
sum := 0; 
x :=I: 
while x < 11 do 

prod := prod * x ; 
mm:=sum+x; 
x:=x+1 

end 
end@, sum. prod) 

while x < 11 do 
sum:=sum+x; 
x:=x+1 

end; 
mcm := sum / 10 

end(x.swn,mcan) 

(4 

(b) 

Fig. 3. Variants A and B of the base program shown in Figure 1, and their program dependence 
graphs. 

occurs in GBase, but not in GA, means u is affected if u E V(GA). But it is not 
necessary to examine this possibility since either w ’ j&,(u) w in GRase is replaced 
by w *do(u) w ’ in GA, in which. case w ’ E V(GA ) will contribute u as affected, or 
else one or both of the flow edges w df u and w ’ -+f u in GBase will be missing in 
GA, in which case u is affected by the change in incoming flow edges. As before, 
for any vertex v that is (directly or indirectly) flow or control dependent on u, 
the slice GA/v contains the subgraph GA/u; therefore, if u is affected, all successors 
of u via control and flow dependences are affected. Note that neither w ’ itself 
nor w itself is necessarily an affected point. 

Observations (l), (a), and (3) serve to characterize the set of affected points. 
If v E V(G,) is affected, there must be some w in GA/v with different incoming 
edges in GA and GB,,. By the arguments above, either w itself is an affected point 
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program 
prod := 1; 
x :=I; 
whllcx c 11 do 

prod:=prod * x; 
x:=x+1 

end 
end(prod) 

program 
sum := 0; 
x:=1; 
while x < 11 do 

s!mI:=sum+x: 
x:=x+1 

end; 
meon := sum I 10 

ond(mean) 

(4 

(b) 

Fig. 4. The slices that represent the changed behaviors of A and B. 

(cases (1) and (2)), or it contributes a vertex u E V(G,Ju) that is an affected 
point (case (3)); therefore, it is possible to identify u as an affected point by 
following control and flow edges. This latter observation forms the basis for the 
function AffectedPoints(G’, G), given in Figure 5. 

It computes the set of affected points of G’ with respect to G by examining all 
vertices w in G’ that have a different set of incoming edges in G’ than in G, and 
collecting the affected points that each vertex contributes. Then a worklist 
algorithm is used to find all vertices reachable from this set by flow or control 
edges. 

4.3 Merging Program Dependence Graphs 

We now show how to create the merged program dependence graph GM. Graph 
GM is formed by taking the union of three slices; these slices represent the 
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function AlktcdPoinu(G’. G) returns a set of vertices 
declare 

G’. G : program dependence graphs 
S.Amwer: sets of vertices 
w.u.6.c: individualvertices 

begin 
s :=0 
ror each vencx w in G’ do 

II w is not in G lhen 
Inser1 w in10 s 

Ii 
If the seti 01 incoming flow or control edges to w in G’ are different from the incoming KU lo w in G lhen 

Iwmw intos 
fi 
for each dcf-ordn edge w’+~(.~w Ihat occurs in G’tw not in G do 

Insercu inlos 
end 

end 
Annver := 0 
while S * 0 do 

Select and remove an clement b from S 
Insert b imo Amver 
lorcachvcrccxcsuchtharb-S,corb~,cis~edgcinG’andc(I(A~~uS)do 

Immc intoS 
end 

end 
retum(Ann*w ) 

end 

Fig. 5. The function AffectedPoints determines the points in the program dependence 
graph G’ that may yield different values in G’ than in G. 

changed behaviors of A and B with respect to Base and the behavior of Base that 
is preserved in both A and B. 

The previous section discussed how to compute the slices GA/APA,Base and 
GB/APB,~ase, which represent the changed behaviors of A and B with respect 
to Base. The slice that represents preserved behavior is computed similarly, If 
the slice of GBase with respect to vertex v is identical to the slices of GA and GB 
with respect to vertex u, then all three programs produce the same sequence of 
values at v. We define the preserved points PPBase,A,B of GBase as the subset of 
vertices of GBose with identical slices in Gem,, GA, and Gg: 

PPmm,A,~ = (u E V(G,,e) I (Gx.&) = (GA/U) = (Gs/u)l. 

The slice GRase/PPBase,A,R captures the behavior of Base that is preserved in both 
A and B. 

Example. When integrating the base program from Figure 1, variant A from 
Figure 3(a) and variant B from Figure 3(b), the slice GBase/PPBase,A,B consists of 
GHasr in its entirety. That is, the graph that represents the behavior of the original 
program that is preserved in both variant A and variant B is identical to the 
graph shown in Figure 1. 

The merged graph GM is formed by taking the graph union of the slices that 
characterize the changed behavior of A, the changed behavior of B, and behavior 
of Base preserved in both A and B. 

GM = (Ga/AP.s,,~aw) u (GL(/APB,R~~~) u (G.se/P&ase,~,Lo. 
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Fig. 6. G, is created by taking the union of the graphs shown in Figures 
4(a), 4(b), and 1. 

Example. The merged graph GM, shown in Figure 6, is formed by taking the 
union of the graphs shown in Figure 4(a), Figure 4(b), and Figure 1. 

4.4 Determining Whether Two Versions Interfere 

A merged program dependence graph, GM, that is created by the method described 
in the previous section can fail to reflect the changed behavior of the two variants 
A and B in two ways. First, because the union of two feasible PDGs is not 
necessarily a feasible PDG, GM may not be a feasible PDG. Second, it is possible 
that GM will not preserve the differences in behavior of A or B with respect to 
Base. If either condition occurs, we say that A and B interfere. Testing for 
interference due to the former condition is addressed in Section 4.5; this section 
describes a criterion for determining whether a merged program dependence 
graph preserves the changed behavior of A and B. 

To insure that the changed behavior of variants A and B is preserved in GM, 
we introduce a noninterference criterion based on comparisons of slices of GA, 
Ge, and GM; the condition that must hold for the changed behavior of A and B 
to be preserved in GM is 

GMIAP~,B~~ = GAIAP~,B,, and GMIAPB,B~~ = GBIAPB,B~~. 

On vertices in PPBase,A,B the graphs GA and G, agree, and hence GM is correct for 
these vertices. 

The verification of the invariance of the slices in GM and the variant graphs is 
closely related to the problem of finding affected points: GM must agree with 
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Program 
sum := 0, 
x := 1; 
while x < 1 I do 

sum:=sum+x; 
If sum > 5 then 

sum:=sl4m+ 1 
fi 
x:=x+1 

end 
end@, sum) 

Fig. 7. Variant C and its program dependence graph. 

variant A on APA,Base and tiith B on APB,Bose. Therefore, an easy way to test for 
noninterference (using function AffectedPoints) is to verify that 

APM,A fl APA,BW = 0 and APM,B II APB,Base = 0. 

