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Abstract  

An important  problem that  arises in pa th  oriented testing is 
the generation of test da ta  that  causes a program to follow 
a given path. In this paper, we present a novel program exe- 
cution based approach using an iterative relaxation method 
to address the above problem. In this method, test da ta  
generation is initiated with an arbitrarily chosen input from 
a given domain. This input is then iteratively refined to 
obtain an input on which all the branch predicates on the 
given path  evaluate to the desired outcome. In each iteration 
the program statements relevant to the evaluation of each 
branch predicate on the pa th  are executed, and a set of lin- 
ear constraints is derived. The constraints are then solved 
to obtain the increments for the input. These increments 
are added to the current input to obtain the input for the 
next iteration. The relaxation technique used in deriving 
the constraints provides feedback on the amount by which 
each input variable should be adjusted for the branches on 
the path  to evaluate to the desired outcome. 

When the branch conditions on a pa th  are linear 
functions of input variables, our technique either finds a 
solution for such paths in one iteration or it guarantees that  
the path is infeasible. In contrast, existing execution based 
approaches may require an unacceptably large number of 
iterations for relatively long paths because they consider 
only one input variable and one branch predicate at a time 
and use backtracking. When the branch conditions on a 
path are nonlinear functions of input variables, though it 
may take more then one i teration to derive a desired input, 
the set of constraints to be solved in each iteration is linear 
and is solved using Gaussian elimination. This makes our 
technique practical and suitable for automation. 

Keywords  - path  testing, dynamic test da ta  generation, 
predicate slices, input dependency set, predicate residuals, 
relaxation methods. 
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1 In troduc t ion  

Software testing is an important  stage of software develop- 
ment. It provides a method to establish confidence in the 
reliability of software. It is a time consuming process and 
accounts for 50% of the cost of software development [10]. 
Given a program and a testing criteria, the generation of 
test da ta  that  satisfies the selected testing criteria is a very 
difficult problem. If test da ta  for a given testing criteria for 
a program can be generated automatically, it can relieve the 
software testing team of a tedious and difficult task, reduc- 
ing the cost of the software testing significantly. Several ap- 
proaches for automated test da ta  generation have been pro- 
posed in the literature, including random [2], syntax based 
[5], program specification based [1, 9, 12, 13], symbolic eval- 
uation [4, 6] and program execution based [7, 8, 10, 11, 14] 
test da ta  generation. 

A particular type of testing criteria is path  coverage,  
which requires generating test da ta  that  causes the program 
execution to follow a given path.  Generating test da ta  for a 
given program path  is a difficult task posing many complex 
problems [4]. Symbolic evaluation [4, 6] and program exe- 
cution based approaches [7, 10, 14] have been proposed for 
generating test da ta  for a given path.  In general, symbolic 
evaluation of statements along a pa th  requires complex alge- 
braic manipulations and has difficulty in handling arrays and 
pointer references. Program execution based approaches can 
handle arrays and pointer references efficiently because ar- 
ray indexes and pointer addresses are known at each step 
of program execution. But, one of the major  challenges to 
these methods is the impact of infeasible paths. Since there 
is no concept of inconsistent constraints in these methods, 
a large number of iterations can be performed before the 
search for input is abandoned for an infeasible path. Exist- 
ing program execution based methods [7, 10] use function 
minimization search algorithms to locate the values of input 
variables for which the selected pa th  is traversed. They con- 
sider one branch predicate and one input variable at a time 
and use backtracking. Therefore, even when the branch con- 
ditions on the path  are linear functions of input, they may 
require a large number of iterations for long paths. 

In this paper, we present a new program execution based 
approach to generate test da ta  for a given path. It is a novel 
approach based on a relaxation technique for iteratively re- 
fining an arbitrarily chosen input. The relaxation technique 
is used  in numerical analysis to improve upon an approx- 
imate solution of an equation representing the roots of a 
function [15]. In this technique, the function is evaluated at 
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the approximate solution and the resulting value is used to 
provide feedback on the amount by which the values in the 
approximate solution should be adjusted so that it becomes 
an exact solution of the equation. If the function is lin- 
ear, this technique derives an exact solution of the equation 
from an approximate solution in one iteration. For nonlin- 
ear functions it may take more than one iteration to derive 
an exact solution from an approximate solution. 

In our method, test data generation for a given path in a 
program is initiated with an arbitrarily chosen input from a 
given domain. If the path is not traversed when the program 
is executed on this input, then the input is iteratively refined 
using the relaxation technique to obtain a new input that 
results in the traversal of the path. To apply the relaxation 
technique to the test data generation problem, we view each 
branch condition on the given path as a function of input 
variables and derive two representations for this function. 
One representation is in the form of a subset of input and 
assignment statements along the given path that must be ex- 
ecuted in order to evaluate the function. This representation 
is computed as a slicing operation on the data dependency 
graph of the program statements on the path, starting at 
the predicate under consideration. Therefore, we refer to it 
as a p r e d i c a t e  slice. Note that a predicate slice always 
provides an exact representation of the function computed 
by a branch condition. Using this exact representation in 
the form of program statements, we derive a l inea r  a r i t h -  
m e t i c  r e p r e s e n t a t i o n  of the function computed by the 
branch condition in terms of input variables. An arithmetic 
representation of the function in terms of input variables 
is necessary to enable the application of numerical analysis 
techniques since a program representation of the function is 
not suitable for this purpose. If the function computed by 
a branch condition is a linear function of the input, then its 
linear arithmetic representation is exact. When the function 
computed by a branch condition is a nonlinear function of 
the input, its linear arithmetic representation approximates 
the function in the neighborhood of the current input. 

These two representations are used to refine an arbitrar- 
ily chosen input to obtain the desired input as follows. Let 
us assume that by executing a predicate slice using the arbi- 
trarily chosen input, we determine that a branch condition 
does not evaluate to the desired outcome. In this case, the 
evaluation of the branch condition also provides us with a 
value called the p r e d i c a t e  r e s idua l  which is the amount 
by which the function value must change in order to achieve 
the desired branch outcome. Now using the linear arith- 
metic representation and the predicate residual, we derive 
a l inear  c o n s t r a i n t  on  t h e  i n c r e m e n t s  for the current 
input. One such constraint is derived for each branch con- 
dition on the path. These linear constraints are then solved 
simultaneously using Gaussian elimination to compute the 
increments for the current input. A new input is obtained 
by adding these increments to the current input. Since the 
constraints corresponding to all the branch conditions on 
the path are solved simultaneously, our method attempts to 
change the current input so that all the branch predicates 
on the path evaluate to their desired outcomes when their 
predicate slices are executed on the new input. 

If all the branch conditions on the path are linear func- 
tions of the input (i.e., the linear arithmetic representations 
of the predicate functions are exact), then our method either 
derives a desired input in one iteration or guarantees that 
the path is infeasible. This result has immense practical 
importance in accordance with the studies reported in [6]. 

A case study of 3600 test case constraints generated for a 
group of Fortran programs has shown that the constraints 
are almost always linear. For this large class of paths our 
method is able to detect infeasibility, even though the prob- 
lem of detecting infeasible paths is unsolvable in general. If 
such a path is feasible, our method is extremely efficient as 
it finds a solution in exactly one iteration. 

If at least one branch condition on the path is a nonlinear 
function of the input, then the increments for the current in- 
put that are computed by solving the linear constraints on 
the increments may not immediately yield a desired input. 
This is because the set of linear constraints on the incre- 
ments are derived from the linear arithmetic representations 
(which in this case are approximate) of the corresponding 
branch conditions. Therefore it may take more than one 
iteration to obtain a desired input. Even when the branch 
predicates on the path are nonlinear functions of the input, 
the set of equations to be solved to obtain a new input from 
the current input are linear and are solved by Gaussian elim- 
ination. Gauss elimination algorithm is widely implemented 
and is an established method for solving a system of linear 
equations. This makes our technique practical and suitable 
for automation. 

The important contributions of the novel method pre- 
sented in this paper are: 

• It is an innovative use of the traditional relaxation tech- 
nique for test data generation. 

• If all the conditionals on the path are linear functions of 
the input, it either generates the test data in one iter- 
ation or guarantees that  the path is infeasible. There- 
fore, it is efficient in finding a solution as well as pow- 
erful in detecting infeasibility for a large class of paths. 

• It is a general technique and can generate test data 
even if conditionals on the given path are nonlinear 
functions of the input. In this case also, the number of 
iterations with inconsistent constraints can be used as 
an indication of a potential infeasible path. 

• The set of constraints to be solved in this method is 
always linear even though the path may involve condi- 
tionals that are non-linear functions of the input. A set 
of linear constraints can be automatically solved using 
Gaussian elimination whereas no direct method exits to 
solve a set of arbitrary nonlinear constraints. Gaussian 
elimination has been widely implemented and experi- 
mented algorithm. This makes the method practical 
and suitable for automation. 

