A Safe, Efficient Regression Test Selection
Technique

GREGG ROTHERMEL
Oregon State University
and

MARY JEAN HARROLD
The Ohio State University

Regression testing is an expensive but necessary maintenance activity performed on modified
software to provide confidence that changes are correct and do not adversely affect other
portions of the software. A regression test selection technique chooses, from an existing test
set, tests that are deemed necessary to validate modified software. We present a new
technique for regression test selection. Our algorithms construct control flow graphs for a
procedure or program and its modified version and use these graphs to select tests that
execute changed code from the original test suite. We prove that, under certain conditions, the
set of tests our technique selects includes every test from the original test suite that can
expose faults in the modified procedure or program. Under these conditions our algorithms are
safe. Moreover, although our algorithms may select some tests that cannot expose faults, they
are at least as precise as other safe regression test selection algorithms. Unlike many other
regression test selection algorithms, our algorithms handle all language constructs and all
types of program modifications. We have implemented our algorithms; initial empirical
studies indicate that our technique can significantly reduce the cost of regression testing
modified software.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Tools and Techniques—
computer-aided software engineering (CASE); D.2.5 [Software Engineering]: Testing and
Debugging; D.2.7 [Software Engineering]: Distribution and Maintenance—corrections

General Terms: Algorithms, Verification

Additional Key Words and Phrases: Regression testing, regression test selection, selective
retest

This work was partially supported by a grant from Microsoft, Inc. and by the National Science
Foundation under grant CCR-9357811 to Clemson University and The Ohio State University.
A preliminary version of this work appeared in Proceedings of the Conference on Software
Maintenance—1993.

Authors’ addresses: G. Rothermel, Department of Computer Science, Oregon State University,
Dearborn Hall 307-A, Corvallis, OR 97331; email: grother@cs.orst.edu; M. J. Harrold, Depart-
ment of Computer and Information Science, The Ohio State University, 395 Dreese Lab, 2015
Neil Avenue, Columbus, OH 43210-1277; email: harrold@cis.ohio-state.edu.

Permission to make digital/hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

© 1997 ACM 1049-331X/97/0400-0173 $03.50

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997, Pages 173-210.

174 . Gregg Rothermel and Mary Jean Harrold

1. INTRODUCTION

Software maintenance activities can account for as much as two-thirds of
the overall cost of software production [Pressman 1987; Schach 1992]. One
necessary maintenance activity, regression testing, is performed on modi-
fied software to provide confidence that the software behaves correctly and
that modifications have not adversely impacted the software’s quality.
Regression testing is expensive; it can account for as much as one-half of
the cost of software maintenance [Bezier 1990; Leung and White 1989].

An important difference between regression testing and development
testing is that, during regression testing, an established suite of tests may
be available for reuse. One regression-testing strategy reruns all such
tests, but this retest-all approach may consume inordinate time and re-
sources. Selective retest techniques, in contrast, attempt to reduce the time
required to retest a modified program by selectively reusing tests and
selectively retesting the modified program. These techniques address two
problems: (1) the problem of selecting tests from an existing test suite and
(2) the problem of determining where additional tests may be required.
Both of these problems are important; however, this article addresses the
first problem—the regression test selection problem.

This article presents a new regression test selection technique. Our
algorithms construct control flow graphs for a procedure or program and its
modified version and use these graphs to select tests that execute changed
code from the original test suite. Our technique has several advantages
over other regression test selection techniques. Unlike many techniques,
our algorithms select tests that may now execute new or modified state-
ments and tests that formerly executed statements that have been deleted
from the original program. We prove that under certain conditions the
algorithms are safe: that is, they select every test from the original test
suite that can expose faults in the modified program. Moreover, although
the algorithms may select some tests that cannot reveal faults, they are
more precise than other safe algorithms because they select fewer such
tests than those algorithms. Our algorithms automate an important portion
of the regression-testing process, and they operate more efficiently than
most other regression test selection algorithms. Finally, our algorithms are
more general than most other techniques. They handle regression test
selection for single procedures and for groups of interacting procedures.
They also handle all language constructs and all types of program modifi-
cations for procedural languages.

We have implemented our algorithms and conducted empirical studies on
several subject programs and modified versions. The results suggest that,
in practice, the algorithms can significantly reduce the cost of regression
testing a modified program.

2. BACKGROUND

The following notation is used throughout the rest of this article. Let P be a
procedure or program, P’ be a modified version of P, and S and S’ be the

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

A Safe, Efficient Regression Test Selection Technique . 175

@ : Procedure avg

81l. count = 0
g2. fread(fileptr,n)
p3. while (not EOF) do

P4. if (n<0)
S5. return(error)
else

S6. numarray[count] = n

Ss7. count++
D) endif

s8. fread(fileptr,n)
endwhile

S9. avg = calcavg(numarray,count)
(exid) '

S10. return(avg)

Fig. 1. Procedure avg and its CFG.

specifications for P and P’, respectively. P(i) refers to the output of P on
input i; P'(i) refers to the output of P’ on input i; S(i) refers to the
specified output for P on input i; and S’ (i) refers to the specified output for
P’ on input i. Let T be a set of tests (a test suite) created to test P. A test is
a three-tuple, (identifier, input, output), in which identifier identifies the
test; input is the input for that execution of the program; and output is the
specified output, S(input), for this input. For simplicity, the sequel refers to
a test (¢, i, S(i)) by its identifier ¢ and refers to the outputs P(i) and S(i) of
test ¢ for input i as P(¢) and S(¢), respectively.

2.1 Control Flow Graphs

A control flow graph (CFG) for procedure P contains a node for each simple
or conditional statement in P; edges between nodes represent the flow of
control between statements. Figure 1 shows procedure avg and its CFG. In
the figure, statement nodes, shown as ellipses, represent simple statements.
Predicate nodes, shown as rectangles, stand for conditional statements.
Labeled edges (branches) leaving predicate nodes represent control paths
taken when the predicate evaluates to the value of the edge label. State-
ment and predicate nodes are labeled to indicate the statements in P to
which they correspond. The figure uses statement numbers as node labels;
however, the actual code of the associated statements could also serve as
labels. Case statements can be represented in CFGs as nested if-else
statements; in this case, every CFG node has either one unlabeled out edge
or two out edges labeled “T” and “F.” Declarations and nonexecutable
initialization statements can be represented collectively as a single node
labeled “D,” associated with this node in the order in which they are
encountered by the compiler. (Section 3.1.4 discusses other methods for
handling case statements, declarations, and other types of nonexecutable
initialization statements.) A unique entry node and a unique exit node
represent entry to and exit from P, respectively. The CFG for a procedure P
has size and can be constructed in time, linear in the number of simple and
conditional statements in P [Aho et al. 1986].

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

176 . Gregg Rothermel and Mary Jean Harrold

Table I. Test Information and Test History for Procedure avg

Test Information

Test Type Output Edges Traversed

t1 Empty File 0 (entry, D), (D, S1), (S1, S2) (S2, P3)
(P3, S9), (S9, S10), (S10, exit)

t2 -1 Error (entry, D) (D, S1), (S1, S2), (S2, P3),
(P3, P4), (P4, S5), (S5, exit)

t3 123 2 (entry, D) (D, S1), (S1, S2), (S2, P3), (P3,
P4),

(P4, S6), (S6, S7), (S7, S8), (S8, P3),
(P3, 89), (S9, S10), (S10, exit)

Test History

Edge TestsOnEdge(edge)
(entry, D) 111
(D, S1) 111
(S1, S2) 111
(S2, P3) 111
(P3, P4) 011
(P3, S9) 101
(P4, S5) 010
(P4, S6) 001
(S5, exit) 010
(Se, S7) 001
(S7, S8) 001
(S8, P3) 001
(S9, S10) 101
(S10, exit) 101

Code Instrumentation. Let P be a program with CFG G. P can be
instrumented such that when the instrumented version of P is executed
with test ¢, it records a branch trace that consists of the branches taken
during this execution. This branch trace information can be used to
determine which edges in G were traversed when ¢ was executed: an edge
(nq, ny) in G is traversed by test ¢ if and only if, when P is executed with #,
the statements associated with n; and n, are executed sequentially at least
once during the execution. The information thus gathered is called an edge
trace for ¢t on P. An edge trace for ¢ on P has size linear in the number of
edges in G and can be represented by a bit vector.

Given test suite T for P, a test history for P with respect to T is
constructed by gathering edge trace information for each test in 7' and
representing it such that for each edge (n,, ny,) in G the test history
records the tests that traverse (n;, n,). This representation requires
O(e|T)) bits, where e is the number of edges in G, and |T| is the number of
tests in T'. For CFGs of the form defined above, e is no greater than twice
the number of nodes in G; thus e is linear in the size of P. Table I reports

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

A Safe, Efficient Regression Test Selection Technique . 177

test information and the corresponding test history for program avg of
Figure 1.

For convenience, assume the existence of function TestsOnEdge(n, n,),
that returns a bit vector v of size |T| bits such that the £th bit in v is set if
and only if test £ in T traversed edge (n{, ny) in G.

2.2 Regression Testing

Research on regression testing spans a wide variety of topics, including test
environments and automation [Brown and Hoffman 1990; Dogsa and
Rozman 1988; Hoffman 1989; Hoffman and Brealey 1989; Ziegler et al.
1989], capture-playback mechanisms [Lewis et al. 1989], test suite manage-
ment [Harrold et al. 1993; Hartmann and Robson 1990; Lewis et al. 1989;
Taha et al. 1989; Wong et al. 1995], program size reduction [Binkley 1992],
and regression testability [Leung and White 1989]. Most recent research on
regression testing, however, concerns selective retest techniques [Agrawal et
al. 1993; Bates and Horwitz 1993; Benedusi et al. 1988; Binkley 1995; Chen
et al. 1994; Fischer 1977; Fischer et al. 1981; Gupta et al. 1992; Harrold
and Soffa 1988; 1989a; 1989b; Hartmann and Robson 1989; 1990a; 1990b;
Laski and Szermer 1992; Lee and He 1990; Leung and White 1990a; 1990b;
Ostrand and Weyuker 1988; Rosenblum and Weyuker 1996; Rothermel and
Harrold 1993; 1994a; 1994b; Sherlund and Korel 1991; 1995; Taha et al.
1989; von Mayrhauser et al. 1994; White and Leung 1992; White et al.
1993; Yau and Kishimoto 1987].

Selective retest techniques reduce the cost of regression testing by
reusing existing tests and by identifying portions of the modified program
or its specification that should be tested. Selective retest techniques differ
from the retest-all technique, which runs all tests in the existing test suite.
Leung and White [1991] show that a selective retest technique is more
economical than the retest-all technique only if the cost of selecting a
reduced subset of tests to run is less than the cost of running the tests that
the selective retest technique omits.

A typical selective retest technique proceeds as follows:

(1) Select T" C T, a set of tests to execute on P’'.

(2) Test P’ with T, establishing P'’s correctness with respect to 7".

(3) If necessary, create T”, a set of new functional or structural tests for P’.
(4) Test P’ with T", establishing P'’s correctness with respect to 7".

(5) Create T", a new test suite and test history for P’, from T', T, and T".

In performing these steps, a selective retest technique addresses several
problems. Step (1) involves the regression test selection problem: the prob-
lem of selecting a subset of T’ of T with which to test P’. This problem
includes the subproblem of identifying tests in 7' that are obsolete for P’.
Test ¢ is obsolete for program P’ if and only if ¢ specifies an input to P’
that, according to S’, is invalid for P’, or ¢ specifies an invalid input-output
relation for P’. Step (3) addresses the coverage identification problem: the
problem of identifying portions of P’ or S’ that require additional testing.