Example. An inspection of the merged graph shown in Figure 6 reveals that 
there is no interference; the slices GM/APA,B~, and GM/APB,Base are identical to 
the graphs that appear in Figures 4(a) and 4(b), respectively. 

To illustrate interference, consider integrating the base program of Figure 1, 
variant B from Figure 3(b), and variant C from Figure 7. As in the previous 
integration example, the slice GB/APB,Base is shown in Figure 4(b); the slice Ge/ 
APc, ease includes all of the vertices of variant C except for FinalUse( The 
merged graph is shown in Figure 8. 

Variants B and C interfere (with respect to Base) because B’s changed behavior 
(with respect to Base) is not preserved in the merged graph GM. In particular, 
the vertex “mean := sum/lO” is an affected point of B with respect to Base, 
but the slice GMrmean := sum/lo” includes vertices “sum := sum + 1” and 
“if sum > 5”, which are not included in the slice GB/“mean := sum/lo.” 

4.5 Reconstituting a Program From the Merged Program Dependence Graph 

The final step of the integration algorithm involves reconstituting a program 
from the merged program dependence graph. Given a program dependence graph 
GM that was created by merging variants A and B, function ReconstituteProgram 
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Fig. 8. The merged program dependence graph GM resulting from the integration of 
Base, B, and C. 

must determine whether GM is feasible (i.e., corresponds to some program), and, 
if it is, create an appropriate program from GM. 

Example. The program dependence graph shown in Figure 6 is feasible and 
corresponds to the program: 

program 
prod := 1; 
sum := 0; 
x := 1; 
while x < 11 do 

prod := prod * x; 
sum := sum f x; 
x:=x+ 1 

end; 
mean := sum/l0 

end& sum, prod, mean) 

Because we are assuming a restricted set of control constructs, each vertex of 
GM has at most one incoming control dependence edge (from a predicate vertex 
or the entry vertex), that is, the control dependences of GM define a tree rooted 
at the entry vertex. The crux of the program-reconstitution problem is to 
determine, for each predicate vertex u (and for the entry vertex as well), an 
ordering on the targets of u’s outgoing control dependence edges that is consistent 
with the data dependences of GM. Once all vertices are ordered, the control 
dependence subgraph of GM can be easily converted to an abstract-syntax tree. 

Unfortunately, as we have shown in [Ml, the problem of determining whether 
it is possible to order a vertex’s children is NP-complete. We have explored two 
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funcllon Rnonsri[u[cProgr.un((;Y) returns a program or FAILURE 

declare 
GM. G. Gp: program dcpcndcncc graphs 
v.w:verIiccsofG 

bqln 
[I] c :=acopyofG~ 
[Z] for each vcrtcx Y of G in a postada ~~avcrsal of the control-dcpcndcncc subgraph of G do 

(31 If OrdcrRcgion(G, ( w I (v -+ ,‘w ) E E(G) 1) fails (hen return( FAILURE ) 6 

[41 Ilv rcprcscnts an if-prcdicatc lhen 

I51 If OrdnRcgion(C. ( w I (v 3 :W)E E(G) )) fails then retum( FAILURE ) 6 

(61 6 
171 end 
[S] P := TransformToSyntaxTrcc(G): 
[9] IICM = GP tlwn return( P ) 
[IO] else relurn( FAILURE) 
[II] 6 
end 

Fig. 9. The operation ReconstituteProgram creates a program corre- 
sponding to the program dependence graph GM by ordering all vertices, or 
discovers that GM is infeasible. 

approaches to dealing with this difficulty: 

(1) For graphs created by merging PDGs of actual programs, it is likely that 
problematic cases rarely arise. We have explored ways of reducing the search 
space, in the belief that a backtracking method for solving the remaining 
step can be made to behave satisfactorily. These techniques are described in 
the remainder of this section. 

(2) It is possible to sidestep completely the need to solve an NP-complete problem 
by performing a limited amount of variable renaming. This technique is 
described in Section 4.5.3, where it can be used to avoid any difficult ordering 
step that remains after applying the techniques outlined in approach (1). 

The rest of this section describes the function ReconstituteProgram, which is 
invoked as step five of the program-integration algorithm. ReconstituteProgram 
is presented in outline form in Figure 9. 

ReconstituteProgram alters graph G, which is a copy of GM; GM itself is saved, 
unaltered, for use in the test on line [9]. In the for-loop (lines [2]-[7]), the tree 
induced on G by its control dependences is traversed in postorder. For each 
vertex u visited during the traversal, an attempt is made to determine an 
acceptable order for u’s children; this attempt is performed by the procedure 
OrderRegion, which is explained in detail below. We assume that a function, 
named TransformToSyntaxTree, has been provided to convert G with ordered 
vertices into the corresponding abstract-syntax tree. 

ReconstituteProgram can fail in two different ways. Failure can occur because 
procedure OrderRegion determines that there is no acceptable ordering for the 
children of some vertex. Failure can also occur at a later point, after OrderRegion 
succeeds in ordering all vertices of G. In this case, TransformToSyntaxTree is 
used to produce program P from G, P’s program dependence graph Gp is built, 
and GP is compared to GM; failure occurs if GM and Gp are not identical. Examples 
of these kinds of failure are given in Section 4.5.4. 

The correctness of ReconstituteProgram is captured by the following theorem. 

THEOREM. ReconstituteProgram succeeds iff graph GM is feasible. 
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It is easy to show that ReconstituteProgram fails when GM is infeasible: If GM 
is infeasible, there is no program whose dependence graph is isomorphic to GM; 
hence the test in step [9] of ReconstituteProgram (see Figure 9) must fail. 

The proof that ReconstituteProgram fails only when GM is infeasible is rather 
lengthy and is omitted here; the proof can be found in [5]. 

4.5.1 Procedure OrderRegion: Ordering Vertices Within a Region. 

Definition. The subgraph induced on a collection of vertices, all of which are 
targets of control dependence edges from some vertex u, is called a region; u is 
the region head. If v represents the predicate of a conditional, u is the head of 
two regions; one region includes all statements in the “true” branch of the 
conditional, the other region includes all statements in the “false” branch of the 
conditional. For all vertices w, EnclosingRegion is the region that includes w 
(not the region of which w is the head). Because the entry vertex and the vertices 
representing initial definitions and final uses of variables are not subordinate to 
any predicate vertex, they are not included in any region (however, the entry 
vertex is a region head). 

Given region R, the main job of procedure OrderRegion (shown in Figure 10) 
is to find a total ordering of the vertices of R that preserves the flow and def- 
order dependences of G, or to discover that no such ordering is possible. 

Note that simply using a topological ordering of the region is not satisfactory. 
For example, consider the dependence graph fragment shown in Figure 11. 

A topological ordering of the vertices of the region subordinate to vertex C is 
F, D, G, E; however, the dependence graph of the program generated according 
to this ordering would incorrectly have flow edges from D to G and from D to H, 
rather than the ones from F to G and from F to H. 