• It is scalable to large programs. The number of pro- 
gram executions required in each iteration are indepen- 
dent of the path length and are bounded by number of 
input variables. The size of the system of linear equa- 
tions to be solved using Gaussian elimination increases 
with the number of branch predicates on the path, but 
the increase in cost is significantly less than that of the 
existing techniques. 

The organization of this paper is as follows. An overview of 
the method is presented in the next section. The algorithm 
for test data generation is described in section 3. It is illus- 
trated with examples involving linear and nonlinear paths, 
loops and arrays. Related work is discussed in section 4. 
The important features of the method are summarized and 
our future work is outlined in section 5. 
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2 Overview 

We define a program module M as a directed graph 
G = ( N , E , s , e ) ,  where N is a set of nodes, E is a set of 
edges, s is a unique entry node and e is a unique exit node 
of M. A node n represents a single s ta tement  or a con- 
ditional expression, and  a possible transfer of control from 
node ni to node n j  is mapped  to an  edge (n i , n j )  E E. A 
Path P = {nt = s, n2, ..., nh+l } E G is a sequence of nodes 
such that  (ni ,ni+l)  E E, for i = 1 to k. 

A variable ik is an  input variable of the module M if it 
either appears in an input  s ta tement  of M or is an  input  
parameter  of M. The domain  Dk of input  variable ik is 
the set of all possible values it  can hold. An input  vector 
I = (it ,  i2..., ira) E (D1 x D2 x ...D,~), where m is the number  
of inputs,  is called a Program Input. In this paper,  we may 
refer to the program input by input and  use these terms 
interchangeably. 

A conditional expression in a multi-way decision state- 
ment  is called a Branch Predicate. Without  loss of gen- 
erality, we assume that  the branch predicates are simple re- 
lational expressions (inequalities and  equalities) of the form 
E1 op E2 , where El and  E2 are ar i thmetic  expressions, 
and op is one of {<,  <,  >,  >,  = ,  ¢ ) .  

If a branch predicate contains boolean variables, we rep- 
resent the "true" value of the boolean variable by a numeric 
value zero or greater and  the "false" value by a negative nu-  
meric value. If a branch predicate on a pa th  is a conjunct ion 
of two or more boolean variables such as in (A A N D  B), 
then such a predicate is considered as multiple branch predi- 
cates A > 0 and B > 0 that  must  s imultaneously be satisfied 
for the traversal of t-he path.  If a branch predicate on a pa th  
is a disjunction of two or more boolean variables such as in 
(A OR B),  then at  a t ime only one of the branch predi- 
cates A _> 0 or B > 0 is considered along with other  branch 
predicates on the path.  If a solution is not  found with one 
branch predicate then the other one is tried. 

Each branch predicate Et op E2 can be transformed 
to the equivalent branch predicate of the form F op O, 
where F is an ar i thmetic  expression E1 -- E2. Along a given 
path, F represents a real valued funct ion called a Predicate 
F u n c t i o n .  F may be a direct or indirect function of the 
input  variables. To il lustrate this, let us consider the branch 
predicate 

B P 2  : (W + Z)  > 100 

for the conditional s ta tement  P2 in the example program in 
Figure 1. The predicate funct ion F2  corresponding to the 
branch predicate B P 2  is 

F2  : W + Z -  100. 

Along pa th  P = { 0, 1, P1,  2, P2,  4, 5, 6, P4,  9 }, the 
predicate function F2  : W + Z - 100 indirectly represents 
the function 2 X -  2 Y +  Z -  100 of the input  variables X, Y, Z.  
We now state the problem being addressed in this paper: 

Problem Statement:  Given a program path P which 
is traversed for certain evaluations (true or false) of 
branch predicates B PI , B P2 . . .  B P,~ along P,  generate 
a program input I = (i~, i2 .... ira) E (Dt x D2 x ...Din) 
that causes the branch predicates to evaluate such that 
P is traversed. 

We present a new method  for generat ing a program input  
such that  a given pa th  in a program is traversed when the 

program is executed using this input .  In this method,  test 
da ta  generat ion is ini t ia ted with an  arbitrari ly chosen input  
from a given domain.  If the given pa th  is not  traversed 
on this input ,  a set of l inear constraints  on increments 
to the input  are derived using a relaxat ion method.  The 
increments  obta ined by solving these constraints  are added 
to the input  to ob ta in  a new input .  If the pa th  is traversed 
on the new input  then  the method  terminates.  Otherwise, 
the steps of refming the input  are carried out iteratively to 
obta in  the desired input .  We now briefly review the relax- 
at ion technique as used in numerical  analysis for refining 
an  approximation to the solution of a l inear equation. 

The Relaxation Technique 

Let (zo, y0) be an  approximat ion to a solution of the linear 
equat ion 

ax + by + c = 0. (1) 

In general, subs t i tu t ing  (xo, y0) in the lhs of the above equa- 
t ion would result  in a non  zero value r0 called the residual, 
i.e., 

axo + byo + c = to. 

If increments Ax  and  Ay for xo and  y0 are computed such 
that  they satisfy the l inear constraint  given by 

a A x  + bAy = - r 0 ,  

then, 

a(~0 + A~) + b(y0 + Ay) + c = 0. 

Therefore, 

(Xl, yt)  = (z0 + Ax,  y0 + Ay) 

is a solution of equat ion (1). 

In order to formulate the test da t a  generation problem 
as a relaxation technique problem, we view the predicate 
function corresponding to each branch predicate on the 
pa th  as a function of program input .  To apply the above 
relaxation technique, a Linear Arithmetic  Represen- 
tation in terms of the relevant input  variables is required 
for each predicate function. We first derive an  exact 
program representat ion called a Predicate Slice for the 
function computed by each predicate funct ion and then use 
it to derive a l inear ar i thmet ic  representation.  The two 
representat ions are used in an  innovative way to refine the 
program input .  

The Predicate Slice 

The exact program representat ion of a predicate function, 
the Predicate Slice, is defined as follows: 

Definition: The Predicate Slice S(BP,  P)  of a branch 
predicate B P  on a pa th  P is the set of s ta tements  that  
compute values upon  which the value of B P  may be 
directly or indirectly da ta  dependent  when execution 
follows the pa th  P .  

In other words, S(BP,  P)  is a slice over da ta  dependencies 
of the branch predicate B P  using a program consisting of 
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O: read(X,Y,Z) 
I: U = ( X - Y ) * 2  
PI :  if( X > Y ) then O: read(X,Y,Z) 
2: W = U Statements  in Predicate Slice S ( B P I ,  P) 
3: else W = Y endif 
P2: i f ( W + Z )  > 100then 
4: X = X - 2  
5: Y = Y + W 0: read(X,Y,Z) 
6: write("Linear") 1: U = ( X - Y ) * 2 
P3: elseif ( X 2 + Z 2 > 100 ) then 2: W = U 
7: Y = X * Z +-1 Statements  in Predicate  Slice S(BP2,  P) 
8: write(" Nonlinear: Quadratic") 

endif 
P4: i f ( U  > 0 )  then 
9: write(U) O: read(X,Y,Z) 
Ph: e l s e i f ( Y - S i n ( Z ) ) > 0 t h e n  1 : U = ( X - Y ) * 2  
10: write('Nonlinear: Sine") Statements  in Predicate Slice S(BP4,  P)  

endif 

Figure 1: An Example Program and Predicate Slices on a path P={0,1,P1,2,P2,4,5,6,P4,9) 

only input and assignment statements preceding B P  on the 
path P. We illustrate the above definition using the example 
program in Figure 1. Consider the path P 

P = {0, 1, P1, 2, P2, 4, 5, 6, P4, 9). 

Let BPi  denote the i th branch predicate along the path P. 
The predicate slices corresponding to the branch predicates 
BP1, BP2 and BP4 along path P are: 

S(BP1, P) = {0}; 
S(BP2, P) = {0, 1, 2}; 
S(BP4, P) = {0, 1}. 

As illustrated by the above examples, predicate slices 
include only input and assignment statements. The value 
of a predicate function for an input can be computed by 
executing the corresponding predicate slice on the input. 

Note that a predicate slice is not a conventional static 
slice since it is computed over the statements along a path. 
It is also not a dynamic slice because it is computed stat- 
ically using the input and assignment statements along a 
path and is not as precise as the dynamic slice. To illustrate 
the latter we consider the code segment given in Figure 2: 

input(I, J, Y); 
A [ I ] =  Y; 
If (A[J] > 0) then...; 

Figure 2: A code segment on a path using an array. 

When I ~ J, the evaluation of BP: (A[J] > 0) is not data de- 
pendent on the assignment statement. Whereas, if I = J, the 
evaluation of B P  is data dependent on the assignment state- 
ment. Therefore, the predicate slice for the branch predicate 
B P  will consist of the input statement as well the assign- 
ment statement. In other words, the predicate slice is a path 
oriented static slice. 