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

178 . Gregg Rothermel and Mary Jean Harrold

Steps (2) and (4) address the test suite execution problem: the problem of
efficiently executing tests and checking test results for correctness. Step (5)
addresses the test suite maintenance problem: the problem of updating and
storing test information. Although each of these problems is significant, we
restrict our attention to the regression test selection problem. We further
restrict our attention to code-based regression test selection techniques,
which rely on analysis of P and P’ to select tests.

There are two distinguishable phases of regression testing: a preliminary
phase and a critical phase. The preliminary phase of regression testing
begins after the release of some version of the software; during this phase,
programmers enhance and correct the software. When corrections are
complete, the critical phase of regression testing begins; during this phase,
regression testing is the dominating activity, and its time is limited by the
deadline for product release. It is in the critical phase that cost minimiza-
tion is most important for regression testing. Regression test selection
techniques can exploit these phases. For example, a technique that re-
quires test history and program analysis information during the critical
phase can achieve a lower critical-phase cost by gathering that information
during the preliminary phase.

There are various ways in which this two-phase process may fit into the
overall software maintenance process. A big bang process performs all
modifications, and when these are complete the process proceeds with
regression testing. An incremental process performs regression testing at
intervals throughout the maintenance lifecycle, with each testing session
aimed at the product in its current state of evolution. Preliminary phases
are typically shorter for the incremental model than for the big bang model;
however, for both models, both phases exist and can be exploited.

3. REGRESSION TEST SELECTION ALGORITHMS

For reasons that will become clear, our goal is to identify all nonobsolete
tests in T that execute changed code with respect to P and P’. In other
words, we want to identify tests in T that (1) execute code that is new or
modified for P’ or (2) executed code in P that is no longer present in P’'. To
capture the notion of these tests more formally, we define an execution
trace ET(P(t)) for t on P to consist of the sequence of statements in P that
are executed when P is executed with ¢. Two execution traces ET(P(¢)) and
ET(P'(t)) are equivalent if they have the same lengths and if, when their
elements are compared from first to last, the text representing the pairs of
corresponding elements is lexicographically equivalent. Two text strings
are lexicographically equivalent if their text (ignoring extra white space
characters when not contained in character constants) is identical. Test ¢ is
modification-traversing for P and P’ (or simply, ¢ is modification-travers-
ing) if and only if ET(P(¢)) and ET(P’'(¢)) are nonequivalent.

To identify the modification-traversing tests in 7' we must identify the
nonobsolete tests in 7' that have nonequivalent execution traces in P and
P'. Assume henceforth that T contains no obsolete tests, either because it

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

A Safe, Efficient Regression Test Selection Technique . 179

contained none initially or because we have removed them. (If we cannot
effectively determine test obsolescence we cannot effectively judge test
correctness. Thus, this assumption is necessary in order to reuse tests at
all, whether selectively or not.) In addition, assume that for each testt € T,
P terminated and produced its specified output when we executed it with ¢.
Our task is to partition 7' as nearly as possible into tests that have
different execution traces in P and P’ and tests that do not.

The next section presents our intraprocedural test selection algo-
rithm—an algorithm that operates on individual procedures. Section 3.2
presents our interprocedural test selection algorithm—an algorithm that
operates on entire programs or subsystems.

3.1 Intraprocedural Test Selection

There is a unique mapping between an execution trace for a program and
the nodes of the CFG that represents that program. This mapping is
obtained by replacing each statement in the execution trace by its corre-
sponding CFG node, or equivalently, by the label of that node. This
mapping yields a traversal trace: given CFG G for P, and test ¢ with
execution trace ET(P(¢)), the traversal trace for ¢ on G is TR(P(¢)). If N is
a node in traversal trace TR(P(¢)), the traversal trace prefix for TR(P(t))
with respect to NV is the portion of TR(P(¢)) that begins with the first node
in the trace and ends at N.

Assume that CFG nodes are labeled by the text of the statements to
which they correspond. Given two traversal traces, a pairwise comparison
of the traces compares the labels on the first nodes in each trace to each
other, then compares the labels on the second nodes in each trace to each
other, and so forth. If a test # has nonequivalent execution traces in P and
P', a pairwise comparison of the traversal traces for ¢ in P and P’ reaches
a first pair of nodes N and N’ whose labels are not lexicographically
equivalent. In this case we say that the two traversal traces are nonequiva-
lent, but that the traversal trace prefixes of those traces are equivalent up
to and not including N and N'.

Suppose ¢ has nonequivalent execution traces ET(P(¢)) and ET(P’(¢)) in
P and P’, and let N and N’ be the first pair of nodes found to be not
lexicographically equivalent during a pairwise comparison of the corre-
sponding traversal traces, TR(P(¢)) and TR(P'(t)). The traversal trace
prefixes of TR(P(¢)) and TR(P’(t)) with respect to N and N’, respectively,
are equivalent up to, but not including, N and N’. In other words, if ¢ is
modification-traversing for P and P’, there is some pair of nodes N and N’
in G and G', the CFGs for P and P’, respectively, such that N and N’ have
labels that are not lexicographically equivalent, and N and N' are end-
points of traversal trace prefixes that are equivalent up to, but not
including, N and N'. To find tests that are modification-traversing for P
and P’, we can synchronously traverse CFG paths that begin with the
entry nodes of G and G’, looking for pairs of nodes N and N’ whose labels
are not lexicographically equivalent. When traversal of CFG paths finds

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

180 . Gregg Rothermel and Mary Jean Harrold

algorithm SelectTests(P, P, T):T"'

input P, P': base and modified versions of a procedure
T: a test set used to test P
output T': the subset of T selected for use in regression testing P’
1. Dbegin
2. T = ¢
3. construct G and G', CFGs for P and P’, with entry nodes E and E’
4. Compare(E, E')
5. return 7"
6. end
procedure Compare(N, N')
input N and N': nodes in G and G’
7. begin
8. mark N “N’-visited”
9. for each successor C of N in G do
10. L = the label on edge (N, C) or € if (IV, C) is unlabeled
11. C' = the node in G' such that N’, C') has label L
12. if C is not marked “C’-visited”
13. if LEquivalent (C, C’)
14. T = T'" U TestsOnEdge (NN, C))
15. else
16. Compare(C, C')
17. endif
18. endif
19. endfor
20. end

Fig. 2. Algorithm for intraprocedural test selection.

such a pair, we use TestsOnEdge to select all tests known to have reached
N.

3.1.1 The Basic Test Selection Algorithm. Figure 2 presents SelectTests,
our intraprocedural regression test selection algorithm. SelectTests takes a
procedure P, its modified version P’, and the test suite T for P, and returns
T', a set that contains tests that are modification-traversing for P and P’.
SelectTests first initializes 7" to ¢ and then constructs CFGs G (with entry
node E) and G’ (with entry node E’) for P and P’, respectively. Next, the
algorithm calls Compare with E and E’. Compare ultimately places tests
that are modification-traversing for P and P’ into T’. SelectTests returns
these tests.!

Compare is called with pairs of nodes N and N’', from G and G’,
respectively, that are reached simultaneously during the algorithm’s com-
parisons of traversal trace prefixes. Given two such nodes N and N',
Compare determines whether N and N’ have successors whose labels differ
along pairs of identically labeled edges. If N and N’ have successors whose

lAn earlier version of this algorithm [Rothermel and Harrold 1993] was based on control
dependence graphs for P and P’. The possibility of performing that algorithm on CFGs was
suggested by Weibao Wu (personal communication). The two approaches select the same test
sets, but the CFG-based approach is more efficient, and easier to implement, than the earlier
approach.

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

A Safe, Efficient Regression Test Selection Technique . 181

9@ Procedure avg2

S1l’. count = 0
S2’. fread(fileptr,n)
P3’., while (not EOF) do

P4’ if (n<0)
| ssa. print("bad input®) |
857. return(error)

else
numarray[count] = n

88’ . fread(fileptr,n)
endwhile
89’. avg = calcavg(numarray, count)

Cexii) 810’ .return(avg)

Fig. 3. Procedure avg2 and its CFG.

labels differ along some pair of identically labeled edges, tests that traverse
the edges are modification-traversing due to changes in the code associated
with those successors. In this case Compare selects those tests. If N and N’
have successors whose labels are the same along a pair of identically
labeled edges, Compare continues along the edges in G and G’ by invoking
itself on those successors.

Lines 7-20 of Figure 2 describe Compare’s actions more precisely. When
Compare is called with CFG nodes N and N', Compare first marks node N
“N'-visited” (line 8). After Compare has been called once with N and N’ it
does not need to consider them again—this marking step lets Compare
avoid revisiting pairs of nodes. Next, in the for loop of lines 9-19, Compare
considers each control flow successor of N. For each successor C, Compare
locates the label L on the edge from N to C, then seeks the node C’' in G’
such that (N', C') has label L; if (N, C) is unlabeled € is used for the edge
label. Next, Compare considers C and C’. If C is marked “C’-visited,”
Compare has already been called with C and C’, so Compare does not take
any action with C and C’. If C is not marked “C’-visited,” Compare calls
LEquivalent with C and C’. The LEquivalent function takes a pair of nodes N
and N’ and determines whether the statements S and S’ associated with N
and N’ are lexicographically equivalent. If LEquivalent(C, C’) is false, then
tests that traverse edge (N, C) are modification-traversing for P and P’;
Compare uses TestsOnEdge to identify these tests and adds them to 7. If
LEquivalent(C, C’) is true, Compare invokes itself on C and C’ to continue
the graph traversals beyond these nodes.

We next consider several examples that illustrate how SelectTests works.
Figure 3 presents procedure avg2 and the CFG for avg2; avg?2 is a modified
version of procedure avg, shown in Figure 1. In avg2, statement S7 has
erroneously been deleted, and statement S5a has been added. When called
with avg and avg2, and with test suite 7' (shown in Table I), SelectTests
initializes T' to ¢, constructs the CFGs for the two procedures, and calls
Compare with entry and entry’. Compare marks entry “entry’-visited” and
then considers the successor of entry, D. Compare finds that D’ is the

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

182 . Gregg Rothermel and Mary Jean Harrold

corresponding successor of entry’, and because D is not marked “D’-
visited,” calls LEquivalent with D and D'. Because D and D’ have the same
labels (the declaration statements associated with the two nodes have not
changed from avg to avg2), LEquivalent returns true, and Compare invokes
itself on D and D’ (invocation 2). Recursive calls continue in this manner
on nodes S1 and S1’ (invocation 3), S2 and S2' (invocation 4), and P3 and
P3’ (invocation 5); in each case the successors of the nodes have lexico-
graphically equivalent labels. On invocation 5, Compare must consider two
successors of P3: P4 and S9. When Compare considers S9, it calls itself
with S10 and S10’, and subsequently with exit and exit’, and selects no
tests. When Compare considers P4 and P4/, it first seeks a true child of P4’
to compare with S5; it finds S5a and calls LEquivalent with S5 and S5a.
The statement associated with S5 and the statement associated with S5a
are not lexicographically equivalent, so LEquivalent returns false; Compare
uses TestsOnEdge(P4, S5) to locate the set of tests ({t2}) that reach S5 in
avg and adds these tests to 7'. When Compare seeks a false successor of
P4’, it finds S6’ and calls LEquivalent with S6 and S6’; LEquivalent returns
true for these nodes, so Compare invokes itself on S6 and S6’. Compare
finds the labels on the successors of these nodes, S7 and S8’, not lexico-
graphically equivalent, and adds to 7’ the set of tests that traverse edge
(S7, S8); T' is now {t2, t3}. At this point the algorithm has compared all
traversal trace prefixes either up to modifications or up to the exit node, so
no further traversal is necessary; recursive Compare calls return to the
main program, and the algorithm returns set 7' = {t2, t3}, in which both
tests are modification-traversing. Many other regression test selection
techniques [Bates and Horwitz 1993; Benedusi et al. 1988; Fischer et al.
1981; Harrold and Soffa 1988; 1989b; Hartmann and Robson 1990b; Os-
trand and Weyuker 1988; Taha et al. 1989] omit t2 or t3.