A secondary responsibility of OrderRegion is to project onto the head of R 
information from the vertices of R regarding variable uses, variable definitions, 
and incoming and outgoing edges. This projection ensures that, when the head 
of R is considered as a vertex in its enclosing region, it represents all uses and 
definitions that occur in R. 

To order the vertices of R, OrderRegion calls procedures PreserveExposed- 
UsesAndDefs and PreserveSpans (discussed below). These procedures add edges 
to R to force an ordering of the vertices consistent with the region’s data 
dependences. (This process is roughly that of introducing anti- and output 
dependences consistent with the flow and def-order dependences of region R. As 
explained in Section 6.1, there are fundamental problems in trying to perform 
integration with a dependence representation that includes anti- and output 
dependences; thus, OrderRegion must discover these dependences from the 
merged graph.) If this process introduces a cycle in R, OrderRegion fails; other- 
wise, a topological sort of region R produces an ordering consistent with the 
region’s data dependences. 

Information is projected onto the head of region R both by procedure 
PreserveExposedUsesAndDefs, which projects the loop-carried flow edges of R 
and the edges of G with only a single endpoint in R onto the region head, and by 
procedure ProjectUsesAndDefs, which projects onto the head of R information 
from the vertices in region R about variable uses and definitions. For example, 
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procedure OrderRcaion(C , R) -. 
beclare 

C: a graph 
R : a region of G 

Fig. 10. Procedure OrderRegion adds new edges 
to the given region to ensure that dependences 
are respected, projects information onto the re- 
gion head, and topologically sorts the vertices of 
the region. 

begin 
PrcscrvcExposulUscsAndDcrs(G. R) 
If PresmvcSp~m(R ) fails lhen fail.else TopSon Ii 
ProjectUsesAndDcfs(G.R) 

Fig. 11. Dependence graph fragment: Topological ordering 
F, D, E, G, of the vertices subordinate to vertex C is not 
acceptable. 

procedure ProjectUsesAndDefs would designate vertex C of Figure 11 as repre- 
senting uses of w and x and definitions of x, y, and z. 

4.5.2 Procedure PreserveExposedUsesAndDefs: Preserving Upwards-Exposed 
Uses and Downwards-Exposed Definitions. For all variables x, a use of x that is 
upwards-exposed [l] within a region must precede all definitions of x within the 
region other than its loop-independent flow-predecessors (a use of x can be 
upwards-exposed and still have a loop-independent flow-predecessor that defines 
x within the region if the flow-predecessor represents a conditional definition). 
Vertex E in Figure 11 represents. an upwards-exposed use of variable w. 

Similarly, a definition of x that is downwards-exposed within a region must 
follow all other definitions of x within the region other than those to which it 
has a def-order edge (again, a definition of x can be downwards-exposed and still 
precede a conditional definition of x). Vertex F in the example of Figure 11 
represents a downwards-exposed definition of variable x. 

Procedure PreserveExposedUsesAndDefs uses flow edges of G having only one 
endpoint inside the given region R, and loop-carried flow edges having both 
endpoints inside R to identify exposed uses and definitions. It then adds edges 
to R to ensure that exposed uses and definitions are ordered correctly with respect 
to other definitions within the region. Finally, the edges used to identify exposed 
uses and definitions are removed from R and are projected onto the region head. 
Def-order edges with a single end-point inside R are also projected onto head(R). 
This ensures that the region that includes the head of R will be ordered correctly 
during a future call to OrderRegion. PreserveExposedUsesAndDefs performs the 
following four steps: 

Step (1): Identify upwards-exposed uses. A vertex with an incoming loop- 
independent flow edge whose source is outside region R, or with an incoming 
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Fig. 12. Dependence graph fragment with new edge D + F 
added to preserve the downwards-exposed definition of x at 
vertex F. 

loop-carried flow edge with arbitrary source, represents an upwards-exposed use 
of the variable x defined at the source of the flow edge. Mark each such vertex 
UPWARDS-EXPOSED-USE(x). 

Step (2): Identify downwards-exposed definitions. A vertex that represents a 
definition of variable x and has an outgoing loop-independent flow edge whose 
target is outside region R, or has an outgoing loop-carried flow edge with arbitrary 
target, represents a downwards-exposed definition of x.~ Mark each such vertex 
DOWNWARDS-EXPOSED-DEF(x). 

Step (3): Preserve exposed uses and definitions. For each vertex n marked 
UPWARDS-EXPOSED-USE(r), add a new edge from n to all vertices m in the 
region such that m represents a definition of variable x, and m is not a loop- 
independent flow predecessor of n. For each vertex n marked DOWNWARDS- 
EXPOSED-DEF(x), add a new edge to n from all vertices m in the region, such 
that m represents a definition of x and there is no def-order edge from n to m. 

Step (4): Project edges onto the region head. Let S stand for R U (head(R)]. 
Replace all flow and def-order edges with source outside of S and target inside S 
with an edge (of the same kind) from the source to head(R). Replace all flow 
and def-order edges with source inside S and target outside of S with an edge 
(of the same kind) from head(R) to the target. Consider each loop-carried 
flow edge u1 +lc(L) u2 such that both u1 and v2 are in S. If head(R) = L, then 
remove the edge; otherwise, replace the edge with a loop-carried flow edge 
head(R) +lc(L) head(R). 

Figure 12 shows the example dependence graph fragment of Figure 11 after 
the four steps described above have been performed on the region headed by 
vertex C. 

The edge from D to F was added in Step (3), due to F being downwards- 
exposed, and this prevents F from preceding D in a topological ordering. The 
edges from B to C and from C to H were added in Step (4), replacing those from 
B to E and F to H, respectively. 

5 Our use of the term “downwards-exposed” is slightly nonstandard; we consider a definition to be 
downwards-exposed in code segment C only if it reaches the end of C and the variable it defines is 
live at the end of C. 
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4.5.3 Dependences Induced by Spans. To simplify this section’s presentation, 
we begin by considering regions that only include assignment statements; under 
this restriction, each use of variable x within a region is reached by at most one 
definition of x that occurs within the region. 

In the example dependence graph fragment of Figure 12, the ordering D, F, E, 
G of the vertices subordinate to vertex C is a topological ordering, but an 
unacceptable one for our purposes. The problem with this ordering is that it 
allows the definition of variable x at vertex F to “capture” the use of x at vertex 
E. The dependence graph of the program generated according to this ordering 
would incorrectly have a flow edge from F to E, rather than the one from D to 
E. In general, a definition d of variable x must precede all uses it reaches via 
loop-independent flow edges; other definitions of x must either precede d or 
follow all the uses reached by d. This observation leads to the following definition: 

Definition. The span of a definition d, where d defines variable x, is the set 
(d], together with all uses of x that are loop-independent flow targets of d and in 
the same region as d. 