The concept of predicate slice enables us to evaluate the 
outcome of each branch predicate on the path irrespective 
of the outcome of other branch predicates. The predicate 
slices for the branch predicates on the path can be executed 

using an arbitrary input even though the path may not be 
traversed on that input. This is possible because there are 
no conditionals in a predicate slice. After execution of a 
predicate slice on an input, the value of the corresponding 
predicate function can be computed and the branch outcome 
evaluated. 

There is a correspondence between the outcomes of the 
execution of the predicate slices on an input and the traver- 
sal of the the path on that  input. If all the branch predicates 
on the path evaluate to their desired outcomes, by executing 
their respective predicate slices on an input and computing 
the respective predicate functions, the path will be traversed 
when the program is executed using this input. If any of 
the branch predicates on the path does not evaluate to its 
desired outcome when its predicate slice is executed on an 
input, the path will not be traversed when the program is 
executed using this input. 

Conceptually, a predicate slice enables us to view a pred- 
icate function on the path as an independent function of 
input variables. Therefore, our method can simultaneously 
force all branch predicates along the path to evaluate to their 
desired outcomes. In contrast, the existing program execu- 
tion based methods [7, 10] for test data generation attempt 
to satisfy one branch predicate at a time and use backtrack- 
ing to fix a predicate satisfied earlier while trying to satisfy a 
predicate that appears later on the path. They cannot con- 
sider all the branch predicates on the path simultaneously 
because the path may not be traversed on an intermediate 
input. 

The predicate slice is also useful in identifying the rel- 
evant subset of input variables, on which the value of the 
predicate function depends. This subset of input variables 
is required so that a linear arithmetic representation of the 
predicate function in terms of these input variables can be 
derived. The subset of the input variables on which the value 
computed by a predicate function depends can only be de- 
termined dynamically as illustrated by the example in Fig- 
ure 2. Therefore, given an input and a branch predicate on 
the path, the corresponding predicate slice is executed using 
this input and a dynamic data dependence graph based upon 
the execution is constructed. The relevant input variables 
for the corresponding predicate function are determined by 
taking a dynamic slice over this dependence graph. 
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Note that  if only scalars are referenced in a predicate slice 
and the corresponding predicate function, then the subset 
of input variables on which the predicate function depends 
can be determined statically from the predicate slice. Ex- 
ecution of the predicate slice on the input da ta  followed 
by a dynamic slice to determine relevant input variables is 
necessary to handle arrays. We define this subset of input 
variables as the Input Dependency Set. 

Definition: The Input D e p e n d e n c y  Set ID(BP, I, P) of 
a branch predicate BP on an input I along a path  P is 
the subset of input variables on which BP is, directly or 
indirectly, da ta  dependent. These input variables can 
be identified by executing the statements in the pred- 
icate slice S(BP, P) on input I and taking a dynamic 
slice over the dynamic da ta  dependence graph. 

For example, executing S(BP2, P) on an input 
I0 = (1, 2,3), we note that  the evaluation of BP2 de- 
pends on the input variables X,Y  and Z. Therefore, 
ID(SP2, Io, P) = {X, Y, Z}. 

Now we explain how we use the input dependency set 
to derive the linear ari thmetic representation in terms of 
input variables for a predicate function for a given input. 

Deriving the Linear Arithmetic  Representat ion of  a 
Predicate Function 

Given a predicate function and its input dependency set 
ID for an input I ,  we write a general linear function of 
the input variables in ID. Then, we compute the values 
of the coefficients in the general linear function so that  it 
represents the tangent plane to the predicate function at  I .  
This gives us a Linear Ari thmet ic  Representation for 
the predicate function at  I.  

For example, the predicate function F2 : W -4- Z - 100 
has ID = {X, Y, Z} for the input I0 = (1, 2, 3). A general 
linear function for the inputs in ID is 

f (X,  Y, Z) = aX + bY + cg + d. 

Here, a, b and c are the slopes of f with respect to input 
variables X, Y and Z respectively and d is the constant term. 

If the slopes a, b and c above are computed by evaluat- 
ing the corresponding derivatives of the predicate function 
at the input I0 and the constant term is computed such 
that  the linear function f evaluates to the same value at  
I0 as that  computed by executing the corresponding predi- 
cate slice on I0 and evaluating the predicate function, then 
f (X,  ]I, Z) = 0 represents the tangent plane to the predicate 
function at input I0. This gives us the linear arithmetic rep- 
resentation for the predicate function at  I0. 

If the predicate function computes a linear function of 
the input, then the above tangent plane f (X,  Y, Z) = 0 is 
the exact representation for the predicate function. Whereas 
if a predicate function computes a nonlinear function of the 
input, then the above tangent plane f(  X, Y, Z) = 0 will 
approximate the predicate function in the neighborhood of 
the input I0. 

We illustrate this by deriving the linear arithmetic rep- 
resentation for the predicate function F2 at  the input 
I0 = (1, 2, 3). We approximate the derivatives of a predicate 
function by its divided differences. To compute a at I0, we 
execute S(BP2, P) at I0 and at  

(Xo, Vo,Zo) + ( ~ x , o , o )  = (1 ,2 ,3 )  + (1 ,0 ,0 )  = (2, 2 ,3) ,  

where we have chosen A X  = 1, for a unit increment in the 
input variable X.  Then, we compute the divided difference: 

F2( Xo + A X,  Yo, Zo ) - F2( Xo, Yo, Zo ) - 9 7 + 9 9  
A X  1 

This gives the value of a = 2. We compute the value of b by 
executing the predicate slice S(BP2, P) at I0 and at  

(Xo,Yo,Zo) + (0, AY, 0) = (1,2,3) + (0, 1,0) = (1,3,3),  

and computing the divided difference of F2  at  these two 
points with respect to y. This gives b equal to - 2 .  Similarly, 
we get c equal to 1. We compute the value of d by solving 
for d from the equation 

a + 2b + 3e + d = F2(I0).  

Substituting the values of a, b, c and F2(I0)  in this equation 
and solving for d, we get d equal to -100.  Therefore, we 
obtain the linear ari thmetic representation for F2  at  I0 as 

2 X -  2Y + Z -  100. 

In this example, F2  computes a linear function of the input. 
Therefore, its linear ari thmetic representation at  I0 com- 
puted as above is the exact representation of the function 
of inputs computed by F2.  Also, only those input variables 
that  influence the predicate function F2  appear  in this rep- 
resentation. 

In this paper,  we have approximated the derivatives 
of a predicate function by its divided differences. Tools 
have been developed to compute derivative of a program 
with respect to an input variable [3]. With  these tools, we 
can get exact derivative values ra ther  than using divided 
differences. Therefore, our technique for deriving a linear 
arithmetic representation for a predicate function can be 
very accurately implemented for automated testing. 

Using the method explained above, we derive a linear 
arithmetic representation at  the current input for each 
predicate function on the given path.  In order to derive a 
set of linear constraints on the increments to the current 
input from these linear ari thmetic representations, we 
execute the predicate slices of all the branch predicates on 
the current input and compute the values of corresponding 
predicate functions. We use these values of the predicate 
functions to provide feedback for computing the desired 
increments to the current input. 

The Predicate Residuals 

The values of the predicate functions at an input, defined 
as Predicate Residuals, essentially place constraints on the 
changes in the values of the input variables that ,  if satisfied, 
will provide us with a new input on which the desired path 
is followed. 

Definition: The Predicate Residual  of a branch predi- 
cate for an input is the value of the corresponding pred- 
icate function computed by executing its predicate slice 
at  the input. 

If a branch predicate has the relational operator " = ", 
then a non zero predicate residual gives the exact amount 
by which the value of the predicate function should change 
by modifying the input so that  the branch evaluates to its 
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desired outcome. Otherwise, a predicate residual gives the 
least (maximum) value by which the predicate function's 
value must be changed (can be allowed to change), by mod- 
ifying the program input, such that the branch predicate 
evaluates (continues to evaluate) to the desired outcome. 
We explain this with examples given below. 

If a branch predicate evaluates to the desired outcome 
for a given input, then it should continue to evaluate to the 
desired outcome. In this case, the predicate residual gives 
the maximum value by which the predicate function's value 
can be allowed to change, by modifying the program input, 
such that the branch predicate continues to evaluate to the 
desired outcome. To illustrate this, let us consider the path 
P in the example program in Figure 1. Using an input 
I = (1, 2,110), the branch predicate BP2 evaluates to the 
desired branch for the path P to be traversed. The value of 
the predicate function F2 at I = (1, 2,110) and hence the 
predicate residual at this input is 8. Therefore, the value of 
the predicate function can be allowed to decrease at most by 
8 due to a change in the program input, so that the predicate 
function continues to evaluate to evaluate to a positive value. 