If, for avg and avg2, the deletion of S7 had been the only change,
SelectTests would have returned only {t3}. If the addition of S5a had been
the only change, SelectTests would have returned only {t2}. In this latter
case, Compare would eventually invoke itself with S8 and S8’, but find the
successor of S8, P3, already marked “P3’-visited”; thus, Compare would not
reinvoke itself with P3 and P3’.

To see how SelectTests handles changes in predicate statements, con-
sider the result when line P4 in procedure avg is also changed (errone-
ously), to “n > 0.” This change alters only the text associated with node P4’
in avg2’s CFG. In this case, when called with the CFGs for avg and avg2,
SelectTests proceeds as in the previous example until it reaches P3 and
P3’. Here it finds that successors P4 and P4’ have labels that are not
lexicographically equivalent and selects {t2, t3}. The procedure does not
need to analyze successors of P4 and P4’.

To see how SelectTests handles large-scale structural changes, consider
the result when new error-handling code is inserted into avg, such that the
procedure checks fileptr as its first action and executes the rest of its
statements only if fileptr is not NULL. SelectTests detects this change on
the second invocation of Compare, when Compare detects the differences

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

A Safe, Efficient Regression Test Selection Technique . 183

twovisits’ (x)

{

twovisits (x)
{

Pl if (x=0) P1’ if (x=0)
S2 goto L1 82’ goto L1
else else
Li: s3¢ print("1")
S3 print("1") endif
endif sS4’ exit
S4 exit Ll:
} 857 print("2")

]

Fig. 4. Procedures twovisits and twovisits’ and their CFGs.

between successors of D and D’. The procedure does not need to analyze
successors of D and D': it returns the entire test set T because all tests in T
are modification-traversing.

To understand why, at line 12, SelectTests marks C “C’-visited” rather
than just “visited,” consider Figure 4. The figure contains procedure twovis-
its (far left), a modified version of that procedure, twovisits’ (far right), and
the CFGs for the two procedures (next to their respective procedures, with
declaration nodes omitted). The two versions produce identical output for
all values of x other than “0.” When x = 0, the execution trace for twovisits
is {(entry, P1, S2, S4, exit), and the procedure prints “1.” For the same
input, the execution trace for twovisits’ is (entry’, P1’, S2', S5', exit'), and
the procedure prints “2.”

When SelectTests runs on the CFGs for twovisits and twovisits’, it
considers entry and entry’ first and then invokes itself on P1 and P1'.
Suppose SelectTests next invokes itself on S3 and S3’ (our algorithm is not
required to visit the successors of a pair of nodes in any particular order; if
it were, we could reverse the contents of the if and else clauses in this
example and still make the point that we are about to make). SelectTests
marks S3 “S3’-visited,” then continues with invocations on S4 and S4’, and
exit and exit', selecting no tests, because tests that take these paths in the
two versions are not modification-traversing. Now, SelectTests resumes its
consideration of successors of P1 and P1’ and invokes itself on S2 and S2'.
SelectTests marks S2 “S2’-visited” and considers the successors of S2. S2
has only one successor, S3; the corresponding successor of S2’ is S5'. Here
is the point we wish to make. If on visiting S3, SelectTests had simply
marked S3 “visited,” and now seeing that S3 had been visited declined to
visit it again, SelectTests would not compare S3 and S5’ and would not
detect the need to select tests through S3. However, as the algorithm is
written, SelectTests sees that S3 is only marked S3’-visited, not S5’-
visited, and thus proceeds to compare S3 and S5’ and select the necessary
tests.

In certain cases, it is possible for SelectTests to select tests that are not
modification-traversing for P and P’. This is not surprising, because the
problem of precisely identifying these tests in general is PSPACE-hard;

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

184 . Gregg Rothermel and Mary Jean Harrold

pathological(x) pathological’ (x)
{ {
Pl while (++x< 0) P1’ while (++x < 0)
{ {
P2 while (++x < 0)
t hile (++x< 0 P2’ while (++x < 0)
P3 while (++x< 0) 0
2 P3/ while (++x < 0)
} {1
) P4’ while (++x < 0)
s4 printf("sd", x);) {1
1 8§57 printf("sd", x);

Fig. 5. Procedure pathological and pathological’ and their CFGs.

thus unless P = NP, no efficient algorithm will always identify precisely
the tests that are modification-traversing for P and P’ [Rothermel 1996].
Figure 5, which illustrates this possibility, depicts a C function, pathologi-
cal, and a modified version of that function, pathological’, with the CFGs for
the versions (declaration nodes omitted). Each while construct in the
versions first increments the value of X, and then tests the incremented
value, to determine whether to enter or exit its loop. Suppose test suite T
for pathological contains tests 1 and #2 that use input values “0” and “—2,”
respectively, to exercise the function. Table II shows the inputs, outputs,
and traversal traces that result when pathological and pathological’ are run
on these tests. When pathological is run on tests 1 and ¢2, it outputs “1” for
both. When pathological’ is run on test ¢1, it also outputs “1”; however,
when pathological’ is run on test ¢2, it outputs “3.” Tests t1 and ¢2 both
traverse edge (P1, S4) in the CFG for pathological.

Consider the actions of SelectTests, invoked on pathological and patholog-
ical’. Called with entry and entry’, Compare invokes itself with P1 and P1’,
then with P2 and P2'. When invoked with P2 and P2’, Compare considers
their successors, P1 and P3’, respectively, finds their labels lexicographi-
cally equivalent, and invokes itself with them. Compare finds the labels of
their successors, S4 and P4’, not lexicographically equivalent, and selects
the tests on edge (P1, S4), that is, tests t1 and 2.

The problem with this test selection is that, whereas ¢2 is modification-
traversing for the two versions of pathological, t1 is not modification-
traversing for the two versions. Table II shows the traversal traces, which
correspond to the execution traces, for the tests on the two versions. Test #1
has equivalent execution traces for the two versions, whereas test #2 does
not: the traces for ¢2 differ in their fifth elements. Thus, ¢1 is not
modification-traversing for the two versions, and SelectTests chooses it
unnecessarily.

3.1.2 Correctness of the Algorithm. Controlled regression testing is the
practice of testing P’ under conditions equivalent to those that were used
to test P. Controlled regression testing applies the scientific method to

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

A Safe, Efficient Regression Test Selection Technique . 185

Table II. Test Suites and Traversal Traces for pathological and pathological’

Traversal Traces (Showing Node Labels)

Test Input Output for Procedure pathological
t1l 0 1 entry, while (++x < 0), printf(“%d”, x);,
exit
t2 -2 1 entry, while (++x < 0), while (++x < 0),

while (++x < 0), printf(“%d”, x);, exit

Traversal Traces (Showing Node Labels)
for Procedure pathological’

tl 0 1 entry, while (++x < 0), printf(“%d”, x);,
exit
t2 -2 3 entry, while (++x < 0), while (++x < 0),

while (++x < 0), while (++x < 0), while (++ < 0),
printf(“%d”, x);, exit

regression testing: to determine whether code modifications cause errors,
test the new code, holding all other factors that might affect program
behavior constant. The importance of controlled regression testing is stated
well by Beizer [1990], who writes that “It must be possible to precisely
recreate the entire test situation or else it may be impossible to resolve
some of the nastiest configuration dependent bugs that show up in the
field.” Controlled regression testing is further discussed in Rothermel and
Harrold [1996].

For the purpose of regression test selection, we want to identify all tests
t € T that reveal faults in P'—the fault-revealing tests. An algorithm that
selects every fault-revealing test in T is safe. There is no effective proce-
dure that, in general, precisely identifies the fault-revealing tests in T
[Rothermel 1996]. However, under controlled regression testing, the modi-
fication-traversing tests are a superset of the fault-revealing tests [Rother-
mel 1996]. Thus, for controlled regression testing, a regression test selec-
tion algorithm that selects all modification-traversing tests is safe. This
result is significant, because it supports the following theorem:

THEOREM 3.1.2.1. SelectTests is safe for controlled regression testing.

PrOOF. We outline the logic of the proof here. See Rothermel [1996, pp.
77-81] for details. Let N and C be nodes in G, and let N’ and C’ be nodes
in G', such that (N, C) is an edge in G labeled L, and (N', C') is an edge in
G’ also labeled L. N and N’ are similar for C and C' if and only if C and C’
have lexicographically equivalent labels. N and N’ are comparable if and
only if there are traversal trace prefixes ending in N and N’ that are
similar every step of the way.

The proof initially shows that if test # is modification-traversing for P
and P’, then there are nodes N and N’ in G and G’, respectively, such that
N and N’ are comparable and such that there exists some pair of identi-
cally labeled edges (N, C) and (N', C’) in G and G’, respectively, where ¢ €
TestsOnEdge(V, C), and N and N' are not similar for C and C’. The proof
then shows that (1) SelectTests calls Compare(lN, N') with every pair of

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

186 . Gregg Rothermel and Mary Jean Harrold

comparable nodes N and N’ in G and G’ and that (2) when called with N
and N', if N and N’ are not similar for some pair of nodes C and C’ such
that (N, C) and (N', C’) are on identically labeled edges, SelectTests
selects all tests on edge (N, C).

Thus, if ¢ is modification-traversing for P and P’, SelectTests selects ¢.
Because the modification-traversing tests form a superset of the fault-
revealing tests for controlled regression testing, SelectTests is safe for
controlled regression testing. [

We are also interested in how well SelectTests does at omitting tests that
cannot reveal faults. For controlled regression testing, tests that are not
modification-traversing cannot be fault-revealing; ideally, all such tests
should be omitted. The previous section showed, however, that there are
cases in which SelectTests selects tests that are not modification-travers-
ing. Theorem 3.1.2.2 identifies a necessary condition for SelectTests to
select such tests: the multiply-visited-node condition. The multiply-visited-
node condition holds for P and P’ if and only if SelectTests, run on P and
P', marks some node in P “X-visited” for more than one node X in the CFG
for P'. The theorem is as follows:

THEOREM 3.1.2.2 Given procedure P, modified version P', and test suite T
for P, if the multiply-visited-node condition does not hold for P and P’', and
SelectTests selects test set T' for P’', then every test in T' is modification-
traversing for P and P’.

PrOOF. We outline the logic of the proof here. See Rothermel [1996, pp.
84—-85] for details. The proof proceeds by showing (1) that if SelectTests
selects test ¢, then there exists a pair of nodes N and N’ in G and G’ such
that N and N’ are comparable and (2) for some pair of identically labeled
edges (N, C) and (N', C’) in G and G’ where t € TestsOnEdge(N, C), N
and N’ are not similar for C and C’. The proof then assumes that given P
and P’ for which the multiply-visited-node condition does not hold, Select-
Tests selects some test ¢ that is not modification-traversing, and using step
(1), shows that this assumption leads to a contradiction. Thus ¢ must be
modification-traversing. [

Theorem 3.1.2.2 provides a way to characterize the class of programs and
modified versions for which SelectTests selects tests that are not modifica-
tion-traversing. The theorem is significant for two reasons. First, proce-
dures like pathological and pathological’, which cause the multiply-visited-
node condition to hold, are atypical. With some work, additional examples
can be constructed; however, all examples located to date have been
contrived and do not represent programs that appear in practice. Second, in
empirical studies with “real” programs, we have never found a case in
which the multiply-visited-node condition held. Thus, current evidence
suggests that despite the existence of examples like pathological and
pathological’, in practice, SelectTests selects exactly the tests in T that are
modification-traversing for P and P’.

A final theorem is as follows:

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

A Safe, Efficient Regression Test Selection Technique . 187

THEOREM 3.1.2.3. SelectTests terminates.