Span(d, X) = {d) U (u 1 (d +i: u) E E(EnclosingRegion(d))). 

Span(d, x) is called an x-span, and vertex d is its head. 

Restating the observation above in terms of spans, a definition dl of variable 
x must precede all vertices in Span(di, x); other definitions of x must either 
precede dl or follow all vertices in Span(d,, x). Furthermore, for any other 
x-span with head dP, if any vertex in Span(&, X) must precede a vertex in 
Span(dz, x), then all vertices in Span(d,, X) must precede dZ. 

Unacceptable topological orderings are excluded by considering, for each 
variable x, all pairs (d,, d,) of definitions of X. If there is some vertex u in 
Span(dl, X) that must precede some vertex w in Span(ds, x), because of a path 
from u to w, then edges are added from all vertices in Span(d,, x) - Span(dz, X) 
to vertex dZ. Similarly, if there is a path from a vertex in Span(d2, x) to a vertex 
in Span(dl, x), edges are added from all vertices in Span(dz, x) - Span(di, x) to 
vertex d,. For example, in the graph fragment of Figure 12, the edge E + F would 
be added because the edge D + F (introduced by PreserveExposedUsesAndDefs) 
forms a path from Span(D, x) to Span(F, x), and vertex E is in Span(D, x) - 
Span(F, x). 

The reason for taking the set difference Span(di, x) - Span(d*, x) is that, even 
in regions containing only assignment statements, spans can overlap, as illus- 
trated in Figure 13. 

Because C is itself in Span(B, x), adding edges from all vertices in Span(B, X) 
to C would create a self-loop at C, making a topological ordering impossible. 

Allowing vertices that represent loops and conditionals introduces the possi- 
bility that spans may overlap in two new ways, as illustrated in Figure 14. 

In the first case in Figure 14 there must be a def-order dependence edge from 
dl to d2, or vice versa, or the graph would fail the interference test of Section 4.4. 
In the second case there is a flow edge from dl to d,. These edges force an 
ordering of the two spans. Thus, allowing conditionals and loops does not 
complicate PreserveSpans. 
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Sp4B, x) spdc x) 
Fig. 13. Straight-line code fragment and corresponding dependence graph fragment 
(control edges omitted) with overlapping x-spans. 

Fig. 14. Conditionals and loops can lead to the two additional 
kinds of overlapping spans shown above. 

There may be pairs of spans, Span(di, X) and Span(&, x), such that there is 
no path in either direction between Span(d,, X) and Span(c&, x); such pairs are 
called independent x-span pairs. It is still necessary to add edges to force one 
span to precede the other so as to exclude unacceptable topological orderings. 
Although it might seem that an arbitrary choice can be made, Figure 15 gives an 
example in which making the wrong choice leads to the introduction of a cycle 
in a fragment of a feasible graph. 

The fragment of Figure 15 includes two x-spans: Span(A, X) and Span(D, x), 
and two y-spans: Span(B, y) and Span(C, y). There are paths neither between 
the two x-spans nor between the two y-spans; thus, it appears that one is free to 
choose to add edges from the vertices of Span(A, X) to vertex D, or from the 
vertices of Span(D, X) to vertex A, or from the vertices of Span(B, y) to vertex 
C, or from the vertices of Span(C, y) to vertex B. However, while three out of 
these four choices lead to a successful ordering of the vertices, choosing to add 
edges from the vertices of Span(D, X) to vertex A leads to the introduction of a 
cycle. This is because the introduction of these new edges creates paths both 
from a vertex in Span(B, y) to a vertex in Span(C, y), and vice versa. Figure 16 
shows the fragment of Figure 15 with the new edges added; the path from 
Span(C, y) to Span(B, y) is shown using dashed lines. The path from 
Span(B, y) to Span(C, y) is shown using dotted lines. 

Unfortunately, as we have shown in [ 181, the problem of determining the right 
choice in a situation like the one illustrated in Figure 15 is NP-complete. However, 
we expect that in practice there will be very few such choices to be made, and a 
simple backtracking algorithm will suffice: if a cycle is introduced when ordering 
spans, procedure PreserveSpans backtracks to the most recent choice point and 
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Fig. 15. Graph fragment (control edges omitted) with two x-spans and two y-spans. 

Fig. 16. Span(D, x) has been chosen to precede Span(A, x). Paths have been created from 
Span(B, y) to Span(C, y) and uice uersa. The path from Span(C, y) to Span(B, y) is indicated 
using dashed edges; the path from Span(B, y) to Span(C, y) is indicated using dotted edges. 

tries a different choice. If all choices lead to the introduction of a cycle, the graph 
is infeasible. Procedure PreserveSpans is presented in Figure 17. 

PreserveSpans makes use of an auxiliary procedure, OrderDependentSpans, to 
order any span pairs of region R whose relative order is forced by a connecting 
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procedure PrcsmcSpans(R) 
declare 

R : a region 
h,,h2:vcniccsofR 
Suck: a slack 

bcglo 
TransitivclyClose(R) 
UR is cyclic (hen fail Ii 
&mark all edges of R 
OrderDcpcndentSpans(R) 
Sack := EmpryStack() 
do 

R is acyclic and lucre exisl indcpcndent x -span pairs (for some variable x) wilh heads h, and h2 + 
Push(Sfock , R , h ,, h 3 
AddEdgcAndClosc(R, (h ,, /I*)) 
OrdcrDcpcndcmSpans(R) 

IJ R is cyclic and Empty(Sfock) + fail 
0 R is cyclic and ~Empty(Sfnck) + 

R,h,.hl:=Pop(Slock) 
AddWgcAndClose(R , (h 2. h ,)) 
OrdcrDcpcndcmSpans(R) 

od 
end 

procedure OrderDcpcndcmSpans(R) 
declare 

R : a region 
o.b.c.u,v.w:verliccsolR 
A, B : KL~ of vnticcs 
x: a variable 

begin 
while Ihere exists an unmarked edge (v.w) in R do 

[I] Markcdgc(v.w) 
[2] for each variablcx E (Defs(v)uUscs(v))n(Dcfs(w)uUscs(w)) do 

/‘v isinanx-spanandw isinanx-span*/ 
A := ( u I Y E Span(u .x) ) /’ heads of x-spans of which v is a member l / 
B := ( u I w E Spn(u, x) ) /* heads of x -spans of which w is a mcmba +I 

[31 for each vertex a E A do 

[4] for cnch vencx b E B do 

PI forcachcE(Sp.ul(a.x)-Span(b.x))do 
if (c.b)& E(R) then AddEdgcAndClosc(R. (c.6)) fi 

end 
end 

end 
end 

end 
end 

Fig. 17. Procedure PreserveSpans introduces edges into region R to preserve the 

spans of R. 

path. An invariant of the two procedures, established in the first line of 
PreserveSpans, is that graph R is transitively closed. The basic operation used 
in PreserveSpans and OrderDependentSpans is “AddEdgeAndClose(R, (a, b))“, 
whose first argument is a graph and whose second argument is an edge to be 
added to the graph. AddEdgeAndClose(R, (a, b)) carries out two actions: 

(1) edge (a, b) is inserted into R; 
(2) any additional edges needed to transitively close R are inserted into R. 