On the other hand, if a predicate does not evaluate to the 
desired outcome, the predicate residual gives the least value 
by which the predicate function's value must be changed, by 
modifying the program input, such that the branch predi- 
cate evaluates to the desired outcome. For example, using 
the input I0 = (1, 2, 3) the branch predicate BP2 does not 
evaluate to the desired branch for the path P to be tra- 
versed. The value of the predicate function and hence the 
predicate residual at I0 = (1, 2, 3) is -99.  Therefore, the in- 
put should be modified such that the value of the predicate 
function increases at least by 99 for the branch predicate 
BP2 to evaluate to its desired outcome. 

The predicate residuals essentially guide the search for 
a program input that will cause each branch predicate 
on the given path P to evaluate to its desired outcome. 
We compute a predicate residual at the current input for 
each branch predicate on the given path. Once we have a 
predicate residual and a linear arithmetic representation at 
the current input for each predicate function, we can apply 
the relaxation technique to refine the input. 

Refining the input 

The linear arithmetic representation and the predicate resid- 
ual of a predicate function at an input essentially allow us 
to map the change in the value of the predicate function to 
changes in the program input. For each predicate function 
on the path P, we derive a linear constraint on the incre- 
ments to the program input using the linear representation 
of the predicate function and the value of the correspond- 
ing predicate residual. This set of linear constraints is then 
solved simultaneously using Gaussian elimination to com- 
pute increments to the input. These increments are added 
to the input to obtain a new input. 

We illustrate the derivation of linear constraint corre- 
sponding to the predicate function F2. The branch predi- 
cate BP2 evaluates to "false", when S(BP2, P) is executed 
on the arbitrarily chosen input I0 = (1,2,3), whereas it 
should evaluate to "true" for the path P to be traversed. 
The residual value - 9 9  and the linear function 

2 X -  2 Y +  Z -  100 

are used to derive a linear constraint 

2AX - 2AY + AZ > 99. (2) 

Note that the constant term d does not appear in this con- 
straint. Intuitively, this means that the increments to the in- 
put I0 should be such that the value of predicate function F2 
changes more than 99 so as to force F2 to evaluate to a posi- 
tive value and therefore force the corresponding branch pred- 
icate BP2 to evaluate to its desired outcome, i.e., "true" on 
the new input. For instance, AX = i, AY = 1, AZ = 100 
is one of the solutions to the above constraint. We see that 
BP2 evaluates to "true" when S(BP2, P) is executed on 
/1 = (2, 3, 103). 

The linear constraint derived above from the predicate 
residual to compute the increments for the current input, is 
an important step of this method. It is through this con- 
straint that the value of a predicate function at the current 
input provides feedback to the increments to be computed 
to derive a new input. Since this method computes a new 
program input from the previous input and the residuals, it 
is a relaxation method which iteratively refines the program 
input to obtain the desired solution. 

We would like to point out here that when the relational 
operator in each branch predicate on the path is "=", this 
method reduces to Newton's Method for iterative refinement 
of an approximation to a root of a system of nonlinear func- 
tions inseveral  variables. To illustrate this, let us consider 
the linear constraint in equation (2). Let us assume that 
the relational operator in the corresponding branch predi- 
cate BP2 is "=" and for simplicity let F2 be a function of 
a single variable X. Then the linear constraint in equation 
2 reduces to 

99 A X  = - -  
2 

which is of the form 

F2(Xn)  
Xn.t-1 = Xn F2t(Xn)" 

In general, the branch predicates on a path will have equal- 
ities as well as inequalities. In such a case, our method is 
different from Newton's Method for computing a root of a 
system of nonlinear functions in several variables. But since 
the increments for input are computed by stepping along 
the tangent plane to the function at the current input, we 
expect our method to have convergence properties similar 
to Newton's Method. 

In our discussion so far, we have assumed that the condi- 
tionais are the only source of predicate functions. However, 
in practice some additional predicates should also be con- 
sidered during test data generation. First, constraints on 
inputs may exist that may require the introduction of ad- 
ditional predicates (e.g., if an input variable I is required 
to have a positive value, then the predicate I > 0 should 
be introduced). Second, we must introduce predicates that 
constrain input variables to have values that avoid execu- 
tion errors (e.g., array bound checks and division by zero). 
By considering the above predicates together with the pred- 
icates from the conditionals on the path a desired input can 
be found. For simplicity, in the examples considered in this 
paper we only consider the predicates from the conditionals. 
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3 Descr ipt ion  o f  the  A l g o r i t h m  

In this section, we present an algorithm to generate test 
data  for programs with numeric input, arrays, assignments, 
conditionals and loops. The technique can be extended to 
nonnumeric input such as characters and strings by provid- 
ing mappings between numeric and nounumeric values. The 
main steps of our algorithm are outlined in Figure 3. We 
now describe the steps of our algorithm in detail and at the 
same time illustrate each step of the algorithm by generat- 
ing test da ta  for a pa th  along which the predicate functions 
are linear functions of the input. Examples with nonlinear 
predicate functions are given in the next section. 

The method begins with the given path  P and an arbi- 
trarily chosen input I0 in the input domain of the program. 
The program is executed on I0. If P is traversed using t0, 
then I0 is the desired program input and the algorithm ter- 
minates; otherwise the steps of iterative refinement using 
the relaxation technique are executed. 

We illustrate the algorithm using the example from 
section 2, where the pa th  

P = {0, 1, P1, 2, P2,4,  5, 6, P4,9} 

in the program of Figure 1, with initial program input 
I0 = (1, 2,3) is considered. The path  P is not traversed 
when the program is executed using I0. Thus, the iterative 
relaxation method as discussed below is employed to refine 
the input. 

Step 1. C o m p u t a t i o n  o f  Predicate  Slices. 

For each node nl in P that  represents a branch predicate, we 
compute its Predicate Slice S(ni, P) by a backward pass over 
the static da ta  dependency graph of input and assignment 
statements along the path  P before nl. The predicate slices 
for the branch predicates on the pa th  P are: 

S(BP1, P) = {0}, 
S(BP2, P)  = {0, 1, 2), 
S(BP4, P)  = {0, 1). 

Step 2. Ident i fying the  Input  D e p e n d e n c y  Sets.  

For every node ni in P that  represents a branch predicate, 
we identify the input dependency set ID(ni,  Ik, P) of input 
variables on which ni is da ta  dependent by executing the 
predicate slice S(ni, P) on the current input Ih and taking 
a dynamic slice over the dynamic da ta  dependence graph. 
The input dependency sets for the branch predicates on 
the path  P computed by executing the respective predicate 
slices on P using the input I0 = (1, 2, 3) are: 

ID(BP1,  Io, P) = {X, Y},  
ID(BP2,  Io, P) = {X, Y, Z),  
ID(BP4,  Io, P) = {X, Y}.  

Note that all input and assignment statements along the 
path P need be executed at most once to compute the input 
dependency sets for all the branch predicates along the path 
P. 

Step 3. Derivat ion o f  Linear A r i t h m e t i c  Represen-  
tat ions  of  the  Predicate  Funct ions .  

In this step, we construct a linear arithmetic representa- 
tion for the predicate function corresponding to each branch 

predicate on P.  For each branch predicate ni in P,  we first 
formulate a general linear function of the input variables 
in the set ID(ni,  Ih, P). For example, the linear formula- 
tions for the predicate functions corresponding to the branch 
predicates on pa th  P are: 

F1 : a l X  q-blY +dl ,  
F2 : a2X +b2Y + c2Z +d2, 
F4 : a4 X + b4 Y + d4. 

The coefficients al,  bl and ci of the input variables in the 
above linear functions represent the slopes of the i th pred- 
icate function with respect to input variables X, Y and Z 
respectively. We approximate these slopes with respective 
divided differences. 

To compute the slope coefficient with respect to a 
variable, we execute the predicate slice S(ni ,P)  and 
evaluate the predicate function F at the current input 
Ik = (i l ,  .., ij .... ira) and at Ik -t- (0, .., Ai j ,  ..0) and compute 
the divided difference 

F ( I ~  + (0, .., a i j ,  .., 0)) - F(Z~)  
Aij  

This gives the value of the coefficient of ij  in the linear 
function for the predicate function F corresponding to node 
ni in P.  Similarly, we compute the other slope coefficients 
in the linear function. 

In the example being considered, evaluating F1 by exe- 
cuting S(BP1, P) at (1, 2, 3) and (2, 2, 3) and computing the 
divided difference with respect to X,  we get al = 1. Simi- 
laxly, for F2  and F4,  we get a2 = 2, and a4 = 2. Computing 
the divided differences with respect to Y using (1, 2, 3) and 
(1,3,3),  we get bl = - 1 ,  b2 = - 2 ,  and b4 = - 2 ;  and com- 
puting the divided difference with respect to Z using (1, 2, 3) 
and (1, 2, 4), we get c2 = 1. 