PrOOF. We outline the logic of the proof here. See Rothermel [1996, p.
81] for details. The proof proceeds by showing that (1) the number of
recursive calls made to Compare is bounded and (2) the work required by a
call to Compare is bounded. Part (1) follows from the fact that every call to
Compare marks some node N in G N'-visited for some node N’ in G’,
where the maximum number of node pairs in G and G’ is bounded. Part (2)
follows from consideration of the boundedness of each statement inside the
Compare function. [

3.1.3 Complexity of SelectTests. The running time of SelectTests is
bounded by the time required to construct CFGs G and G’ for P and P’,
respectively, plus the number and cost of calls to Compare. Let n be the
number of statements in P, and n’ the number of statements in P'. CFG
construction is an O(n) operation [Aho et al. 1986]. An upper bound on the
number of calls to Compare is obtained by assuming that Compare can be
called with each pair of nodes N and N’ in G and G’, respectively. Under
this assumption, the overall cost of SelectTests is O(n + n’' + m(nn')),
where m is the cost of a call to Compare.

Each call to Compare results in an examination of at most two edges (“T”
and “F”) at line 9 and thus two calls to LEquivalent (line 13). Depending on
the results of the LEquivalent operation, the call to Compare results in
either a set union operation (line 14) or an examination of at most two
successors of N (line 16). The set union task, implemented as a bitvector
operation, has a worst-case cost proportional to the number of tests in T'.
The LEquivalent procedure has a cost that is linear in the number of
characters in the statements compared; for practical purposes this size is
bounded by a constant (the maximum line length present in the procedure).
Thus, m in the above equation is bounded by %|7T| for some constant k.

It follows that given a pair of procedures for which CFGs G and G’
contain n and n' nodes, respectively, and given a test suite of |T| tests, if
Compare is called for each pair of nodes (N, N') (N € G and N’ € G'), the
running time of SelectTests is O(|T|nn’).

The assumption that Compare may be called for each pair of nodes N and
N’ from G and G' applies only to procedures P and P’ for which the
multiply-visited-node condition holds. Program pathological of Figure 5
illustrates a case in which that condition holds: in that example, for graphs
of 6 and 7 nodes, respectively, the algorithm makes 16 calls to Compare.
When the multiply-visited-node condition does not hold, however, Compare
is called at most min{n, n'} times. In these cases, which include all cases
observed in practice, SelectTests runs in time O(|T|(min{n, n'})).

3.1.4 Improvements to the Basic Algorithm. The preceding sections pre-
sented a simple version of SelectTests. There are several ways in which to
increase the efficiency or precision of that algorithm [Rothermel 1996]. This
section discusses two improvements.

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

188 . Gregg Rothermel and Mary Jean Harrold

Handling Variable and Type Declarations. A change in a variable or
type declaration may render a test fault-revealing, even though that test
executes no changed program statements other than the declaration. For
example, in a Fortran program, changing the type of a variable from
“Real*16” to “Real*8” can cause the program to fail even in the absence of
direct alterations to executable code. Our algorithm associates variable and
type declarations with “declaration” nodes in CFGs, in the order in which
the compiler encounters the declarations, and attaches every test that
enters a procedure to the edge that enters the procedure’s declaration node.
This approach can be extended to place declaration nodes elsewhere in
CFGs (for example, for languages like C that allow declarations in blocks).
A similar approach uses a separate declaration node for each variable or
type declaration. Using these approaches, our algorithms (1) detect differ-
ences between variable and type declarations and (2) flag tests that may be
affected by these differences as modification-traversing.

These approaches have drawbacks: a new, modified, or deleted variable
or type declaration may unnecessarily force selection of all tests. If a
declaration of variable v changes, the only tests that can be fault-revealing
due to such a change (for controlled regression testing) are tests that reach
some statement in the executable portion of the procedure or program that
contains a reference to the memory associated with v. If a declaration of
type 7 changes, the only tests that can be fault-revealing due to such a
change (for controlled regression testing) are tests that reach some state-
ment in the executable portion of the procedure or program that contains a
reference to the memory associated with some variable whose type is based
on 1. Our test selection algorithms can be modified to reduce imprecise test
selection at declaration changes. One approach requires the algorithm to
identify and keep a list of affected variables—variables whose declarations
have changed or whose declarations are dependent on changed type defini-
tions. The LEquivalent procedure uses this list to detect occurrences of
affected variables and to report statements that contain references to the
memory locations associated with those variables as modified. The modified
algorithm postpones test selection until it locates statements that contain
affected references; it then selects only tests that reach those statements.

An Alternative Representation for Case Statements. Instead of repre-
senting case statements as a series of nested if-else statements, we can
represent them as a set of choices incident on a single predicate node that
has a labeled out edge for each case. This representation yields more
precise test selection than the nested if-else representation. With minor
modifications, Compare handles this representation of switches.

A principal difference in this representation is that, for switch predi-
cates, the set of labeled out edges may vary from P to P’ if cases are added
or removed. If a case is added to a switch, then all tests in T that took the
default case edge in P can conceivably take the branch to the new case in
P'; thus, Compare looks for new edges, and if it detects them, it adds tests
that formerly traversed the default edge to 7". If a case is removed from a

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

A Safe, Efficient Regression Test Selection Technique . 189

<
-
T2
Cean ©
E
et main>

Fig. 6. Program sys that illustrates interprocedural test selection effects.

switch, Compare detects the missing labeled edge in G’ and selects all tests
that traversed the edge in G.

3.2 Interprocedural Test Selection

The foregoing examples demonstrate that our regression test selection
technique can reduce the number of tests that must be run for single
procedures. However, the examples also suggest that when procedures are
small and uncomplicated, and their test sets are small, it may be more cost
effective to run all tests. This objection is mitigated for interprocedural
testing. Test sets for subsystems and complete programs are typically much
larger than test sets for single procedures. In this context, the savings that
can result from selective retest increases. This section shows how to extend
our test selection technique to function interprocedurally—on entire pro-
grams or subsystems.

Assume that we can obtain a mapping of procedure names in P to
procedure names in P’, that records, for each procedure ? € P, the name
%’ of its counterpart in P’. A simple but naive approach to interprocedural
regression test selection executes SelectTests on every pair of procedures
(P, ?') where P’ is the counterpart of . With this simple approach, if a
procedure % € P is no longer present in P’, tests that used to enter % are
selected at former call sites to . Similarly, if a procedure P’ is inserted
into P’, tests that enter %’ are selected at the call sites to ?’. Notice that
the number of times % is called from within P is immaterial: trace
information reports precisely which tests reach which edges in %, and a
single traversal of ? and %' suffices to find tests that are modification-
traversing for # and %’.

By running SelectTests on all pairs of corresponding procedures in P and
P', we obtain a test set 7"’ that is safe for controlled regression testing, but
fail to take advantage of several opportunities for improvements in effi-
ciency. To describe these opportunities, we refer to the CFGs for the
procedures in a program sys, shown in Figure 6. Program sys contains four

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

190 . Gregg Rothermel and Mary Jean Harrold

algorithm SelectinterTests(P, ?', Py, Py, T) : T'

input P, P': base and modified versions of a program or subsystem
Py, P%: entry procedures to % and %’
T: a test set used previously to test %

output T': the subset of T selected for use in regression testing P’
data proctable: contains fields name and status
1. begin
2. T = ¢
3. proctable = ¢
4. SelectTests2(Py, P)
5. return T"
6. end
algorithm SelectTests2(P, P’)
input P, P': base and modified versions of a procedure
7. begin
8. add P to proctable, setting its status to “visited”
9. construct G and G', CFGs for P and P’, with entry nodes E and E'
10. Compare2(E, E’)
11. if the exit node in G is not marked “S-visited” for some node S in G’
12. set the status flag for P to “selectsall”
13. endif
14. end
procedure Compare2(N, N')
input N and N': nodes in G and G’
15. begin
16. mark N “N’-visited”
17. for each successor C of N in G do
18. L = the label on edge (N, C) or € if the edge is unlabeled
19. C' = the node in G' such that (N', C’) has label L
20. if C is not marked “C’-visited”
21. if = LEquivalent(C, C')
22. T' = T" U TestsOnEdge((N, C))
23. else
24. for each procedure O called in C do
25. if O & proctable or status for O is not “visited” or “selectsall”
26. SelectTests2(O, O’)
217. endif
28. endfor
29. if any procedures called in C do not have status flag “selectsall”
30. Compare2(C, C')
31. endif
32. endif
33. endif
34. endfor
35. end

Fig. 7. Algorithm for interprocedural test selection.

procedures: main is the entry point to the program, and A, B, and C are
invoked when the program runs. Notice that A is recursive.

Suppose statement S1 in sys is modified, creating a new version of sys,
sys’. In this case, all tests in T are modification-traversing for sys and sys’
and are selected when SelectTests, called with main and main’, reaches S1
in main. In this case, there is no need to compare procedures A, B, and C to

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

A Safe, Efficient Regression Test Selection Technique . 191

their counterparts in sys’: tests that could reach those procedures and
become modification-traversing within them have already been selected.
The naive algorithm does unnecessary work for this example.

Alternatively, suppose statement S6 (and no other statement) in sys is
modified. In this case, because every test of sys that enters main reaches
the call to A in main, then reaches the call to C in A, every test of sys
becomes modification-traversing in C and C’. In this case, there is no need
to compare B with its counterpart in sys’ and no need to traverse portions
of the CFG for main beyond the call to A, or portions of the CFG for A
beyond the call to C. Here, too, the naive algorithm does unnecessary work.

These observations motivate an algorithm for interprocedural test selec-
tion by CFG traversal that begins by examining the entry procedures for P
and P’. When the algorithm reaches call nodes, it immediately enters the
graphs for the called procedures if their entry nodes have not previously
been visited. When the algorithm completes its processing of a procedure, it
records whether tests that enter the procedure can exit it without becoming
modification-traversing. On subsequent encounters with calls to such pro-
cedures, the algorithm continues its traversal beyond the call nodes only if
tests can pass through the procedures without becoming modification-
traversing.

3.2.1 The Basic Interprocedural Test Selection Algorithm. Figure 7
gives algorithm SelectinterTests, which selects tests for subsystems or
programs. The algorithm uses procedures SelectTests2 and Compare2,
which are similar to the intraprocedural test selection procedures Select-
Tests and Compare, respectively. The algorithm also keeps data structure
proctable, which records the name of each procedure encountered in the
traversal of the graph for P in a name field and which keeps a status flag
for each procedure that, if defined, can have value “visited” or “selectsall.”

SelectinterTests first initializes T’ and proctable to ¢ and invokes Select-
Tests2 on the entry procedures, P and P'g, of the two programs. Like
SelectTests, SelectTests2 takes two procedures P and P’ as input and
locates tests that are modification-traversing for those procedures. How-
ever, SelectTests2 begins by inserting P into proctable and setting the
status flag for P to “visited,” to indicate that a traversal of P has begun. The
procedure then creates CFGs G and G’ for P and P’, respectively, and calls
Compare2 with the entry nodes of those CFGs. When control returns from
Compare2 to SelectTests2, SelectTests2 determines whether the exit node
of P was reached during the traversal of Compare2. If not, tests that enter
P become modification-traversing on every path through P; thus, there is
no point in visiting nodes beyond calls to P. To note this fact, SelectTests2
sets the status flag for P in proctable to “selectsall.”

Compare?2 is similar to Compare, except that when Compare2 finds that
two nodes C and C’ have lexicographically equivalent labels, before it
invokes itself on those nodes it determines whether C contains any calls. If
C contains calls, it may be appropriate to invoke SelectTests2 on the called
procedures. (It is not necessary to check C’ for calls: at this point in the

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

192 . Gregg Rothermel and Mary Jean Harrold

algorithm, C and C' have already been compared and found to have
lexicographically equivalent labels; thus, C and C’ are equivalent in terms
of calls.) Compare examines the status flag for each procedure O called in
C; if status is “visited” or “selectsall,” then O has been (or in the former
case may, in the case of recursive calls, be in the process of being)
traversed, and there is no need to invoke SelectTests2 on O and O’ again.
Finally, if any procedure called in C has its status flag set to “selectsall”
then all tests through that procedure (and thus all tests through C) have
been selected, and there is no need to compare successors of C and C’.

