
Topology Management in Ad Hoc Networks ∗

Lichun Bao
Computer Science Department

University of California
Santa Cruz, CA 95064

baolc@soe.ucsc.edu

J.J. Garcia-Luna-Aceves
Computer Engineering Department

University of California
Santa Cruz, CA 95064

jj@soe.ucsc.edu

ABSTRACT
The efficiency of a communication network depends not only
on its control protocols, but also on its topology. We propose
a distributed topology management algorithm that constructs
and maintains a backbone topology based on a minimal
dominating set (MDS) of the network. According to this
algorithm, each node determines the membership in the
MDS for itself and its one-hop neighbors based on two-hop
neighbor information that is disseminated among neighbor-
ing nodes. The algorithm then ensures that the members
of the MDS are connected into a connected dominating set
(CDS), which can be used to form the backbone infrastruc-
ture of the communication network for such purposes as
routing. The correctness of the algorithm is proven, and
the efficiency is compared with other topology management
heuristics using simulations. Our algorithm shows better
behavior and higher stability in ad hoc networks than prior
algorithms.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless
communication—ad hoc networks; C.2.1 [Network Archi-
tecture and Design]: Network topology—topology control

General Terms
Algorithms

Keywords
Ad hoc networks, minimum dominating set, connected dom-
inating set

∗This work was supported in part by the Advanced Tech-
nology Office of the Defense Advanced Research Projects
Agency (DARPA) under grant No. DAAD19-01-C-0026, by
the U.S. Air Force/OSR under grant No. F49620-00-1-0330,
and by the Office of Naval Research (ONR) under grant
N00014-99-1-0167.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiHoc’03,June 1–3, 2003, Annapolis, Maryland, USA.
Copyright 2003 ACM 1-58113-684-6/03/0006 ...$5.00.

1. INTRODUCTION
The topology of an ad hoc network plays a key role in the

performance of the control algorithms used in the network
for such purposes as scheduling of transmissions, routing,
and broadcasting. In many cases, several network links are
not needed for establishing efficient sharing of the channel
among neighboring nodes or the routing of data packets.
Weeding out redundant and unnecessary topology informa-
tion is usually called topology control or topology manage-
ment. Topology management has been effectively applied
in ad hoc networks to supplement routing control protocols,
such as CEDAR [24, 25], and to schedule efficient channel
access to propagate broadcast data [10].

There are two approaches to topology management in ad
hoc networks—power control and hierarchical topology or-
ganization. Power control mechanisms adjust the power on
a per-node basis, so that one-hop neighbor connectivity is
balanced and overall network connectivity is ensured [15,
20, 26]. Li et al. [18] proved that network connectivity is
minimally maintained as long as the decreased power level
keeps at least one neighbor remaining connected at every
2π/3 to 5π/6 angular separation. Ramanathan et al. [22]
proposed to incrementally adjust nodes’ power levels so as
to keep network connectivity at each step. However, except
for the early work by Takagi and Kleinrock [26], topologies
derived from power-control schemes often result in unidi-
rectional links that create harmful interference due to the
different transmission ranges among one-hop neighbors [21].
The dependencies on volatile information in mobile net-
works, such as node locations [15], signal strength or angular
positions [18] also contribute to the instability of topology
control algorithms based on power control. Furthermore,
some distributed implementations of these algorithms can
hardly improve the throughput of mobile networks [22].

In this paper, we focus on hierarchical topology control,
with which a subset of the network nodes is selected to serve
as the network backbone over which essential network con-
trol functions are supported (e.g., [17]). This approach to
topology control is often called clustering, and consist of se-
lecting a set of clusterheads in a way that every node is as-
sociated with a clusterhead, and clusterheads are connected
with one another directly or by means of gateways, so that
the union of gateways and clusterheads constitute a con-
nected backbone. Once elected, the clusterheads and the
gateways help reduce the complexity of maintaining topol-
ogy information, and can simplify such essential functions as
routing, bandwidth allocation, channel access, power control
or virtual-circuit support. For clustering to be effective, the

129

links and nodes that are part of the backbone (i.e., cluster-
heads, gateways, and the links that connect them) must be
close to minimum and must also be connected.

Ideally, topology control based on clustering would se-
lect a minimum and sufficient number of links to serve as
the communication backbone of the network, while reducing
network maintenance and control overhead. In graph the-
ory, the minimum dominating set problem and the relevant
minimum connected dominating set (MCDS) problem best
describe the clustering approach to topology control.