To compute the constant term di, we execute the corre- 
sponding predicate slice at  Ik and evaluate the value of the 
predicate function. The values of input variables in Ih and 
the slope coefficients found above are substi tuted in the lin- 
ear function, and it is equated to the value of the predicate 
function at Ik computed above. This gives a linear equation 
in one unknown and it can be solved for the value of the 
constant term. 

For the example being considered, we substitute the 
slope coefficients ai, bi and ci computed above and X = 1, 
Y = 2 and Z = 3, in the general linear formulations for 
the predicate functions F1,  F2  and F4.  Then, we equate 
the general linear formulations to their respective values at 
I0 = (1, 2, 3) and obtain the following equations in d;: 

F l : l - 2 + d l  = - 1 ,  
F 2 : 2 - 4 + 3 + d 2 = - 9 9 ,  
F 4 : 2 - 4 + d 4  = - 2 .  

Solving for the constant terms di, we get dl = 0, d2 = -100,  
and d4 = 0. Therefore, the linear ari thmetic representations 
for the three predicate functions of P are given by: 

FI  : X -  Y, 
F2 : 2 X -  2Y + Z -  100, 
F4  : 2X - 2Y. 

If a predicate function is a linear function of input variables 
then the slopes computed above are exact and this method 
results in the exact representation of the predicate function. 
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step 1: 

step 2: 
step 3: 
step 4: 
step 5: 

step 6: 
step 7: 

Input:  A path P = {nx, n2, .., nt`} and an Initial Program Input Io 
Output:  A Program Input It  on which P is traversed 
procedure  TESTGEN ( P, I0) 

I f  P traversed on I0 then  I! = Io return 
for each Branch Predicate nl on P, do Compute Predicate Slice S(ni, P) endfor 
k=0 
while  not Done do 

for each Branch Predicate nl on P, do 
Execute S(n~, P) on input It` to compute input dependency set ID(ni, It`, P). 
Compute the linear representation L(ID(n~, It`, P)) for the predicate function for n~ 
Compute Predicate Residual R(ni, It`, P) 
Construct a linear constraint using R(nl, It`, P) and L(ID(n,,  It,, P)) for 

the computation of increment to It` 
endfor 
Convert inequalities in the constraint set to equalities 
Solve this system of equations to compute increments for the current program input. 
Compute the new program input It`+1 by adding the computed increments to It` 
if  the execution of the program on input It`+a follows path P then  I! = Ik+x ; Done = True 
else k + +  endi f  

endwhi l e  
endprocedure  

Figure 3: Algorithm to generate test data using an iterative relaxation method. 

If a predicate function computes a nonlinear function, the 
linear function computed above represents the tangent 
plane to the predicate function at In. In the neighborhood 
of Ik, the inequality derived from the tangent plane 
closely approximates the branch predicate. Therefore, if 
the predicate function evaluates to a positive value at a 
program input in the neighborhood of Ik, then so does the 
linear function and vice versa. These linear representations 
and the predicate residuals computed in subsequent step 
are used to derive a set of linear constraints which are used 
to refine It` and obtain Ik+l. 

Step 4: C o m p u t a t i o n  of  Pred ica te  Residuals .  

We execute the predicate slice corresponding to each branch 
predicate on P at the current program input Ik and evaluate 
the value of the predicate function. This value of the pred- 
icate function is the predicate residual value R(ni, It`, P) at 
the current program input It` for a branch predicate ni on 
P. The predicate residuals at I0 for the branch predicates 
on P are: 

R(BP1, to, P) = -1, 
R(BP2, Io, P) = -99 ,  
R(BP4, Io, P) = -2 .  

Step  5: Cons truc t ion  of  a S y s t e m  of  Linear Con-  
straints  to be  solved to obta in  i n c r e m e n t s  for the  
current  input.  

In this step, we construct linear constraints for computing 
the increments AIk for the current input Ih, using the linear 
representations computed in step 3 and predicate residual 
values computed in step 4. 

We first convert the linear arithmetic representations of 
the predicate functions into a set of inequalities and equal- 
ities. If a branch predicate should evaluate to "true" for 
the given path to be traversed, the corresponding predicate 
function is converted into an inequality/equality with the 

same relational operator as in the branch predicate. On the 
other hand, if a branch predicate should evaluate to "false" 
for the given path, the corresponding predicate function is 
converted into an inequality with a reversal of the relational 
operator used in the branch predicate. If a branch predi- 
cate has = relational operator and should evaluate to "false" 
for the given path to be traversed, then we convert it into 
two inequalities, one with the relational operator > and the 
other with the relational operator <. If the corresponding 
predicate function evaluates to a positive value at Ik, then 
we consider the inequality with > operator else we consider 
the one with < operator. This discussion also holds when a 
branch predicate has ¢ relational operator and should eval- 
uate to "true" for the given path to be traversed. This set 
of inequalities/equalities gives linear representations of the 
branch predicates on P as they should evaluate for the given 
path to be traversed. 

Converting the linear arithmetic representations for the 
predicate functions on the path P into inequalities, we get: 

F I : X - Y > O ,  
F2 : 2 X -  2 Y +  Z -  100 > 0, 
F4 : 2 X -  2Y > 0. 

Now using the linear arithmetic representations at Ik of the 
branch predicates as they should evaluate for the traversal 
of path P and using the predicate residuals computed at 
Ik, we apply the relaxation technique as described in the 
previous section to derive a set of linear constraints on the 
increments to the input. 

By applying the relaxation technique to the linear arith- 
metic representations computed above and the predicate 
residuals computed in the previous step, the set of linear 
constraints on increments to I0 are derived as given below: 

F I : A X - A Y >  1 
F2 : 2 A X -  2 A Y +  AZ > 99 
F4 : 2 A X -  2AY > 2 

Note that the constant terms di from the linear arithmetic 
representations do not appear in these constraints. 
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Step  6: Convers ion  of  inequalit ies  to equalit ies.  

In general, the set of linear constraints on increments de- 
rived in the previous step may be a mix of inequalities and 
equalities. For automating the method of computing the 
solution of this set of inequalities, we convert it into a sys- 
tem of equalities and solve it using Gaussian elimination. 
We convert inequalities into equalities by the addition of 
new variables. A simultaneous solution of this system of 
equations gives us the increments for Ik to obtain the next 
program input Ik+l. 

Converting the inequalities to equalities in the constraint 
set, for the example being considered, by introducing three 
new variables u, v and w, we get: 

F1 : A X -  A y -  u = 1, 
F2 : 2 A X -  2AY + A Z -  v = 99, 
F4 : 2 A X -  2 A Y - -  w = 2, 

where we require that u, v, w > 0. 

Step 7: So lut ion  o f  the  S y s t e m  of  Linear Equat ions .  

We simultaneously solve the system of linear equations ob- 
tained in the previous step using Gaussian elimination. If 
the number of branch predicates on the path is equal to the 
number of unknowns (input variables and new variables) 
and it is a consistent nonsingular system of equations, then 
a straightforward application of Gaussian elimination gives 
the solution of this system of equations. If the number of 
branch predicates on the path is more than the number of 
unknowns, then the system of equations is overdetermined 
and there may or may not exist a solution depending on 
whether the system of equations is consistent or not. If the 
system of equations is consistent then again a solution can 
be found by applying Gaussian elimination to a subsystem 
with the number of constraints equal to the number of vari- 
ables, and verifying that the solution satisfies the remaining 
constraints. If the system of equations is not consistent, it is 
possible that the path is infeasible. In such a case, a consis- 
tent subsystem of the set of linear constraints is solved using 
Gaussian elimination and used as program input for the next 
iteration. A repeated occurrence of inconsistent systems of 
equations in subsequent iterations strengthens the possibil- 
ity of the path being infeasible. A testing tool may choose 
to terminate the algorithm after a certain number of occur- 
rences of inconsistent systems with the conclusion that the 
path is likely to be infeasible. 

If the number of branch predicates on the path is less 
than the number of unknowns, then the system of equations 
is underdetermined and there will be infinite number of so- 
lutions if the system is consistent. In this case, if there are n 
branch predicates, we select n unknowns and formulate the 
system of n equations expressed in these n unknowns. The 
other unknowns are the free variables. The n unknowns are 
selected such that the resulting system of equations is a set 
of n linearly independent equations. Then, this system of n 
equations in n unknowns is solved in terms of free variables, 
using Gaussian elimination. The values of free variables are 
chosen and the values of n dependent variables are com- 
puted. The solution obtained in this step gives the values by 
which the current program input Ik has to be incremented 
to obtain a next approximation Ik+l for the program input. 