In this fashion, SelectinterTests processes pairs of procedures from base
and modified programs. By beginning with entry procedures, and process-
ing called procedures only when it reaches calls to those procedures, the
algorithm avoids analyzing procedures when calls to those procedures occur
only subsequent to code changes. Furthermore, the algorithm avoids tra-
versing portions of graphs that lie beyond calls to procedures through
which all tests are modification-traversing.

Unlike the naive algorithm that processes every pair of procedures in P
and P’, SelectinterTests requires no mapping between procedure names in
P and P’', provided P and P’ compile and link. If procedure foo in P is
deleted from P’, statements in P that contain calls to foo must be changed
for P'. In this case, when Compare2 reaches a node in G that corresponds
to a statement in which foo is called, Compare2 selects all tests that reach
the node and does not invoke SelectTests2 on foo. Thus, it is not possible
for Compare2, in line 26, to be unable to find a counterpart for foo in P’.
The cases where foo is not present in P but is added to P’', and where foo is
renamed for P’, are handled similarly.

The improvements to the basic intraprocedural algorithm discussed in
Section 3.1.4 also apply to this interprocedural algorithm.

The following example illustrates the use of SelectinterTests. Suppose
program sys of Figure 6 is changed to sys’ by modification of the code
associated with node S5 in procedure B. (We do not show the graphs for the
modified program; to discuss the example, we distinguish nodes in the CFG
for sys from nodes in the CFG for sys’ by adding primes to them.) Initially,
SelectinterTests calls SelectTests2 with main and main’. SelectTests2 adds
main to proctable with status “visited,” creates the CFGs for the two
procedures, then invokes Compare2 with the entry nodes of those graphs.
Compare?2 begins traversing the graphs, and on reaching nodes call A and
call A’, because A is not listed in proctable, invokes SelectTests2 on A and
A’. SelectTests2 adds A to proctable with status “visited,” then builds the
CFGs for the two procedures and begins to traverse them. On reaching calls
to C, the algorithm adds C to proctable with status “visited,” makes CFGs
for C and C’, and begins traversing them. The algorithm finds no calls or
differences in C and C’, and thus when the call to Compare with the entry
nodes of C and C’' terminates, the algorithm marks the exit node of C
“exit’-visited.” This marking means that tests entering C and C’ pass
through unaffected, so SelectTests2 does not set the status flag for C to
“selectsall.”

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

A Safe, Efficient Regression Test Selection Technique . 193

On returning from the call to SelectTests2 with C and C’, Compare
resumes at line 29, finds that the status flag is not set, and continues
traversing A and A’ by invoking itself with the call C node and its
counterpart in the graph for sys’. The traversal eventually reaches the call
to A in the if predicate: here Compare2 finds that A has status “visited” and
does not reinvoke SelectTests2 on A, thus handling the recursion. On
reaching the call to B in the else clause of the predicate, Compare2 invokes
SelectTests2 with B and B’. This invocation ultimately identifies the
differences in B and B’ and selects tests that reach the modified code.
Furthermore, because the code difference prevents Compare2 from reach-
ing the exit B node, when the call to Compare with the entry nodes of B and
B’ returns, SelectTests2 sets the Status flag for B to “selectsall”: all tests
that enter B are modification-traversing.

On returning from the call to SelectTests2 for A and A’, Compare2
resumes, at line 29, with the call A node in main and its corresponding node
in main’. The algorithm traverses the graphs through node S3 and its
counterpart in main’. Here, when it examines successors of the nodes,
Compare notes that the status flag for B is set to “selectsall” and thus does
not reinvoke SelectTests2 on B and B’. Furthermore, Compare2 sees that
all procedures called in the call B node have status “selectsall” and thus
does not further traverse the graph for main.

3.2.2 Complexity of SelectInterTests. SelectTests and SelectinterTests
are of comparable complexity. To see this, suppose P contains p procedures
and n statements; suppose ¢ of these n statements contain procedure calls;
and suppose P’ contains n’ statements. Assume that the number of
procedure calls in a single statement, and the length of a statement, is
bounded by constants %k, and k,, respectively. An upper bound on the
running time of SelectinterTests is obtained by considering the case where
P and P’ are identical: in this case the algorithm builds and walks CFGs
for every procedure in P and its corresponding procedure in P’.

In this worst case, regardless of the value of p, the time required to build
CFGs for all procedures in P is O(n), and the time required to build the
CFGs for all procedures in P’ is O(n'). An upper bound on the number of
calls to Compare2 is obtained by assuming that every node in P must be
compared to every node in P’, as might happen if P and P’ contain single
procedures; in this case, the number of Compare2 calls is O(nn'). Exclud-
ing, for the moment, the cost of the proctable lookups in lines 24-31, a call
to Compare2 requires the same amount of work as a call to Compare,
namely, k,|T|. Regardless of the number of calls to Compare, lines 24-31,
over the course of a complete execution of SelectinterTests, require at most
k,c table lookups on a table that contains at most p entries; using a naive
table lookup algorithm, the lines require O(cp) string comparisons, where
the time for each comparison is bounded by %,. Thus, the time required by
SelectInterTests in the worst case is O(n + n’ + |T|nn’ + cp), where cp is
bounded above by k;n2. In practice, however, we expect a lower bound on
execution time. When the multiply-visited-node condition does not hold, the

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

194 . Gregg Rothermel and Mary Jean Harrold

expression |T|nn’ becomes |T|(min{n,n’}). Furthermore, by using an effi-
cient hashing scheme to implement proctable, we can reduce the O(cp)
table lookup time to (expected time) O(c), which is O(n).

4. EVALUATIONS OF THE ALGORITHMS

This section evaluates our algorithms and compares them to other regres-
sion test selection techniques. Section 4.1 presents an analytical evaluation
and comparison; Section 4.2 presents empirical results.

4.1 Analytical Evaluation and Comparison

Although some regression test selection techniques select tests based on
information collected from program specifications [Leung and White 1990b;
von Mayrhauser et al. 1994], most techniques, including ours, select tests
based on information about the code of the program and the modified
version [Agrawal et al. 1993; Bates and Horwitz 1993; Benedusi et al. 1988;
Binkley 1995; Chen et al. 1994; Fischer 1977; Fischer et al. 1981; Gupta et
al. 1992; Harrold and Soffa 1988; Hartmann and Robson 1990b; Laski and
Szermer 1992; Lee and He 1990; Leung and White 1990b; Ostrand and
Weyuker 1988; Rothermel and Harrold 1993; 1994b; Sherlund and Korel
1995; Taha et al. 1989; White and Leung 1992; Yau and Kishimoto 1987].
These code-based techniques pursue various goals. Coverage techniques
emphasize the use of structural coverage criteria; they attempt to locate
program components, such as statements or definition-use pairs, that have
been modified or may be affected by modifications, and select tests from T
that exercise those components. Minimization techniques work like cover-
age techniques, but select minimal sets of tests through modified or
affected program components. Safe techniques, in contrast, emphasize
selection of tests from T that can reveal faults in a modified program.

To provide a mechanism for evaluating and comparing regression test
selection techniques, we developed an analysis framework that consists of
four categories: inclusiveness, precision, efficiency, and generality. Inclu-
siveness measures the extent to which a technique selects tests from T that
reveal faults in a modified program; a 100% inclusive technique is safe.
Precision measures the extent to which a technique omits tests in T that
cannot reveal faults in a modified program. Efficiency measures the space
and time requirements of a technique, focusing on critical-phase costs.
Generality measures the ability of a technique to function in a practical and
sufficiently wide range of situations. We have used our framework to
compare and evaluate all code-based regression test selection techniques
that we have found descriptions of in the literature. We have also used our
framework to evaluate our technique and compare it to other techniques. In
Rothermel and Harrold [1996] we present this framework and evaluation in
detail; this section summarizes results we reported in that work.

Inclusiveness. Our test selection algorithms are safe for controlled re-
gression testing. Only three other techniques [Chen et al. 1994; Hartmann
and Robson 1990b; Laski and Szermer 1992] can make this claim. These

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

A Safe, Efficient Regression Test Selection Technique . 195

three techniques each depend for their safety upon the same assumptions
on which our algorithms depend. Thus, with existing regression test
selection techniques, safe test selection is possible only for controlled
regression testing.

Precision. Our test selection algorithms are not 100% precise. However,
because the problem of precisely identifying the tests that are fault-
revealing for a program and its modified version is undecidable, we know
that we cannot have an algorithm that is both safe and 100% precise.

Nevertheless, our algorithms are the most precise safe algorithms cur-
rently available. For cases where the multiply-visited-node condition does
not hold (we believe this includes all practical cases), our technique selects
exactly the modification-traversing tests, whereas other safe techniques
select the modification-traversing tests, along with tests that are not
modification-traversing. In cases where the multiply-visited-node condition
does hold, we can prove that SelectTests and SelectinterTests are more
precise than two of the other three safe test selection techniques [Chen et
al. 1994; Hartmann and Robson 1990b], and we have strong evidence to
suggest that our algorithms are more precise than the third safe technique
[Laski and Szermer 1992].

Efficiency. As discussed previously, our algorithms run in time
O(|T|nn") for procedures or programs of n and n’ statements, and test set
size |T|. This is an improvement over the efficiency of two of the other safe
techniques [Hartmann and Robson 1990b; Laski and Szermer 1992]. More-
over, we expect our algorithms to run in time O(|T|(min{n,n’})) in prac-
tice—a bound comparable to the worst-case run time of the third safe
technique [Chen et al. 1994]. Our algorithms are also as efficient as, if not
more efficient than, existing nonsafe algorithms. Our algorithms are fully
automatable. Furthermore, much of the work required by our technique,
such as construction of CFGs for P and collection of test history informa-
tion, can be completed during the preliminary regression-testing phase.
Unlike most other algorithms, and all safe algorithms, our algorithms do
not require prior computation of a mapping between components of pro-
grams or procedures and their modified versions; instead, they locate
changed code as they proceed and in the presence of significant changes
avoid unnecessary comparison.

Generality. Our algorithms apply to procedural languages generally,
because we can obtain the required graphs and test history information for
all such languages. Unlike many other techniques, our technique supports
both intraprocedural and interprocedural test selection. Also unlike several
techniques, our technique handles all types of program modifications and
handles multiple modifications in a single application of the algorithms.

4.2 Empirical Evaluation

Researchers wishing to experiment with software-testing techniques face
several difficulties—among them the problem of locating suitable experi-

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

196 . Gregg Rothermel and Mary Jean Harrold

mental subjects. The subjects for testing experimentation include both
software and test suites; for regression-testing experimentation, multiple
versions of the software are also required. Obtaining such subjects is a
nontrivial task. Free software, often in multiple versions, is readily acces-
sible, but free software is not typically equipped with test suites. Commer-
cial software vendors, who are more likely to maintain established test
suites, are often reluctant to release their source code and test suites to
researchers. Even when suitable experimental subjects are available, pro-
totype-testing tools may not be robust enough to operate on those subjects,
and the time required to ensure adequate robustness may be prohibitive.

Given adequate experimental subjects and sufficiently robust prototypes,
we may still question the generalizability of experimental results derived
using those subjects and prototypes. Experimental results obtained in the
medical sciences generalize due to the fact that a carefully chosen subset of
a population of subjects typically represents a fair (i.e., normally distrib-
uted) cross-section of that population. As Weyuker states, however, when
the subject population is the universe of software systems, we do not know
what it means to select a fair cross-section of that population, nor do we
know what it means to select a fair cross-section of the universe of modified
versions or test suites for software.? Weyuker concludes that software
engineers typically perform “empirical studies” rather than experiments.
She insists, however, that such studies offer insight and are valuable tools
in understanding the topic studied. We agree with Weyuker; hence, this
section outlines the results of empirical studies.