Because R is transitively closed, paths that force span orderings correspond to 
edges of R; furthermore, the cost of AddEdgeAndClose is quadratic (rather than 
cubic) in the number of vertices of R. 

Each edge of R can be marked or unmarked; the edges added to R by 
AddEdgeAndClose (by either 1 or 2) are unmarked. Edges are marked at line [l] 
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in OrderDependentSpans. An invariant of the while-loop in Order- 
DependentSpans is that, for each marked edge e, all spans for which e forces an 
ordering are appropriately ordered. Thus, after an unmarked edge (u, W) is 
selected (and marked), the invariant is reestablished as follows: line [2] generates 
all variables x for which both v and w are elements of an x-span (but not 
necessarily the same x-span); lines [3] and [4] iterate over all pairs of x-spans 
(represented by their heads), such that u is a member of the first span and w is 
a member of the second; line [5] orders the two spans as forced by the presence 
of edge (u, w). 

The initial call on OrderDependentSpans in PreserveSpans serves to introduce 
edges for all forced span orderings. The do-od-loop then implements a backtrack- 
ing algorithm that examines all choices for independent span pairs. Each pair of 
independent spans (represented by their span heads, say hl and h2) represents 
two possibilities-the elements of Span(hl, x) could precede the elements of 
Span(hp, x), or vice versa. The first possibility is represented by the call Add- 
EdgeAndClose(R, (h,, h,)), which introduces an edge directed from h, to h,; the 
second possibility (which is tried only in the backtracking step, guarded by the 
condition “R is cyclic and lEmpty(Stack)“) is represented by the call Add- 
EdgeAndClose(R, (h,, h,)). In both cases, OrderDependentSpans is called to 
introduce edges for all span orderings forced as a consequence of the new edge. 
(A single edge, such as (h,, hz), may force an ordering between spans other than 
those headed by hl and hz.) 

The information needed for backtracking is kept as a stack of triples: the graph 
R as it existed before a given “choice,” span head hl , and span head hp. 
Backtracking terminates with failure if R is cyclic and the stack is empty, because 
no alternative remains to be tried. When R is cyclic but the stack is not empty, 
one entry is popped from the stack and the “choice” is tried in the opposite 
direction. (Since there are only two choices to be tried for each pair of span 
heads, there is no Push before continuing the search with the second alternative.) 
PreserveSpans terminates with success if R is acyclic and there remain no 
independent x-span pairs. 

The cost of OrderDependentSpans can be expressed in terms of the following 
parameters: 

N the maximum number of vertices in a region, 
V the number of variables in the program, 
G the maximum number of spans of which any vertex is a member, 
S the maximum size of a span. 

Our statement of the complexity of OrderDependentSpans is based on the 
assumption that the set operations Insert, Delete, and MemberOf have unit cost, 
and that Union, Intersection, and Difference can be performed with linear cost. 
At most N2 edges can be inserted in R; for each edge, the processing cost is N*: 
the cost of reclosing R, plus the product of the costs of lines [2], [3], [4], and [5], 
which are O(V), O(G), O(G), and O(S), respectively. Thus, the cost of Order- 
DependentSpans is bounded by O(N* . (N2 + V - G2 . S)). 

PreserveSpans performs at least one call on OrderDependentSpans; if back- 
tracking is needed, there can be an additional factor of 2p, where P is the number 
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x :=o 
If/’ lhenx := 1 Ii 
y :=x 

x :=o 
II/’ (hen 8 

* 70 
II P 1hen x := 2 Ii 
I :=x 

A Bare B 

(a) 

lb) ’ 

Fig. 18. Illustration of interference due to failure in OrderRegion. 
Fragments of a base program and two variants, and the infeasible 
merged program dependence graph. The vertices of GM Cannot be 
ordered so as to preserve both the flow edge from “x := 1” to “y := 
x”, and the flow edge from “x := 2” to “z := n”. 

of pairs of independent ‘spans that remain after the initial call on Order- 
DependentSpans. 

It is possible to sidestep entirely the need for backtracking in PreserveSpans 
by allowing a limited amount of variable renaming to be performed. In particular, 
when two x-spans, s1 and s2, are independent, all occurrences of the name x in s1 
(as well as in any x-spans that overlap s1 in the region) can be replaced by a new 
name not appearing elsewhere in the program. This renaming removes all 
problematic choices, and thus PreserveSpans need never backtrack. The disad- 
vantage of this measure is that the integrated program will include variable 
names that did not appear in either variant, and thus conflicts with our goal that 
the integrated program be composed of exactly the statements and control 
structures that appear as components of the base program and its variants. 
Further work is needed to determine whether this technique will be necessary in 
practice. 

4.5.4 Examples of Interference Due to Infeasibility. In this section, we illustrate 
the two ways in which ReconstituteProgram can fail. Failure can occur in 
procedure OrderRegion because there is no acceptable ordering for the children 
of some vertex of the merged program dependence graph GM. This kind of 
infeasibility is illustrated in Figure 18. 

An attempt to integrate any programs Base, A, and I? that include the program 
fragments shown in Figure 18(a) would produce a merged PDG that includes the 
subgraph shown in Figure 18(b). OrderRegion would fail because the children of 
the vertex “if P” cannot be ordered so as to preserve both the flow edge from 
“x := 1” to ‘y := x” and the flow edge from “x := 2” to ‘3 := x.” 

Failure can also occur in ReconstituteProgram after acceptable orderings are 
found for the children of every vertex in GM. After all calls to OrderRegion 
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x := 1 
while P do y :=x end 

A 

while P do cd 

Bare 

(4 

(b) 

x := 1 
while P do 

y :=x 
x :=2 

end 

while P do x := 2 end 

B 

Cc) 

Fig. 19. Illustration of interference discovered in the final step of 
ReconstituteProgram. The merged dependence graph G,, shown in (b), is 
not identical to the dependence graph of program Q, shown in (c), which 
is the program generated from GM by ReconstituteProgram. 

succeed, TransformToSyntaxTree is used to produce a program P, P’s program 
dependence graph Gp is built, and Gp is compared to GM; failure occurs if GM and 
Gp are not identical. This kind of infeasibility is illustrated in Figure 19. 