We execute the predicate slices and evaluate the predicate 
functions at the new program input Ik+l. If all the branch 
predicates evaluate to their desired branches then Ik+l is 
a solution to the test data generation problem. Otherwise, 
the algorithm goes back to step 2 with Ik+l as the current 
program input for ( K  + 1) th iteration. 

As explained in the previous section, input dependency 
sets and the linear representations depend on the current 
input data. Therefore, they are computed again in the next 
iteration using Ik+l. 

In the example considered, there are three linear con- 
straints and six unknowns. Therefore, it is an underdeter- 
mined system of equations and can be considered as a system 
of three equations in three unknowns with the other three 
unknowns as free variables. If it is considered as a system of 
three equations in the three variables AX, A y  and AZ and 
then Gaussian elimination is used to triangularize the coef- 
ficient matrix, we find that the third equation is dependent 
on first equation because the third row reduces to a row of 
zeros resulting in a singular matrix. Therefore, we consider 
it as a system of equations in AX,  AZ and w: 

[100 ] 
2 1 0 AZ = 9 9 + v + 2 A Y  
2 0 - 1  w 2 + 2AY 

The values of free variables can be chosen arbitrarily such 
that u, v and w >0. Choosing the free variables u, v and Ay 
equal to 1, and solving for Ax, Az and w, we get, Ax = 3, 
Az = 96, w = 2. Adding above increments to I0, we get 

/1 = (X1  = 4 ,  Y~ = 3 ,  Z1 =99) .  

Executing the predicate slices on path P using input /i 
and evaluating the corresponding predicate functions, we 
see that the three branch predicates evaluate to the desired 
branch leading to the traversal of P. Therefore, the algo- 
rithm terminates successfully in one iteration. 

In this method, a new approximation of the program 
input is obtained from the previous approximation and its 
residuals. Therefore, it falls in the class of relaxation meth- 
ods. The relaxation technique is used iteratively to obtain 
a new program input until all branch predicates evaluate 
to their desired outcomes by executing their corresponding 
predicate slices. 

If it is found that the method does not terminate in a 
given time, then it is possible that either the time allotted 
for test data generation was insufficient or there was an ac- 
cumulation of round off errors during the Gauss elimination 
method due to the finite precision arithmetic used. Gaus- 
sian elimination is a well established method for solving a 
system of linear equations. Its implementations with several 
pivoting strategies are available to avoid the accumulation 
of round off errors due to finite precision arithmetic. Besides 
these two possibilities, the only other reason for the method 
not terminating in a given time is that the path is infeasible. 

It is clear from the construction of linear representations 
in step 3 that if the function of input computed by a 
predicate function is linear, then the corresponding linear 
arithmetic representation constructed by our method is 
the exact representation of the function computed by the 
predicate function. We prove that in this case, the desired 
program input is obtained in only one iteration. 
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T h e o r e m  1 
If the functions of input computed by all the predicate 
functions for a path P are linear, then either the desired 
program input for the traversal of the path P is obtained 
in one iteration or the path is guaranteed to be infeasible. 

P r o o f  
Let us assume that there are m input variables for the pro- 
gram containing the given path P and there are n branch 
predicates B P 1 ,  BP2 ,  . . . B P n  on the path P such that n l  
of them use " = ", n2 use " > " and n3 use the relational 
operator " > ". The linear representations for the predicate 
functions corresponding to the n = (n l  + n2 + n3) branch 
predicates on P can be computed by the method described 
in Step 3 of the algorithm. Note that these representations 
will be exact because the functions of input computed by 
the predicate functions are linear. We can write the branch 
predicates on path P in terms of these representations as 
follows: 

al , lXl  -{-al,2X2 + ... + a l , m X r n  + a l , 0  = 0 

a n l , l X l  + a n l , 2 X 2 +  ... + an l ,mXra  + anl ,0 = 0 
bl , lx l  + bl,2x2 + ... + bl,mx,,, + bl,0 > 0 

b'n2,1 ~1 "-~ bn2,2x2  -4- ... --1- b n 2 , m x r n  + b,2,o > 0 
Cl,I,T1 + Cl,2X2 "~ ... +3 I- Cl,maTm "[- C1,0 ~> 0 

c,~,1 xl + c,~,2x2 + ... + C,,~,mXm + c,~,o >_ 0 
eq.  set  1 

Note that the coefficients corresponding to input variables 
not in the input dependency set of a predicate function will 
be zero. 

Let Io = (zl0,x20,...,xmo) be an approximation to the 
solution of above set of equations. Then we have: 

al,laT10 + a1,2.T20 "If- 

an1,1 Xl  0 "JC an1,2 X20 + 
bl, lx ,o +bl,2x2o + 

bn2,1 xlo + b,~2,2x2o + 
Cl, lXl0  "]- C1,2X20 + 

• .. + al,m~raO + al,0 ~ r1,1 

• .. -If- an l ,mXrnO -~ anl,O ~ r l , n l  
• .. + bl,,~xmo + bl,o > r2,1 

• .. + b,~2,mxmo + bm,o > r2,n2 
• .. "1- Cl,rn~mO "q- el ,0  ~> r3,1 

Cn3,1Xl0 + ena,2X20 -'}- ... + Cna,rnXrnO "}- Cn$,O ~__ ra,n3 
eq.  set  2. 

where ri,j is the residual value obtained by executing the cor- 
responding predicate slice using I0 and evaluating the cor- 
responding predicate function. Let I!  = (xl !, x2!, ..., Xm!) 
be a solution of the eq. set 1. Then, executing the given 
program at I!  would result in traversal of the path P. The 
goal is to compute this solution. Substituting I!  in eq. set 
1, we get: 

al , lXly + a l , 2 X 2 1  + ... + a l , m X r n l  + a l , o  = 0 

anl , l  Xl ] + an l ,2X2l+  ... + an l ,mXm!"} -  anl,O = 0 
bl , lXl l  + b l , 2 x 2 !  + . . .  + b l , r n X r n !  + b l , o  > 0 

b':2,1XlI + bn2,2x2!  + ... -{- bn2,mXrn I dr bn2,o > 0 
c1,1x1! +c1,2x2! + . . .  +c l , .~x ,~!  +c l ,o  >_ 0 

Cn3,1.T1 ! dff CnZ,2X2! + ... "~- en3,mXm, f + Cna,O ~ 0 
eq.  set  3 

Now subtracting eq. set 2 from eq. set 3, we get: 

a l , l A x l  + a l , ~ A x 2  + . . .  +al , rnAxrn  = - - r l , x  

anl , l  A X l  + a n l , 2 A x 2 +  ... + a n l , m A x r n  -~ - - r l , n l  
bl , lAXl  + b l , z A x :  + . . .  +bl , ,~Ax ,~  > -r2,1 

bn~,l A x l  + b,~2,2Ax2 + ... + b,~2,mAx,~ > -rz,n2 
C l , I A X l  --~-Cl,2Ax2 - ~ . . . - ~ - C l , r n A g g r n  ~__ --r3,1 
... 
Cn3,1AXl + ena,2Ax2 + ... + Cna ,mAxrn  ~ --r3,n3 

where A x i  = (xiI  -- xio). This is precisely the set of con- 
straints on the increments to the input that must be satis- 
fied so as to obtain the desired input. If the increment Axl 
for xio is computed from the above set of constraints then 
A x i  --}- xio = Xil, for i = 1, m, gives the desired solution If.  
As illustrated above, this requires only one iteration. This 
indeed is the set of constraints used in Step 5 of our method 
for test data generation. Therefore, given any arbitrarily 
chosen input I0 in the program domain, our method derives 
the desired input in one iteration. 

While solving the constraints above, if it is found that 
the set is inconsistent then the given path P is infeasible. 
Therefore, our method either derives the desired solution in 
one iteration or guarantees that the given path is infeasible. 

3.1 P a t h s  w i t h  N o n l i n e a r  P r e d i c a t e  S l ices .  

If the function of input computed by a predicate function is 
nonlinear, the predicate function is locally approximated by 
its tangent plane in the neighborhood of the current input 
Ik. The residual value computed at Ik provides feedback to 
the tangent plane at Ik for the computation of increments 
to Ik so that if the tangent plane was an exact represen- 
tation of the predicate function, the predicate function will 
evaluate to the desired outcome in the next iteration. Be- 
cause the slope correspondence between the tangent plane 
and the predicate function is local to the current iteration 
point Ik, it may take more than one iteration to compute 
a program input at which the execution of predicate slice 
results in evaluation of the branch predicate to the desired 
branch outcome. 