To empirically evaluate our regression test selection technique, we imple-
mented the SelectTests and SelectinterTests algorithms as tools, which we
call “DejaVu1” and “DejaVu2,” respectively. Our implementations select
tests for programs written in C. We implemented tools and conducted
empirical studies on a Sun Microsystems SPARCstation 10 with 128MB of
virtual memory.>

4.2.1 Study 1: Intraprocedural and Interprocedural Test Selection. Our
first study investigated the efficacy of DejaVul and DejaVu2 on a set of
small, but nontrivial, real subject programs. The primary objective of this
study was to empirically investigate the extent to which our algorithms
could reduce the cost of regression testing at the intraprocedural and
interprocedural levels.

Subjects. Hutchins et al. [1994] report the results of an experiment on
the effectiveness of data flow- and control flow-based test adequacy criteria.
To conduct their study, the authors obtained seven C programs that ranged
in size from 141 to 512 lines of code and contained between 8 and 21
procedures. They constructed 132 versions of these programs and created
large test pools for the programs. The authors made these programs,

2Weyuker, E. J., from “Empirical techniques for assessing test strategies,” panel discussion at
the International Symposium on Software Testing and Analysis, Aug. 1994.
3SPARCstation is a trademark of Sun Microsystems, Inc.

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

A Safe, Efficient Regression Test Selection Technique . 197

Table III. The Seven Subject Programs Used for Study 1

Program Procedures LOC Nodes Edges Versions Tests Description
replace 21 512 383 432 32 5542 pattern replacement
usl.123 20 472 303 364 7 4056 lexical analyzer
totinfo 16 440 249 271 23 1054 information measure
usl.128 21 399 355 409 10 4071 lexical analyzer
schedule2 16 301 219 243 10 2680 priority scheduler
schedulel 18 292 219 232 9 2650 priority scheduler
tcas 8 141 89 87 41 1578 altitude separation

versions, and test suites available to us. We refer to their experiment as the
“Siemens study” and to the experimental programs as the “Siemens pro-
grams.” Table III describes the Siemens programs.*

To study our intraprocedural test selection algorithms, we considered
each procedure in the Siemens programs that had been modified for one or
more versions of a program. Table IV lists these procedures.

Because the Siemens study addressed error detection capabilities, the
study employed faulty versions of base programs. For our purposes, we
shall consider these faulty versions as ill-fated attempts to create modified
versions of the base programs. The use of faulty versions also lets us make
observations about error detection during regression testing.

Hutchins et al. [1994] describe the process used by the Siemens research-
ers to construct test suites and faulty program versions—we paraphrase
that description here. The Siemens researchers created faulty versions of
base programs by manually seeding faults into those programs. Most faults
involve single line changes; a few involve multiple changes. The research-
ers required that the faults be neither too easy nor too difficult to detect (a
requirement that was quantified by insisting that each fault be detectable
by at least 3, and at most 350, tests in the test pool) and that the faults
model “realistic” faults. Ten people performed the fault seeding, working
for the most part without knowledge of each other’s work.

The Siemens researchers created test pools “according to good testing
practices, based on the tester’s understanding of the program’s functional-
ity and knowledge of . . . the code.” The researchers initially generated tests
using the category partition method and the Siemens TSL (Test Specifica-
tion Language) tool [Balcer et al. 1989; Ostrand and Balcer 1988]; they
then added additional tests to the test suites to ensure that each coverage
unit (statement, edge, and du-pair) in the base program and versions was
exercised by at least 30 tests.

4There are a few differences between the numbers reported in Table III and the numbers
reported in Hutchins et al. [1994]. Hutchins et al. report 39 versions of tcas; their distribution
to us contained 41. Also, the numbers of tests in the test pools we obtained from their
distribution differed slightly from the numbers they reported: in the two most extreme cases,
for example, we found 16 more tests (icas) and 36 fewer tests (us1.123). These differences
amount to less than 1% of total test pool sizes and do not affect the results of this study.

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

198 . Gregg Rothermel and Mary Jean Harrold

Table IV. The 41 Subject Procedures Used for Study 1

Procedure LOC Versions Tests Procedure LOC Versions Tests
1. infotbl 86 7 963 22. locate 20 1 1745
2. gettoken 77 6 4070 23. gser 19 4 297
3. main 71 8 1054 24. isnumconstant 17 1 4056
4. schedulelmain 66 1 2650 25. isstrconstant 16 2 4056
5. omatch 58 5 4177 26. noncrossingbdescend 16 4 876
6. makepat 58 2 5520 27. noncrossingbclimb 16 4 876
7. gettoken2 51 4 4056 28. finish 15 1 2310
8. dodash 37 8 2891 29. findnth 13 2 1831
9. gef 29 3 668 30. change 12 1 4658
10. getcommand 28 3 2649 31. putend 12 1 2642
11. numericcase 27 1 1322 32. upgradeprio 11 1 1867
12. upgradeprocessprio 25 5 1820 33. getline 9 2 4658
13. getprocess 25 2 2649 34. enqueue 9 10 2642
14. esc 24 3 5214 35. initialize 7 8 1578
15. lgamma 24 1 729 36. inpatset 6 1 4177
16. altseptest 24 13 1578 37. inset2 5 7 1367
17. istokenend 23 3 3938 38. ownbelowthreat 4 3 604
18. newjob 23 1 2642 39. ownabovethreat 4 2 582
19. subline 23 3 4177 40. inhibitbiasedclimb 3 10 886
20. getecl 21 1 2891 41. alim 3 2 564
21. unblockprocess 20 2 2028

We number the procedures to facilitate subsequent references to them.

The Siemens subjects present some disadvantages for our study, because
they employ only faulty modifications, use constructed faults rather than
real ones, and use only faults that yield meaningful detection rates.
However, the Siemens subjects also have considerable advantages. The fact
that the Siemens researchers made the subjects available to us is an
obvious advantage. Also, the seeded faults in the programs do model real
faults. Furthermore, the source code for the base programs and versions is
standard C, amenable to analysis and instrumentation by our prototype
tools. Finally, the Siemens subjects have previously served as a basis for
published empirical results.

Empirical Procedure. To obtain our empirical results, we initially used
an analysis tool [Harrold et al. 1995] on the base programs and modified
versions to create control flow graphs for those versions. We then ran a
code instrumentation tool to generate instrumented versions of the base
programs. For each base program, we ran all tests for that program on the
instrumented version of the program and collected test history information
for those tests. We then ran Dejavu1, our implementation of SelectTests, on
each procedure from a Siemens program that had been modified in one or
more modified versions, with each modified version of the base version of
that procedure. We also ran Dejavu2, our implementation of Selectinter-
Tests, on each Siemens base program, with each modified version of that
base program. Execution timings were obtained during off-peak hours on a
restricted machine; our testing processes were the only user processes

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

A Safe, Efficient Regression Test Selection Technique . 199

100

Pct.of 60
tests 50
selected

5 0 15 20 25 30 35 40
Procedure
Fig. 8. Intraprocedural test selection for Study 1.

active on the machine. We repeated each experiment five times for each
(base program, modified program) or (base procedure, modified procedure)
pair and averaged our results over these runs; all timings reported for this
study list these average results. In our experimentation, we used controlled
regression testing.

Results. Figure 8 shows the test selection results for our intraproce-
dural test selection tool, DejaVul, in Study 1. The graph shows, for each of
the 41 base versions of the Siemens procedures, the percentage of tests
selected by DejaVul, on average, over the set of modified versions of that
base procedure. The graph shows that, for this study, intraprocedural test
selection reduced the size of selected test sets in some cases, but the overall
savings were not dramatic. In fact, for 21 of the 41 subject procedures,
DejaVu1l always selected 100% of the tests for modified versions of the
procedures. DejaVu1 reduced test sets by more than 50% on average in only
five cases. These results are discussed in greater detail later in this section.

Figure 9 shows the test selection results for our interprocedural test
selection tool, DejaVu2, in Study 1. The graph shows, for each of the seven
base versions of the Siemens programs, the percentage of tests selected by
DejaVu2, on average, over the set of modified versions of that base program.
The average test set selected by DejaVu2 for a modified version was 55.6%
as large as the test set required by the retest all approach. In other words,
DejaVu2 averaged a savings in test set size of 44.4%. Over the various base
programs, the test sets selected by DejaVu2 ranged from 43.3% (on replace)
to 93.6% (on schedule2) of the size of the total test sets for those programs.

The fact that our algorithms reduce the number of tests required to
retest modified programs does not by itself indicate the worth of the
algorithms. If ten hours of analysis are required to save one hour of testing,

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

200 . Gregg Rothermel and Mary Jean Harrold

100 -
90 -
80 -
Pct. of 79 -

tests 60

selected
50 -

40 -
30 -
20
10 S

replace usl123 totinfo usl.128 schedule2 schedulel tcas
Program
Fig. 9. Interprocedural test selection for Study 1.

this might not be of benefit—unless the ten hours are fully automated, the
hour saved is an hour of human time, and we can spare the ten hours. We
would like to show that the time saved in not having to run tests exceeds
the time spent analyzing programs and selecting test suites. Toward this
end, Figure 10 shows some timings. For each of the seven base programs,
the figure shows three columns: (1) the average time required to run all
tests on the modified version of the program (darkest column); (2) the time
required to perform analysis, on average, of the base and modified versions
of the program (lightest column); and (3) the time required, on average, to
run the selected tests on the modified version of the program. Because the
goal is to compare the time required to run all tests to the time required to
select and run a subset of the tests, columns (2) and (3) are “stacked” and
placed alongside column (1). Times are shown in minutes. Under each
program name, the percentage of total time saved by using test selection is
displayed. Note that in this study both the execution of tests and the
validation of test results were fully automated.

As the figure indicates, the cost of our algorithms in terms of time is
negligible—it never exceeds 22 seconds. These measurements include the
cost of building CFGs for both the base and modified program version;
however, the CFG for the base version could have been computed and
stored, like test history information, during the preliminary phase of
testing, further reducing the critical-period cost of the algorithm. The
figure also shows that, in all cases, DejaVu2 produced a savings in overall
regression-testing time. In the worst case, for schedule2, DejaVu2 saved
only 28 seconds, or 4%, of total effort. In the best case, for replace, DejaVu2
saved 9 minutes and 17 seconds, or 53%, of total effort.

Savings of a few minutes and seconds, such as those achieved in this
study, may be unimportant. In practice, however, regression testing can
require hours, days, or even weeks of effort, and much of this effort may be

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

A Safe, Efficient Regression Test Selection Technique . 201

18

. 16 =

Time -

(mins) 4 7]

12

10 -

8 —

6 —

KEY 7]

4 -

) 27

time —

reqpited

all tests schedule? schedulel tcas

replace usl.123 totinfo usl.128
53% 41% 14% 47% 4% 32% 32%

Program and pct. of time saved

Fig. 10. Interprocedural timings for Study 1.

human-intensive. If results such as those demonstrated by this study scale
up, a savings of even 10% may matter, and a savings of 50% may be a big
win. In fact, we conjecture that the savings obtainable from DejaVu2
increase, on average, as larger programs are used as subjects.

4.2.2 Study 2: Interprocedural Test Selection on a Larger Scale. The
primary objective of our second study was to empirically investigate our
conjecture that test selection may offer greater benefits for larger programs
than for small programs, by applying our technique to a larger subject.