Again, an attempt to integrate any programs Base, A, and B that include the 
program fragments shown in Figure 19(a) would produce a merged PDG that 
includes the subgraph shown in Figure 19(b). OrderRegion would succeed, and a 
program P that includes the program fragment shown in Figure 19(c) would be 
produced. P’s program dependence graph would include the subgraph shown in 
Figure 19(c), which is not identical to the subgraph shown in Figure 19(b); thus 
ReconstituteProgram would fail. 

4.6 Recap of the Program Integration Algorithm 

The function Integrate, given in Figure 20, takes as input three programs, A, B, 
and Base, where A and B are variants of Base. Whenever the changes made to 
Base to create A and B do not interfere, function Integrate produces a program 
P that integrates A and B. 
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Bax,A,B.M:programs 
G&s G,, . Cs , GM : program dcpcndcncc graphs 

I A/ = FAILURE then reIurn( FAILURE) Ii 
return(M) 

end 

Fig. 20. The function Integrate takes as input three programs A, B, and Base, 
where A and B are variants of Base. Whenever the changes made to Base to 
create A and B do not interfere, function Integrate produces a program P that 
integrates A and B. 

The following theorem characterizes the execution behavior of the integrated 
program produced by function Integrate in terms of the behaviors of the base 
program and the two variants [27, 281. 

THEOREM (Integration Theorem [27, 281). If A and B are two uariants of Base 
for which integration succeeds (and produces program M), then for any initial state 
CT on which d, B, and Base all halt, (1) M halts on a; (2) if x is a variable defined 
in the final state of A for which the final states of A and Base disagree, then the 
final state of M-agrees with the final state of A on x; (3) if y is a variable defined 
in the final state of B for which the final states of B and Base disagree, then the 
final state of M agrees with the final state of B on y; and (4) if z is a variable on 
which the final states of A, B, and Base agree, then the final state of M agrees with 
the final state of Base on z. 

Restated less formally, M preserves the changed behaviors of both A and B 
(with respect to Base) as well as the unchanged behavior of all three. 

The cost of algorithm Integrate breaks down into three components: (1) 
building the program dependence graphs for Base, A, and B; (2) building the 
merged program dependence graph GM and determining whether the changed 
behaviors of A and B are preserved in G M; and (3) reconstituting a program 
from GM. 

(1) Building a program dependence graph is dominated by the cost of computing 
reaching definitions; for the limited language considered here, this has cost 
O((# program components) . (# of assignment statements)). 

(2) Function AffectedPoints (Figure 5) is linear in the size of its arguments; 
slicing a graph is linear in the size of the slice. Consequently, the cost of 
creating the merged graph GM is linear in the sum of the sizes of GBnse, GA, 
and GB. Similarly, the cost of testing for interference by the test described in 
Section 4.4 is linear in the sum of the sizes of GA, GB, and GM. 

(3) The cost of ReconstituteProgram is dominated by the cost of the calls on 
PreserveSpans made by OrderRegion. If no backtracking is needed, the cost 
of ReconstituteProgram is O(R - N2 . (N2 + V - G2 . S)), where R is the 
number of regions in the program, and other quantities are as described in 
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Section 4.5.3; backtracking can contribute an additional exponential factor 
for each region. 

5. APPLICATIONS TO PROGRAMMING IN THE LARGE 

An environment for programming in the large addresses problems of organizing 
and relating designs, documentation, individual software modules, software re- 
leases, and the activities of programmers. The manipulation of related versions 
of programs is at the heart of these issues. In many respects, program integration 
is the key operation in an environment to support programming in the large. 
Three specific applications for program integration are discussed below. 

5.1 Propagating Changes Through Related Versions 

The program-integration problem arises when a family of related versions of a 
program has been created (for example, to support different machines or different 
operating systems), and the goal is to make the same change (e.g., an enhance- 
ment or a bug-fix) to all of them. Our program-integration algorithm provides a 
way for changes made to the base version to be automatically installed in the 
other versions. 

For example, consider the diagram shown in Figure 21, where Figure 21(a) 
represents the original development tree for some module (branches are num- 
bered as in RCS [29]). 

In Figure 21(b), the variant numbered “1.1.2.1” represents the enhanced version 
of the base program “1.1” (created by editing a copy of base program “1.1”). 
Variant “1.1.2.2,” which is obtained by integrating “1.1.2.1” and “1.2” with respect 
to “1.1,” represents the result of propagating the enhancement to “1.2.” Figure 
21(c) represents the new development history after all integrations have been 
performed and the enhancement has been propagated to all versions. 

5.2 Separating Consecutive Program Modifications 

Another application of program integration permits separating consecutive edits 
on the same program into individual edits on the original base program. For 
example, consider the case of two consecutive edits to a base program 0; let 0 + 
A be the result of the first modification to 0 and let 0 + A + B be the result of 
the modification to 0 + A. Now suppose we want to create a program 0 + B that 
includes the second modification but not the first. This is represented by situation 
(a) in the following diagram: 

0, \ 
‘9 O+B O+A+ 

L / 
O+A+B’ 

O+A 
J L 

B 0 \ 
‘24 

/ 

0 + BL: 

64 (b) 
Under certain circumstances, the development-history tree can be rerooted so 
that 0 + A is the root; the diagram is turned on its side and becomes a program- 
integration problem (situation (b)). The base program is now 0 + A, and the two 
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Fig. 21. Propagating changes through a development-history tree. 

variants of 0 + A are 0 and 0 + A + B. Instead of treating the differences 
between 0 and 0 + A as changes that were made to 0 to create 0 + A, they are 
now treated as changes made to 0 + A to create 0. For example, when 0 is the 
base program, a statement s that occurs in 0 + A but not in 0 is a “new” 
statement arising from an insertion; when 0 + A is the base program, we treat 
the missing s in 0 as if a user had deleted s from 0 + A to create 0. Version 0 + 
A + B is still treated as being a program version derived from 0 + A. 0 + B is 
created by integrating 0 and 0 + A + B with respect to base program 0 + A. 

5.3 Optimistic Concurrency Control 

An environment for programming in the large must provide concurrency control; 
that is, it must resolve simultaneous requests for access to a program. Traditional 
database approaches to concurrency control assume that transactions are very 
short-lived, and so avoid conflict using locking mechanisms. This solution is not 
acceptable in programming environments where transactions may require hours, 
days, or weeks. 

An alternative to locking is the use of an optimistic concurrency control strategy: 
grant all access requests and resolve conflicts when the transactions complete. 
The success of an optimistic concurrency control strategy clearly depends on the 
existence of an automatic program-integration algorithm to provide acceptable 
conflict resolution. 

6. RELATION TO PREVIOUS WORK 

We are not aware of any other work that permits the integration of program 
variants so as to preserve changes to a base program’s behavior. One piece of 
work that addresses a related, but different, problem is [7]; however, it treats the 
integration of program extensions, not program modifications: 

A program extension extends the domain of a partial function without altering 
any of the initially defined values, while a modification redefines values that were 
defined initially [ 71. 