Let us now consider a p a t h  w i t h  a p r e d i c a t e  f u n c t i o n  
c o m p u t i n g  a s e c o n d  d e g r e e  f u n c t i o n  o f  t h e  i n p u t ,  for 
the example program in Figure 1, 

P =  {O, 1, P1 ,2 ,  P2, P 3 , 7 , 8 ,  P 4 , 9 }  

with initial program input I0 = (X0 = 1, Y0 = 2, Z0 = 3). 
The path P is not traversed on I0. Therefore, input I0 
is iteratively refined. The predicate slices and the input 
dependency sets of branch predicates B P 1 ,  B P 2  and B P 4  
are the same as in the example on path with linear predicate 
slices. For B P 3 ,  

S(BP3, P) = {0} and 
ID(BP3, Io, P) = {X, Z}. 

Also, the linear representations for the predicate functions 
F1, F2 and F4 are the same as for the example in the pre- 
vious section. For F3, we have 

F3 : 3X + 7Z - 114. 
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The slope of F3 with respect to Z is computed by evaluat- 
ing the divided difference at (1,2,3) and (1,2,4). The above 
linear function represents the t a n g e n t  p l a n e  a t  I0 of the 
nonlinear function computed by the predicate function cor- 
responding to branch predicate BP3. 

Converting each of these functions into an inequal- 
ity with the relational operator that the branch predicate 
should evaluate to, we get: 

FI  >O: X - Y  >O, 
F2 < 0 : 2 X -  2Y + Z - 100 < 0, 
F3 > O : 3 X  + 7 Z - 1 1 4  >_0, 
F4 > 0 : 2 X - 2 Y  > 0. 

Note that the relational operator for the representation for 
BP2 is different from that of the example in previous section 
because a different branch is taken. 

The predicate residuals at I0 for the predicate slices on P 
a r e :  

R(BP1, I0, P) = -1 ,  R(BP2, I0, P) = -99,  
R(BP3, I0, P) = -90,  R(BP4, Io, P) = -2 .  

The set of hnear constraints to be used for computing the 
increment for I0 using the results of above two steps are: 

F I : A X - A Y >  1, 
F2 : 2 A X -  2AY + AZ < 99, 
F3 : 3AX + 7AZ > 90, 
F4 : 2AX - 2AY > 2. 

The inequalities in the above constraint set are converted to 
equalities by introducing new variables s > 0, t 3, 0, u 3, 0 
and v > 0. The resulting system of equations in AX,  A y ,  
AZ and v is solved using Gaussian elimination. 

2 - 2  1 0 AY 9 9 -  t 
3 0 7 0 AZ = 9 0 + u  
2 - 2  0 - 1  v 2 

The free variables s, t and u are arbitrarily chosen equal to 
1, and the system is solved for AX,  AY, AZ, and v. The 
solution of the above system is: 

AX = -189, AY = -191,  AZ = 94, v = 2. 

These increments are added to I0 to obtain a new input l t .  

I1 = (1 + AX, 2 + AY, 3 + AZ) = (-188, -189,  97). 

Executing the predicate shces on P using the program input 
/1, we find that all the four branch predicates evaluate to 
their desired branches resulting in the traversal of P. There- 
fore, the algorithm terminates successfully in one iteration. 
We summarize the results in the following table. 

{ I t e ra t ion  # 

I 0 
1 

I X I Y I Z [ BP1 I BP2 I BP3 I BP4 I 
1 2 3 F F F 

This example illustrates that the tangent plane at the cur- 
rent input is a good enough hnear approximation for the 
predicate function in the neighborhood of the current input. 

Now we consider a p a t h  w i t h  a p r e d i c a t e  f u n c t i o n  com-  
p u t i n g  t h e  s ine  f u n c t i o n  o f  t h e  i n p u t .  Let us consider 
the following path P for the program in Figure 1, 

P = {0, 1, P1, 3, P2, 4, 5, 6, P4, P5, 10} 

with initial program input I0 = (X0 = 1, Y0 = 2, Z0 = 3). 
The path P is not traversed on I0 because BP2 evaluates to 
an undesired branch on I0. Therefore, the steps for iterative 
refinement of I0 are executed. We summarize the results 
of execution of our test data generation algorithm for this 
example in the table given below. 

[ I t e r .  # [ X [ Y [ Z [ BP1 ] BP2  [ BP4  [ SP5  ] 

0 1 2 3 F F F T 
1 -80.15 -79.15 180.5 F T F F 
2 -12.55 -11.55 112.55 F T F F 
3 -4.58 -3.58 104.58 F T F F 
4 -0.57 0.43 100.57 F T F T 

For path P to be traversed, the branch predicates BP1 
and BP4 should evaluate to "false" and the branch predi- 
cates BP2 and BP5 should evaluate to "true". As shown in 
the table, through iterations 1 to 4 of the algorithm BP1, 
BP2, and BP4 continue to evaluate to their desired out- 
comes and the values of inputs X, Y and Z are incremented 
such that F5 moves closer to zero in each iteration. Finally 
in iteration 4, F5 becomes positive for program input /4  and 
therefore BP5 becomes true. 

We would like to point out that if the hnear arith- 
metic representation of a branch predicate is exact, then 
the branch predicate evaluates to its desired outcome in the 
first iteration and continues to do so in the subsequent it- 
erations. Whereas, if the hnear arithmetic representation 
approximates the branch predicate in the neighborhood of 
current input (as in the case of BP5) by its tangent plane, 
then although in each iteration the refined input evaluates 
to the desired outcome with respect to the tangent plane, it 
may take several iterative refinements of the input for the 
corresponding branch predicate to evaluate to its desired 
outcome. 

In this example, BP5 evaluated to "true" (its desired out- 
come) at I0, but it evaluated to "false" at /1. This is be- 
cause the predicate residual provides the feedback to the lin- 
ear arithmetic representation (i.e., the tangent plane to the 
sine function) of BP5 and the input is modified by stepping 
along this linear arithmetic representation. As a result, the 
hnear representation evaluates to a positive value a t /1 ,  but 
the change in the program input still falls short of making 
the predicate function F5 evaluate to a positive value at I1. 
In the subsequent iterations, the input gets further refined 
and finally in the fourth iteration, the predicate function F5 
evaluates to a positive value. 

As illustrated by this example, after the first iteration, 
all the branch predicates computing hnear functions of the 
input continue to evaluate to their desired outcomes as the 
input is further refined to satisfy the branch predicates com- 
puting nonlinear functions of input. During regression test- 
ing, a branch predicate or a statement on the given path 
may be changed. To generate test data so that the modified 
path is traversed, an input on which other branch predi- 
cates already evaluate to their desired outcomes will be a 
good initial input to be refined by our method. Therefore, 
during regression testing, we can use the existing test data 
as the initial input and refine it to generate new test data. 
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3.2 Arrays and Loops 

When arrays are input in a procedure, one of the problems 
faced by a test data generation method is the size of the in- 
put arrays. Our test data generation method considers only 
those array elements that are referenced when the predicate 
slices for the branch predicates on the path are executed and 
the corresponding predicate functions are evaluated. The 
input dependency set for a given input identifies the input 
variables that are relevant for a predicate function. There- 
fore, the test data generation algorithm uses and refines only 
those array elements that are relevant. This makes the test 
data generation independent of the size of input arrays. 

We illustrate how our method handles arrays and loops 
by generating test data for a program from [10] given in 
Figure 4. We take the same path and initial input as in [10] 
so that we can compare the performance of the two program 
execution based test data generation methods. Therefore, 

P = {1, 2, 3, 4, P l l ,  P21, P31,7, P12, P22, P32,6, 7, P18,8} 

where Pij denotes the jth execution of the predicate Pi; 
with initial program input: 

Io = ( Low = 39, High = 93, Step = 12, 
A[1] = 1, ..., A[100] = 100). 

The path P is not traversed on I0. Therefore, the steps for 
iterative refinement of I0 are executed. Let l, h, s denote 
low, high, step respectively, and x = A[l], y = A[l + s], 
z = A[l+2s], then the predicate slices and input dependency 
sets of the branch predicates on P are: 

S(BPl l ,  P) = {1, 4}, 
S(BP21, P) = {1, 3, 4}, 
S(BP3~, P) = {1, 2, 4}, 
S(BP12, P) = {1, 4, 7}, 
S(BP22, P) = {1, 3, 4, 7}, 

ID(BPI~, I0, P) = {l, s, h}, 
ID(BP2~, Io, P) = {x, y}, 
ID(BP31, Io, P) = {x, y}, 
ID(BP12, Io, P) = {l, s, h}, 
ID(BP22, Io, P) = {x, z}, 

S(BP32, P) = {1, 2, 4, 7}, ID(BP32, Io, P) = {x, z}, 
S(BP13, P) = {1, 4, 7, 6, 7}, ID(BPlz ,  Io, P) = {l, s, h}. 

The linear representations for the predicate functions corre- 
sponding to the branch predicates on P are: 

F l l  : l + s - h ,  F21 : x - y ,  
F31 : x - y ,  F 1 2 : l + 2 s - h ,  
F22 : x -  z, F32 : x -  z, 
F l z : l + 3 s - h .  