Subjects. For our second study, we obtained a program, player, that is
one of the subsystems of an internet-based game called Empire. The player
executable is essentially a transaction manager; its main routine consists
of initialization code, followed by a five-statement event loop that waits for
receipt of a user command, and upon receiving one, calls a routine that
processes the command (possibly invoking many more routines to do so),
then waits to receive the next command. The loop and the program
terminate when a user issues a quit command. Since its initial encoding in
1986, Empire has been rewritten many times; many modified versions of the
program have been created. Most of these versions involve modifications to
player.

For our study, we located a base version of player for which five distinct
modified versions were available. Table V presents some statistics about
the base version. As the table indicates, the version contains 766 C
functions and 49,316 lines of code, excluding blank lines and lines that
contain only comments. The CFGs for the functions contained approxi-
mately 35,000 nodes and 41,000 edges in total (these numbers are approx-

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

202 . Gregg Rothermel and Mary Jean Harrold

Table V. The Subject Program Used for Study 2

Program Procedures LOC Nodes Edges Versions Tests Description
player 766 49316 35000 41000 5 1035 transaction manager

imate for reasons explained later). Table VI describes the versions of player
that we used for our study.

There were no test suites available for player. To construct a realistic test
suite, we used the Empire information files, which describe the commands
that are recognized by the player executable and discuss parameters and
special side-effects for each command. We treated the information files as
informal specifications; for each command, we used its information file to
construct versions of the command that exercise all parameters and special
features and which test erroneous parameters and conditions. This process
yielded a test suite of 1035 functional tests. We believe that this test suite
is typical of the sorts of functional test suites designed in practice for large
software systems.

The player program is a suitable subject for several reasons. First, the
program is part of an existing software system that has a long history of
maintenance at the hands of numerous coders; in this respect, the system is
similar to many existing commercial software systems. Second, as a trans-
action manager, the player program is representative of a large class of
software systems that receive and process interactive user commands.
(Other examples of systems in this class include database management
systems, operating systems, menu-driven systems, and computer-aided
drafting systems, to name just a few.) Third, we were able to locate several
real modified versions of one base version of the program. Fourth, although
the absence of established test suites for the program was a disadvantage,
the user documentation provided a code-independent means for generating
functional tests in a realistic fashion. Finally, although not huge, the
program is not trivial.

Empirical Procedure. Due to limitations in our prototype analysis tools,
we could analyze only 85% of the procedures in the player program; thus,
we could not instrument, or run our DejaVu implementations on, 15% of the
procedures. However, we were able to simulate the test selection effects of
DejaVu on player. Our simulation determines exactly the numbers of tests
selected and omitted by our algorithm in practice; we were also able to
determine exactly the time required to run all tests, or all selected tests.
We could not obtain precise results of the time required to build CFGs for
the versions and perform test selection on those graphs. Instead, we
estimated those times: we determined the time required to build CFGs and
run DejaVul on 85% of the code and then multiplied those times by 1.176 to
determine the time required for 100% of the code.

Results. Figure 11 shows the test selection results for our interproce-
dural test selection algorithm for the modified versions of player. The graph
shows, for each of the five modified versions, the percentage of tests that

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

A Safe, Efficient Regression Test Selection Technique . 203

Table VI. The Five Modified Versions of player

Version Functions Modified Lines of Code Changed

1 3 114

2 2 55

3 11 726

4 11 62

5 42 221
100 4
90 -
80 —+
Pct.of 70 7
tests 60 -
selected 50 -
40 -
30 -
20

Version
Fig. 11. Test selection statistics for Study 2.

our algorithm selects. As the results indicate, on average over the five
versions, our algorithm selects 4.8% of the tests in the existing test suite.
In other words, on average, the algorithm reduces the number of tests that
must be run by over 95%.

Figure 12 shows timings for this study. Like the graph in Figure 10, for
each of the five modified versions the graph shows three columns: (1) the
time required to run all tests on the modified version of the program
(darkest column), (2) the estimated time required to perform analysis of the
base and modified versions of the program (lightest column), and (3) the
time required to run the selected tests on the modified version of the
program. Times are shown in hours. The graph shows that in all cases our
algorithm produced a savings in overall regression-testing time. This
savings ranged from 4 hours and 39 minutes (82% of total effort) to 5 hours
and 37 minutes (93% of total effort).

Our estimate of analysis time projects a cost of at most 25 minutes;
however, this estimate computes the cost of building CFGs for every
procedure in both the base and modified program version during the
critical period and of walking all of those CFGs completely. In practice,
CFGs for procedures in the base version could be built during the prelimi-
nary phase, and CFGs for procedures in modified versions could be built on

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

204 . Gregg Rothermel and Mary Jean Harrold

6 -

5 -

Time -
(hrs) 4 7
3 -

2 -

KEY i

1 -

2 3 4
82% 84% 91% 89% 93%

Version and pct. of time saved

Fig. 12. Timings for Study 2.

demand, lowering the analysis cost. Furthermore, test timings consider
only the cost of running the tests, because we were not able to automate the
validation of results for these tests. In practice, the time required to run
tests would be much larger than the times shown, and the resulting
savings would increase.

4.2.3 Additional Discoveries and Discussion. Our studies yielded sev-
eral additional discoveries.

First, in Section 3 we saw that our algorithms can select tests that are
not modification-traversing for P and P’, but only when the multiply-
visited-node condition holds. In our experiments, we never encountered a
case where that condition held. These results support our belief that in
practice our algorithms will not select tests that are not modification-
traversing.

Second, although we have reported results as averages over sets of
modified programs, it is interesting to examine the behavior of our algo-
rithms for individual cases.’ Consider, for example, the results for program
replace. The test pool for replace contains 5542 tests, of which DejaVu2
selects, on average, 2399 (43.3%). However, over the 32 modified versions of
replace, the selected test sets ranged in size from 52 to 5542 tests, with no
size range predominant; the standard deviation in the sizes of the selected
test sets was 1611.5. In contrast, for schedule2, DejaVu2 selects, on aver-
age, 2508 (93.6%) of the program’s pool of 2680 tests, with a standard
deviation of 253.5. On eight of the 10 modified versions of schedule2,
DejaVu2 selects at least 90% of the existing tests.

5Rothermel [1996] lists results for all programs and modified versions individually.

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

A Safe, Efficient Regression Test Selection Technique . 205

Given this range of variance, we would like to identify the factors that
influence the success of test selection. This could help us determine when
test selection is likely to be successful and support conclusions about ways
in which to build programs and test suites that are “regression testable.”
On examining our experimental subjects and test suites, we determined
that the effectiveness of test selection was influenced by three factors: the
structure of P, the location of modifications in P’, and the extent of the code
coverage achieved by tests in T'. Although these factors can interact, they
may also operate independently.

Finally, as an interesting side-effect, our first study provides data about
the fault-revealing capabilities of regression test selection techniques.
Study 1 involved faulty modified program versions, for which a very small
percentage of tests are fault-revealing. For example, only 302 of the 5542
tests for version 26 of replace are fault-revealing. DejaVu2 finds that 1012
of the 5542 tests are modification-traversing and selects them. A minimi-
zation test selection technique that selects one test from the set of tests
that cover modified code has only a 29.8% chance of selecting one of the 302
fault-revealing tests. Next, consider version 19 of replace. Although 4658 of
the 5542 tests of replace are modification-traversing for this version, only 3
of these tests are fault-revealing for the version. A minimization test
selection technique that selects only one of the 4658 tests that cover this
modification has only a 0.064% chance of selecting a test that exposes the
fault. In either case, DejaVu2 guarantees that the fault is exposed. Study 1
contains many other comparable cases.

It would not be fair, on the basis of Study 1 alone, to draw general
conclusions about the relative fault detection abilities of minimization and
safe test selection techniques, because the Siemens study deliberately
restricted modifications to those that contained faults that were neither too
easy nor too difficult to detect. Nevertheless, the Siemens study did employ
faults that are representative of real faults, so we expect that cases such as
the two discussed above can arise in practice. Thus, these results give us
good reason to question the efficacy of minimization test selection tech-
niques where fault detection is concerned.

4.2.4 Summary of Empirical Results and Limitations of the Studies.
The major conclusions derived from our empirical studies can be summa-
rized as follows:

—Our algorithms can reduce the time required to regression test modified
software, even when the cost of the analysis performed to select tests is
considered.

—Interprocedural test selection can offer greater savings than intraproce-
dural test selection.

—Regression test selection algorithms can yield greater savings when
applied to large, complex programs than when applied to small, simple
programs.

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

206 . Gregg Rothermel and Mary Jean Harrold

—There exist programs, modified versions, and test suites for which test
selection offers little in the way of savings.

—The factors that affect the effectiveness of test selection techniques
include the structure of programs, the nature of the modifications made
to those programs, and the type of coverage attained by tests.

—Our belief that, in practice, programs contain no multiply-visited-nodes
remains plausible.

—Minimization techniques for test selection can be much less effective
than safe techniques for revealing faults.

Our studies have the following limitations:

—We have studied only a small sample of the universe of possible pro-
grams, modified programs, and test suites. We cannot claim that this
sample is normally distributed. We believe, however, that the subjects of
our studies are representative of significant classes of programs that
occur in practice.

—Both of our studies required some constructed artifacts: Study 1 used
constructed modified versions and tests, and Study 2 used constructed
tests. In both cases, however, efforts were made to ensure that con-
structed artifacts were representative of real counterparts.

—Due to limitations in our program analysis tools, our second study
required an estimation of analysis times. However, we believe that our
estimates understate the analysis time required by our technique.

5. CONCLUSIONS AND FUTURE WORK

This work is important for two reasons. The first reason is economic. The
cost of software maintenance dominates the overall cost of software [Boehm
1976; Lientz and Swanson 1980; Lientz et al. 1978]. Moreover, the cost of
maintenance, measured in terms of the percentage of software budget
spent on maintenance, is increasing [Beizer 1990; Nosek and Palvia 1990;
Sharon 1996]. Because regression testing constitutes a significant percent-
age of maintenance costs [Bezier 1990; Boehm 1976; Leung and White
1989], improvements in regression-testing processes can significantly lower
the overall cost of software.

The second reason for the importance of this work involves software
quality. Regression testing is an important method both for building
confidence in modified software and for increasing its reliability. At
present, however, regression testing is often overlooked or inadequately
performed: either the testing of new features or the revalidation of old
features, or both, are sacrificed [Bezier 1990]. In one survey of 118 software
development organizations, only 12% of these organizations were found to
have mechanisms for assuring some level of adequacy in their regression
testing [Martinig 1996]. Without adequate regression testing, the quality
and reliability of a software system decrease over the system’s lifetime.
Practical, effective selective retest techniques promote software quality.

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

A Safe, Efficient Regression Test Selection Technique . 207

There are several promising directions for future work in this area. First,
while the empirical results reported in this article are encouraging, they
are also preliminary; further empirical studies would be useful. Second, our
work has focused on the problem of selecting tests from an existing test
suite. An equally important problem is that of ensuring that code modified
or affected by modifications is adequately tested. Future work should
consider the extension of this technique to help identify the need for new
tests. Third, our research revealed that the size of the test sets our
algorithms select may vary significantly as a function of program structure,
type of modifications, and test suite design. Further research could investi-
gate correlations between these three factors and the related issues of
regression testability and test suite design. Fourth, our technique, and all
existing safe regression test selection techniques, are safe only for con-
trolled regression testing. Further research could investigate ways to make
controlled regression testing possible in situations where it is difficult to
attain. Finally, it is not the case that our algorithms function only for
controlled regression testing: it is simply that like all other regression test
selection algorithms, they are not safe in the absence of controlled regres-
sion testing. When we cannot employ controlled regression testing, and
cannot guarantee safety, our algorithms may still select useful test suites.
When the testing budget is limited, and we must choose a subset of T,
modification-traversing tests such as those selected by our algorithm may
be better candidates for execution than tests that are not modification-
traversing. Empirical studies could investigate this possibility further.