In [7], functions A and B are merged without regard to Base. The function 
that results from the merge preserves the (entire) behavior of both; thus, A and 
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x :=I0 
a :=x 
x := 12 

A 

x :=12 

BLISC 

(a) 

.r:=ll 
6 :=x 
J :=12 

B 

(c) 

Fig. 22. A base program and two variants, the program dependence graphs that would 
be built for the three programs if program dependence graphs were to include anti- and 
output dependence edges, and the merged graph. Control dependence edges are shown 
in boldface; flow dependence edges are shown using (unlabeled) arrows; output depen- 
dence edges are shown using arrows labeled “0”; antidependence edges are shown using 
arrows labeled “-1”. 

B cannot be merged if they conflict at any point where 60th are defined. In 
contrast, this paper addresses the integration of modifications (in the sense 
defined in [7], quoted above). With our technique, a program that results from 
merging A and B preserves the changed behavior of A with respect to Base, the 
changed behavior of B with respect to Base, and the unchanged behavior common 
to all three. 

In the rest of this section, we discuss some technical differences between the 
program dependence graphs and operations on them that are used in this paper 
and those used by others. 

6.1 Program Dependence Graphs 

There are several reasons for our use of program dependence graphs that include 
def-order dependence edges but omit anti- and output dependence edges. The 
basic problem is that, for the purposes of program integration, anti- and output 
dependences impose unnecessary ordering constraints. Two consequences of this 
problem are illustrated in Figures 22 and 23. 

Figure 22 shows a base program and two variants, the program dependence 
graphs that would be built for the three programs if program dependence graphs 
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Fig. 23. Two strongly equivalent programs with different 
sets of anti- and output dependences (antidependences are 
shown to the right of the program using arrows labeled “-1”; 
output dependences are shown to the left of the program 
using arrows labeled “0’7. The programs have the same 
(empty) sets of def-order dependences, and the same sets of 
flow dependences. 

were to include anti- and output dependence edges, and the merged graph that 
combines the changed computations of the variants with the computation com- 
mon to all three programs. The merged graph is infeasible; it is not possible to 
order the assignments to x so as to preserve the merged graph’s anti- and output 
dependences. In contrast, if anti- and output dependences are omitted from the 
program dependence graphs of this example, the merged graph is feasible and 
corresponds to both of the programs shown in Figure 23 (ignore the anti- and 
output dependence annotations). 

Figure 23 illustrates a second advantage of using def-order dependences rather 
than anti- and output dependences; using def-order dependences allows a larger 
class of equivalent programs to have the same program dependence graph. Figure 
23 shows two strongly equivalent programs that have different sets of anti- and 
output dependences (and thus would have different program dependence graphs 
if such graphs included anti- and/or output dependences). The programs have 
the same (empty) sets of def-order dependences and the same sets of flow 
dependences; thus, they have the same program dependence graphs, using the 
definition from this paper. 

6.2 Operations on Program Dependence Graphs 

The problem of generating program text from a program dependence graph has 
previously been addressed only in a context that admits a considerably simpler 
solution. In previous work, the program dependence graph is known to correspond 
to some program. For example, in the work on program slicing, because the slice 
is derived from a program dependence graph whose text is known, when creating 
the textual image of a slice, it suffices to take the text of the original program 
and delete all tokens that do not correspond to components of the slice [24]. 

Our work requires a solution to a more general problem because the final 
program dependence graph is created by merging three other program dependence 
graphs. The merged program dependence graph may not correspond to any 
program at all, but even if it does, this program is not known a priori, when 
ReconstituteProgram is invoked. As shown in [18], the problem of deciding 
whether a PDG is feasible is NP-complete. 

Ferrante and Mace describe an algorithm for generating sequential code for 
programs written in a language with a multiple GOT0 operator and impose the 
condition that the algorithm not duplicate any code in this process [lo]. Programs 
written in the language they consider have a close correspondence to the subgraph 
of control dependences of a program dependence graph. They discuss the appli- 
cation of their algorithm to compiling a program dependence graph for execution 
on a sequential machine; however, they assume that only a certain class of 
optimizing transformations has been applied to the original (feasible) PDG. They 
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assert that the transformations of this class preserve the property that the 
resulting graph is feasible. Thus, while their results are relevant to generalizing 
ReconstituteProgram to work on PDGs generated from programs with arbitrary 
control flow [ll], they will have to be extended to account for the possibility of 
infeasibility. 

7. EXTENSIONS AND FUTURE WORK 
In this paper, the problem of program integration is studied in an extremely 
simplified setting, For this reason, the algorithm described in the paper is not 
yet applicable to real programming languages; however, we feel that the approach 
that we have developed provides a strong foundation for creating a system that 
supports program integration. In this section, we describe some of the issues we 
have addressed in extending our work and outline some problems for future 
research. 

7.1 Applicability to Realistic Languages 

Among the obvious deficiencies of the present study are the absence of numerous 
programming constructs and data types found in languages used for writing “real” 
programs. Certainly, one area for further work is to extend the integration 
method to handle additional programming language constructs, such as declara- 
tions, break statements, and I/O statements, as well as other data types, such 
as records and arrays. 

The major challenge when extending the integration method to handle other 
programming language constructs is devising a suitable extension of the program 
dependence representation. For example, the simplest way of handling arrays is 
to treat an update to any cell as a conditional update to the entire array. However, 
this strategy would preclude the integration of some noninterfering variants. 
Analyses of array index expressions developed for vectorizing compilers provide 
sharper information about the actual dependences among array references 
[2, 3, 6, 311. Because the definition of program dependence graphs that we 
use for program integration differs from that used in previous work, previous 
results in this area will require adaptation. 

We have recently made progress towards handling languages with procedure 
calls and pointer-valued variables. Our results in these areas are summarized 
below. 

7.1.1 Interprocedural Slicing Using Dependence Graphs. As a first step toward 
extending our integration algorithm to handle languages with procedures, we 
have devised a multiprocedure dependence representation and developed a new 
algorithm for interprocedural slicing that uses this representation [19]. The 
algorithm generates a slice of an entire system, where the slice may cross the 
boundaries of procedure calls. It is both simpler and more precise than the one 
previous algorithm given for interprocedural slicing [30]. 