The predicate residuals at I0 for the predicate functions of 
the branch predicates on P are: 

R(BPl l ,  I0, P) = -42 ,  
R(BP3~, [0, P) = -12, 
R(BP22, I0, P) = -24,  
R(BPlz ,  I0, P) = -18.  

R(BP2~, I0, P) = -12 ,  
R(BP12, I0, P) = -30,  
R(BP32, I0, P) = -24 ,  

The set of linear constraints to be used for computing incre- 
ment to I0 using the results of above two steps are: 

F l l  : A l + A s - - A h  <42 ,  
F31 : A x - - A y _ _  12, 
F 2 z : A x - - A z > 2 4 ,  
F I ~ : A I + 3 A s - A h >  18. 

F21 : A x - A y > _  12, 
F 1 2 : A l + 2 A s - A h < 3 0 ,  
F 3 2 : A x - A z > 2 4 ,  

The above inequalities are converted to equalities by intro- 
ducing seven new variables a, b, c, d, e, f and g. where 
a, d, f > 0; and b, c, e and g >_ 0. Considering it a system 

of equations expressed in unknowns A/, As, d, Ax, Ay, b 
and e, we get: 

1 1 0 0 0 0 0 Al 4 2 + A h - a  
0 0 0 1 - 1  - 1  0 As 12 
0 0 0 1 - 1  0 0 d 1 2 - c  
1 2 1 0 0 0 0 Ax = 3 0 + A h  
0 0 0 1 0 0 --1 Ay 2 4 + A z  
0 0 0 1 0 0 0 b 2 4 + f + A z  
1 3 0 0 0 0 0 e 1 8 + g + A h  

The unknowns and free variables are selected so as to ob- 
tain a nonsingular system of equations. The values of free 
variables can be chosen arbitrarily with the constraints that 
a, d, f > 0; and b, c, e and g > 0. The values of free vari- 
ables f ,  Az, Ah, and g are chosen as 1. The value of free 
variable a is 3 for integer arithmetic. Solving for the un- 
known variables using Gaussian elimination, we get: 

b = 0, c = 0, e = 1, Ay = 14, 
Ax = 26, d = 1, As = --10, Al = 50, 
f = 1, Az = 1, Ah = 1, g = 1, 
a = 3 .  

The new input generated after the first iteration is: 

I1 = (l = 89, h = 94, s = 2, A[89] = A[39] + Ax, 
A[91] = A[51] + Ay, A[93] = A[63] + Az). 

The input values of A[39], A[51] and A[63] are copied into 
A[89], A[91] and A[93] respectively and then the increments 
computed in this iteration are added to A[89],A[91] and 
A[93], giving: 

I1 = ( Low = 89, High = 94, Step = 2, 
A[89] = 65, A[91] = 65, A[93] = 64). 

This step is important because the increments computed in 
the current iteration have to be added to the input used 
in the current iteration but the resulting values have to be 
copied into the array elements to be used in the next itera- 
tion. Only elements A[89], A[91], and A[93] are relevant for 
the next iteration. 

By executing the predicate slices for P on the program 
input Ix and evaluating the corresponding predicate func- 
tions, we see that all the branch predicates evaluate to their 
desired branch outcomes resulting in the traversal of P. All 
the predicate functions corresponding to branch predicates 
on P compute linear functions of input. Therefore, as ex- 
pected the algorithm terminates successfully in one itera- 
tion. We summarize the results of this example in the table 
in Figure 4. Korel in [10] obtains test data for the above 
path in 21 program executions, whereas our method finds 
a solution in only one iteration with only 8 program exe- 
cutions. One program execution is used in the beginning 
to test whether path P is traversed on I0, six additional 
program executions are required for computation of all the 
slope computations for linear representations and one more 
program execution is required to test whether path P is tra- 
versed on I1. 
If we choose the path 

P = {1,2,3,4, P l l ,P2 ,5 ,  P3,6,7, P12,7}, 

the set of linear constraints obtained in step 3 will be in- 
consistent. Since, all the predicate functions for this path 
compute linear functions of input, from Theorem 1, we con- 
clude that this path must be infeasible. It is easy to check 
that P is indeed an infeasible path. 
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v a r  

A: array[1..100] of integer; 
low,high,step:integer; 
min, max, i:integer; 

1: input (low,high,step,A); 
2: min := Allow]; 
3: max := Allow]; 
4: i := low -t- step; 
P1 while i < high do 
P2: if max < A[i] then 
5: max := A[i]; 
P3: if min > A[i] then 
6: min := A[i]; 
7: i := i q- step; 

endwhile; 
8: output (min,max); 

I Iteration # I low I high ] step ] A[39] ] A[51] ] A[63] I A[S9] I A[91] [ A[93] I 
I 0 39 93 12 39 51 63 89 91 93 

1 89 94 2 39 51 63 65 65 64 

[ I t e ra t ion  # [ BP1, [ BP2~ [ BP3~ I BP12 [ BP22 I BP32 I BPI~ [ 

I-- 

Figure 4: An example using an array and a loop. 

4 R e l a t e d  W o r k  

The most popular approach to automated test da ta  gen- 
eration has been through path  oriented methods such as 
symbolic evaluation and actual program execution. One of 
the earliest systems to automatically generate test da ta  us- 
ing symbolic evaluation only for linear path  constraints was 
described in [4]. It can detect infeasible paths with linear 
path constraints but  is limited in its ability to handle array 
references that  depend on program input. A more recent at- 
tempt at using symbolic evaluation for test da ta  generation 
for fault based criteria is described in [6]. In this work, a 
test data  generation system based on a collection of heuris- 
tics for solving a system of constraints is developed. The 
constraints derived are often imprecise, resulting in an ap- 
proximate solution on which the pa th  may not be traversed. 
Since the test da ta  is not refined further so as to eventually 
obtain the desired input, the method fails when the path  is 
not traversed on the approximate solution. 

A program execution based approach that  requires a par- 
tial solution to test da ta  generation problem to be computed 
by hand using values of integer input variables is described 
in [14]. There is no indication on how to automate the step 
requiring computation by hand. Program execution based 
approaches for automated test da ta  generation have been 
described in [11, 8], but  they have been developed for state- 
ment and branch testing criteria. 

An approach to automatically generate test da ta  for a 
given path  using the actual execution of the program is pre- 
sented in [10]. Another program execution based approach 
that uses program instrumentation for test da ta  generation 
for a given path  has been reported in [7]. These approaches 
consider only one branch predicate and one input variable at  
a time and use backtracking. Therefore, they may require 
a large number of iterations even if all the branch condi- 
tionals along the path  are linear functions of the input. If 
several conditionals on the selected path  depend on common 
input variables, a lot of effort can be wasted in backtracking. 
They cannot consider all the branch predicates on the path  
simultaneously because the path  may not be traversed on 
an intermediate input. The concept of predicate slice allows 
us to evaluate each branch predicate on the path  indepen- 
dently on an intermediate input even though the path  may 

not be traversed on this input. This makes our technique 
more efficient than other execution based methods. 

Our method is scalable to large programs since the num- 
ber of program executions in each iteration is independent 
of the pa th  length and at  most equal to the number of input 
variables plus one. If there are m input variables, in each 
iteration, at  most m executions of the input and assignment 
statements on the given path  are required to compute the 
slope coefficients. The values of the predicate functions at 
input Ik are known from the previous iteration. One execu- 
tion of the input and assignment statements on the path  is 
required to test whether the pa th  is traversed on Ik+l. 

Our method uses Gaussian elimination to solve the sys- 
tem of linear equations, which is a well established and 
widely implemented technique to solve a system of linear 
equations. Therefore, our method is suitable for automa- 
tion. The size of the system of linear equations to be solved 
increases with an increase in the number of branch condi- 
tionals on a path,  but  the increase in cost in solving a larger 
system is significantly less than that  of existing execution 
based methods. 

5 Conclusions 

In this paper, we have presented a new program execution 
based method, using well established mathematical  tech- 
niques, to automatically generate test da ta  for a given path. 
The method is an innovative application of the traditional 
relaxation technique used in numerical analysis to obtain 
an exact solution of an equation by iterative improvement 
of an approximate solution. The results obtained from this 
method for test da ta  generation are very promising. It pro- 
vides a practical solution to the automated test da ta  gener- 
ation problem. It is easy to implement as the tools required 
are already available. It is more efficient than existing pro- 
gram execution based approaches as it requires fewer pro- 
gram executions because all the branch predicates on the 
pa th  are considered simultaneously, and there is no back- 
tracking. It can also detect infeasibility for a large class of 
paths in a single iteration. Because it is execution based, it 
can handle different programming language features. We are 
working on extending the technique for strings and pointers. 
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