ACKNOWLEDGMENTS

S. S. Ravi made several helpful suggestions, especially in regard to the
proofs and complexity analyses. We also thank the anonymous reviewers
for contributions that substantially improved the presentation of the work.

REFERENCES

AGrRAWAL, H., HORGAN, J., KRAUSER, E., AND LoNDON, S. 1993. Incremental regression
testing. In Proceedings of the Conference on Software Maintenance—1993. IEEE, New York,
348-357.

AHO, A. V., SETHI, R., AND ULLMAN, J.D. 1986. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, Reading, Mass.

BALCER, M., HASLING, W., AND OSTRAND, T. 1989. Automatic generation of test scripts from
formal test specifications. In Proceedings of the 3rd Symposium on Software Testing,
Analysis, and Verification. ACM, New York, 210-218.

BATEs, S. AND HorwITZ, S. 1993. Incremental program testing using program dependence
graphs. In Proceedings of the 20th ACM Symposium on Principles of Programming Lan-
guages. ACM, New York.

BEIZER, B. 1990. Software Testing Techniques. Van Nostrand Reinhold, New York.

BeneEDUSI, P., CIMITILE, A., AND DE CARLINI, U. 1988. Post-maintenance testing based on
path change analysis. In Proceedings of the Conference on Software Maintenance—1988.
IEEE, New York, 352—-361.

BiNkLEY, D. 1992. Using semantic differencing to reduce the cost of regression testing. In
Proceedings of the Conference on Software Maintenance—1992. IEEE, New York, 41-50.

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

208 . Gregg Rothermel and Mary Jean Harrold

BiNkLEY, D. 1995. Reducing the cost of regression testing by semantics guided test case
selection. In Proceedings of the Conference on Software Maintenance—1995. IEEE, New
York.

BornMm, B. W. 1976. Software engineering. IEEE Trans. Comput. C-25, 12 (Dec.), 1226—
1241.

BrowN, P. A. AND HorFMAN, D. 1990. The application of module regression testing at
TRIUMF. Nucl. Instr. Meth. Phys. Res. A293, 1-2 (Aug.), 377-381.

CHEN, Y.F., RosENBLUM, D.S., AND Vo, K. P. 1994. TestTube: A system for selective
regression testing. In Proceedings of the 16th International Conference on Software Engi-
neering. IEEE, New York, 211-222.

Docsa, T. anD Rozman, I. 1988, CAMOTE—Computer aided module testing and design
environment. In Proceedings of the Conference on Software Maintenance—1988. IEEE, New
York, 404-408.

FISCHER, K. F. 1977. A test case selection method for the validation of software mainte-
nance modifications. In Proceedings of COMPSAC ’77. IEEE, New York, 421-426.

FiscHER, K. F., Raji, F., AND CHRUSCICKI, A. 1981. A methodology for retesting modified
software. In Proceedings of the National Telecommunications Conference B-6-3. IEEE, New
York, 1-6.

GUPTA, R., HARROLD, M. J., AND SOFFA, M. L. 1992. An approach to regression testing using
slicing. In Proceedings of the Conference on Software Maintenance—1992. IEEE, New York,
299-308.

HarroOLD, M. J. AND SoFFA, M. L. 1988. An incremental approach to unit testing during
maintenance. In Proceedings of the Conference on Software Maintenance—1988. IEEE, New
York, 362-367.

HARROLD, M. J. AND SOFFA, M. L. 1989a. An incremental data flow testing tool. In Proceed-
ings of the 6th International Conference on Testing Computer Software. Frontier Technolo-
gies, Annapolis, Md.

HArrOLD, M. J. AND SOFFA, M. L. 1989b. Interprocedural data flow testing. In Proceedings
of the 3rd Symposium on Software Testing, Analysis, and Verification. ACM, New York,
158-167.

HARROLD, M. J., GUPTA, R., AND SoFFA, M. L. 1993. A methodology for controlling the size of
a test suite. ACM Trans. Softw. Eng. Methodol. 2, 3 (July), 270-285.

HArroLD, M. J., LARSEN, L., LLoYD, J., NEDVED, D., PAGE, M., ROTHERMEL, G., SINGH, M., AND
SmitH, M. 1995. Aristotle: A system for the development of program-analysis-based tools.
In Proceedings of the 33rd Annual Southeast Conference. ACM, New York, 110-119.

HARTMANN, J. AND RoBsoN, D.dJ. 1989. Revalidation during the software maintenance
phase. In Proceedings of the Conference on Software Maintenance—1989. IEEE, New York,
70-79.

HARTMANN, J. AND ROBsON, D. J. 1990a. RETEST—Development of a selective revalidation
prototype environment for use in software maintenance. In Proceedings of the 23rd Hawaii
International Conference on System Sciences. IEEE, New York, 92-101.

HARTMANN, J. AND ROBSON, D. J. 1990b. Techniques for selective revalidation. IEEE Softw.
16, 1 (Jan.), 31-38.

HorrmaN, D. 1989. A CASE study in module testing. In Proceedings of the Conference on
Software Maintenance—1989. IEEE, New York, 100-105.

HorrMmAN, D. AND BREALEY, C. 1989. Module test case generation. In Proceedings of the 3rd
Symposium on Software Testing, Analysis, and Verification. ACM, New York, 97-102.

HurcHiNs, M., FOSTER, H., GORADIA, T., AND OSTRAND, T. 1994. Experiments on the effec-
tiveness of dataflow- and controlflow-based test adequacy criteria. In Proceedings of the 16th
International Conference on Software Engineering. IEEE, New York, 191-200.

Laski, J. AND SZERMER, W. 1992. Identification of program modifications and its applica-
tions in software maintenance. In Proceedings of the Conference on Software Maintenance—
1992. IEEE, New York, 282-290.

LEE, J. A. N. AND HE, X. 1990. A methodology for test selection. <J. Syst. Softw. 13, 1 (Sept.),
177-185.

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

A Safe, Efficient Regression Test Selection Technique . 209

LeuNnG, H. K. N. AND WHITE, L. 1989. Insights into regression testing. In Proceedings of the
Conference on Software Maintenance—1989. IEEE, New York, 60—-69.

LeEunG, H. K. N. AND WHITE, L. 1990a. Insights into testing and regression testing global
variables. J. Softw. Maint. Res. Pract. 2 (Dec.), 209-222.

LEUuNG, H. K. N. AND WHITE, L.dJ. 1990b. A study of integration testing and software
regression at the integration level. In Proceedings of the Conference on Software Mainte-
nance—1990. IEEE, New York, 290-300.

LeunG, H. K. N. AND WHITE, L. J. 1991. A cost model to compare regression test strategies.
In Proceedings of the Conference on Software Maintenance—1991. IEEE, New York, 201-
208.

Lewrs, R., BEck, D. W, AND HARTMANN, J. 1989. Assay—A tool to support regression
testing. In ESEC ’89. 2nd European Software Engineering Conference Proceedings. Springer-
Verlag, Berlin, 487—496.

LieNTZ, B. P. AND SwANSON, E. B. 1980. Software Maintenance Management: A Study of the
Maintenance of Computer Applications Software in 487 Data Processing Organizations.
Addison-Wesley, Reading, Mass.

LienTz, B. P., SwansoN, E. B., AND TompPKINS, G. E. 1978. Characteristics of application
software maintenance. Commun. ACM 21, 6 (June), 466—-471.

MARTINIG, F. 1996. Software testing: Poor consideration. Testing Tech. Newslett. (Oct.).

NoOSEK, J. T. AND PaLvia, P. 1990. Software maintenance management: Changes in the last
decade. J. Softw. Maint. Res. Pract. 2, 157-174.

OsTRAND, T.dJ. AND BALCER, M. J. 1988. The category-partition method for specifying and
generating functional tests. Commun. ACM 31, 6 (June).

OSTRAND, T. J. AND WEYUKER, E. J. 1988. Using dataflow analysis for regression testing. In
the 6th Annual Pacific Northwest Software Quality Conference. Lawrence and Craig,
Portland, Oreg., 233—-247.

PrEssMAN, R. 1987. Software Engineering: A Practitioner’s Approach. McGraw-Hill, New
York.

RoseENBLUM, D. S. AND WEYUKER, E. J. 1996. Predicting the cost-effectiveness of regression
testing strategies. In Proceedings of the ACM SIGSOFT °96 4th Symposium on the Founda-
tions of Software Engineering. ACM, New York.

RoTHERMEL, G. 1996. Efficient, effective regression testing using safe test selection tech-
niques. Tech. Rep. 96-101, Clemson Univ., Clemson, S. Carol.

ROTHERMEL, G. AND HARROLD, M. J. 1993. A safe, efficient algorithm for regression test
selection. In Proceedings of the Conference on Software Maintenance—1993. IEEE, New
York, 358-367.

ROTHERMEL, G. AND HARROLD, M.dJ. 1994a. Selecting regression tests for object-oriented
software. In Proceedings of the Conference on Software Maintenance—1994. IEEE, New
York, 14-25.

ROTHERMEL, G. AND HARROLD, M. J. 1994b. Selecting tests and identifying test coverage
requirements for modified software. In Proceedings of the 1994 International Symposium on
Software Testing and Analysis (ISSTA 94). ACM, New York.

ROTHERMEL, G. AND HARROLD, M. J. 1996. Analyzing regression test selection techniques.
IEEE Trans. Softw. Eng. 22, 8 (Aug.), 529-551.

SCHACH, S. 1992. Software Engineering. Aksen Assoc., Boston, Mass.

SHARON, D. 1996. Meeting the challenge of software maintenance. IEEE Softw. 13, 1 (Jan.),
122-125.

SHERLUND, B. AND KOREL, B. 1991. Modification oriented software testing. In Conference
Proceedings: Quality Week 1991. Software Research Inc., San Francisco, Calif., 1-17.

SHERLUND, B. AND KOREL, B. 1995. Logical modification oriented software testing. In
Proceedings: 12th International Conference on Testing Computer Software. Frontier Technol-
ogies, Annapolis, Md.

TAHA, A. B., THEBAUT, S. M., AND LiUu, S. S. 1989. An approach to software fault localization
and revalidation based on incremental data flow analysis. In Proceedings of the 13th Annual
International Computer Software and Applications Conference. IEEE, New York, 527-534.

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

210 . Gregg Rothermel and Mary Jean Harrold

VON MAYRHAUSER, A., MRAZ, R. T., AND WALLS, J. 1994. Domain based regression testing. In
Proceedings of the Conference on Software Maintenance—1994. IEEE, New York, 26-35.

WHITE, L. J. AND LEUNG, H. K. N. 1992. A firewall concept for both control-flow and data-
flow in regression integration testing. In Proceedings of the Conference on Software Mainte-
nance—1992. IEEE, New York, 262-270.

WHITE, L. J., NARAYANSWAMY, V., FRIEDMAN, T., KIRSCHENBAUM, M., PIWOWARSKI, P., AND OHA,
M. 1993. Test Manager: A regression testing tool. In Proceedings of the Conference on
Software Maintenance—1993. IEEE, New York, 338-347.

Wong, W. E., HorGAN, J.R., LONDON, S., AND MATHUR, A.P. 1995. Effect of test set
minimization on fault detection effectiveness. In the 17th International Conference on
Software Engineering. IEEE, New York, 41-50.

Yau, S.S. anD KisHIMOTO, Z. 1987. A method for revalidating modified programs in the
maintenance phase. In COMPSAC °87: The 11th Annual International Computer Software
and Applications Conference. IEEE, New York, 272-277.

ZIEGLER, J., GRASSO, J. M., AND BURGERMEISTER, L. G. 1989. An Ada based real-time closed-
loop integration and regression test tool. In Proceedings of the Conference on Software
Maintenance—1989. IEEE, New York, 81-90.

Received April 1996; revised August 1996; accepted January 1997

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