The method described in [30] does not generate a precise slice because it fails 
to account for the calling context of a called procedure. The imprecision of the 
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method can be illustrated using the following example: 

program Main 
sum := 0; 
x := 1; 
while n < 11 do 

procedure Add(a, b) 

call Add(sum, x); 
a := a + b 

call Add& 1) 
return 

end 
end& sum) 

Using the algorithm from [30] to slice this system with respect to variable x at 
the end of program Main, we obtain everything except the final use of sum at 
the end of program Main: 

program Main 
sum := 0; 
x := 1; 
while x < 11 do 

call Add(sum, x); 
call Add& 1) 

end 
end(x) 

procedure Add(a, b) 
a := a + b 

return 

However, further inspection shows that the value of x at the end of program 
Main is not affected by the first call on Add in Main, nor by the initialization of 
sum in Main. The reason these components are included in the slice is (roughly) 
the following: the statement “call Add@, 1)” in program Main causes the slice 
to “descend” into procedure Add. When the slice reaches the beginning of Add, 
it “ascends” to all sites that call Add, both the site in Main at which it “descended” 
as well as the (irrelevant) site “call Add(sum, x).” 

In contrast, our algorithm for interprocedural slicing correctly accounts for the 
calling context of a called procedure; in the example give above, the first call on 
Add in Main and the initialization of sum in Main are both correctly left out of 
the slice: 

program Main 
x := 1; 
while x < 11 do 

call Add(x, 1) 
end 

procedure Add(a, b) 
a := a + b 

return 

end(n) 

A key element of this algorithm is an auxiliary structure that represents calling 
and parameter-linkage relationships. This structure, called the linkage grammar, 
takes the form of an attribute grammar. Transitive dependences due to procedure 
calls are determined using a standard attribute-grammar construction: the com- 
putation of the nonterminals’ subordinate characteristic graphs. These depen- 
dences are the key to the slicing algorithm; they permit the algorithm to “come 
back up” from a procedure call (e.g., from procedure Add in the above example) 
without first descending to slice the procedure (it is placed on a queue of 
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procedures to be sliced later). This strategy prevents the algorithm from ever 
ascending to an irrelevant call site [19]. 

7.1.2 Dependence Analysis for Pointer Variables. To incorporate pointer-val- 
ued variables, an analysis of pointer usage is necessary; without the information 
that such an analysis provides, an update via a dereferenced pointer has to be 
considered a potential update to every location in memory. 

We have devised a method for determining data dependences between program 
statements for programming languages that have pointer-valued variables (e.g., 
Lisp and Pascal). The method determines data dependences that reflect the 
usage of heap-allocated storage in such languages, which permits us to build (and 
slice) program dependence graphs for programs written in such languages. The 
method accounts for destructive updates to fields of a structure, and thus is not 
limited to simple cases where all structures are trees or acyclic graphs; the method 
is applicable to programs that build up structures that contain cycles. 

Unlike the situation that exists for programs with (only) scalar variables- 
where there is a fixed “layout” of memory-for programs that manipulate heap- 
allocated storage, not all accessible memory locations are named by program 
variables. In the latter situation, new memory locations are allocated dynamically 
in the form of cells taken from the heap. To compute data dependences between 
constructs that manipulate and access heap-allocated storage, our starting point 
is the method described by Jones and Muchnick in [20], which, for each program 
point 9, determines a set of structures that approximates the different “layouts” 
of memory that can possibly arise at q during execution. We extend the domain 
employed in the Jones-Muchnick abstract interpretation so that the (abstract) 
memory locations are labeled by the program points that set their contents. Flow 
dependences are then determined from these memory layouts according to the 
component labels found along the access paths that must be traversed to evaluate 
the program’s statements and predicates during execution. 

7.2 An Interactive Integration Tool 

It remains to be seen how often integrations of real changes to programs of 
substantial size can be automatically accommodated by our integration technique. 
Due to fundamental limitations on determining information about programs via 
data-flow analysis and on testing equivalence of programs, both the procedure 
for identifying changed computations and the test for interference must be safe 
rather than exact. Consequently, the integration algorithm will report interfer- 
ence in some cases where no real conflict exists. Whether or not fully automatic 
integration is a realistic proposition can be determined only through experience; 
an integration tool must be built and used on real programs. 

A successful integration tool will certainly have to provide facilities for pro- 
grammers to cope with reported interference-facilities that would enable diag- 
nosing spurious interference of the kind described above, as well as aids for 
resolving true conflicts. For these situations, it is not enough merely to detect 
and report interference; one needs a tool for semiautomatic, interactive integration 
so that the user can guide the integration process to a successful completion. 
Some rudimentary diagnostic facilities have been incorporated in a prototype 
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program-integration tool embedded in an editor created using the Synthesizer 
Generator [25, 261. The tool’s integration command invokes the integration 
algorithm on a base program and two variants, and reports whether the variant 
programs interfere. If interference is reported, it is possible for the user to 
examine sites of potential conflicts-sites which may or may not represent actual 
conflicts. (Roughly speaking, the sites reported are those at which slices of the 
two variants become “intertwined” in the merged graph.) The tool’s slice com- 
mand makes it possible for the user to display the elements of program slices; 
slicing can be invoked to provide further information about potential integration 
conflicts. 

Further work on this tool is needed to provide capabilities for the user to 
resolve conflicts and create a satisfactory merged program. Renaming program 
variables and suppressing dependences between program components would be 
two ways a user might interact with an interactive integration tool. Conflict- 
resolution facilities could operate directly on the merged program dependence 
graph, which is built by the integration algorithm whether or not the variants 
interfere. 

7.3 Alternative Program-Integration Criteria 

We anticipate that it will be useful to define variations on the technique presented 
in this paper. It will undoubtably be desirable for users to be able to supply 
pragmas to furnish additional information to the program-integration system. 
For example, a user-supplied assertion that a change to a certain module in one 
variant does not affect its functionality (only its efficiency, for example) could 
be used to limit the scope of slicing and interference testing. 

A somewhat different possibility exists when one can anticipate that a suc- 
cessfully integrated program will never have to be examined by a human pro- 
grammer. Under these conditions, there are perhaps more liberal notions of 
program integration; for example, the integration procedure should be permitted 
to rename freely any variable that occurs in the program. 

Finally, there may be cases where it is desirable for programs produced through 
integration to have somewhat different semantic properties than those guaran- 
teed by the algorithm given above. For example, consider the integration of 
programs that contain I/O statements. I/O statements could be treated as 
accesses to two special objects input and output, which may be thought of as 
streams that are updated whenever operations are performed on them. For 
example, an output statement “write x” could be treated as an assignment 
“Output := output ] StringValueOf(n),” where the symbol “ ] ” represents string 
concatenation. Consequently, output statements would be treated just like as- 
signment statements in terms of detecting changes to a base program’s behavior, 
and the relative order of output statements appearing in a program P would be 
captured in GP by flow dependence edges [24]. Unfortunately, the integration of 
a base program with two variants that both affect the output stream would fail 
due to interference. Thus, it may be useful to develop an alternative representa- 
tion for output statements in dependence graphs that would allow the creation 
of an integrated program that would not necessarily preserve the output stream 
of either variant, but instead produce an interleaving of their output streams. In 
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cases where interleaved output is an appropriate property, this might make it 
possible to perform integrations that would otherwise fail. 
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