The dominating set problem in graph theory consists of
finding a subset of nodes with the following property: each
node is either in the dominating set, or is adjacent to a node
in the dominating set. The members of the dominating set
are often called clusterheads, whereas the other nodes with-
out special functionalities are called hosts. The problem
of computing the minimum dominating set is known to be
NP-hard [1, 12] even when the complete network topology
is available. In ad hoc networks, the difficulty of acquir-
ing complete network topology makes it impossible to com-
pute the “minimum” dominating sets. Instead, a minimal
dominating set (MDS) is usually pursued based on various
heuristics that can guarantee a local minimum election of
the dominators in a polynomial number of steps.

The MCDS problem consists of obtaining a minimum sub-
set of nodes in the original graph, such that the nodes com-
pose a dominating set of the graph, and the induced sub-
graph of an MCDS has the same number of connected com-
ponents as the original graph. Although attractive, the
MCDS is a well-known NP-complete problem in graph the-
ory. Accordingly, sub-optimum solutions must be used to
approximate the optimum solution. In this paper, we re-
fer to a sub-optimum solution of the MCDS problem as a
connected dominating set (CDS).

In the heuristics that have been proposed in the past, and
which we summarize in the following paragraphs, the se-
lected clusterheads are equivalent to a minimal dominating
set (MDS), and the selected gateways are chosen in such a
way that the union of gateways and clusterheads forms the
CDS.

Clusterheads can be elected via non-deterministic negoti-
ations or by applying deterministic criteria. Negotiations re-
quire multiple incremental steps, and may incur an election
jitter during the process, because of the lack of consensus
about the nodes being elected as the clusterheads. Exam-
ples of this approach are the “core” extraction algorithm
[25] and the spanning-tree algorithm [14]. SPAN [8] allows
a node to delay the announcement of becoming a clusterhead
for random amounts of time to attempt to attain minimum
conflicts between clusterheads in its one-hop neighborhood.

In contrast, deterministic criteria can determine the clus-
terheads in a single round. Different heuristics have been
used to form clusters and to elect clusterheads. Several ap-
proaches [1, 3, 11, 13, 19] utilized the node identifiers to elect
the clusterhead within one or multiple hops. For simplicity,
we refer to this approach as Lowest ID in our comparative
analysis. Banerjee and Khuller [4] assigned a weight value
to each node for clusterhead election, which is essentially
the same as Lowest ID.

The node degree is another commonly used heuristic in
which nodes with higher degrees are more likely to become
clusterheads [14, 16, 25]. We refer to this approach as Max
Degree. Chiang et al. [9] have shown that the Lowest

ID algorithm performs better than the clusterhead election
algorithms based on node degrees in terms of clusterhead
stability in ad hoc networks.

Basu et al. [7] suggested to use the mean received-signal
strength variations as the metric in clusterhead elections,
which favors relatively stationary nodes to become the clus-
terheads. We refer to this approach as MOBIC.

Cluster formation simplifies topology maintenance in ad
hoc networks. However, it has a negative effect on the
clusterheads, because a clusterhead drains its energy more
quickly than a normal node. Therefore, a clusterhead elec-
tion algorithm must also consider load balancing of the clus-
terhead role to avoid node or network failure. Except for
Lowest ID, the aforementioned election algorithms inher-
ently provide clusterhead load balancing in mobile networks.
To improve Lowest ID, Amis et al. [2] provided clusterhead
load balancing, which we call Load Balance, by running a
virtual identifier (VID) and a budget counter at each node.
Load Balance uses the VID for elections, and the budget
for the clusterhead term, thus posing equal opportunity for
each node to become a clusterhead.

However, all the existing heuristics have addressed only
some aspects of characteristics in ad hoc networks, such as
load-balancing, mobility, or algorithmic convergence, while
ignoring the others.

Clustering algorithms that build clusters within d hops
from the clusterhead (called d-clustering) have also been
proposed [1, 17, 23]. However, d-clustering requires flooding
in search of clusterheads [1], thus obviates the purpose of the
topology management for efficiency. In this paper, we only
consider clustering approaches in which a host is always one
hop away from a clusterhead.

We introduce a novel approach to the solution of the con-
nected dominating set election problem, which we call topol-
ogy management by priority ordering or TMPO. Our ap-
proach uses the neighbor-aware contention resolution (NCR)
algorithm [5] to provide fast convergence and load-balancing
with regard to the battery life and mobility of mobile nodes.
Based on NCR, TMPO assigns randomized priorities to
mobile stations, and elects a minimal dominating set (MDS)
and the connected dominating set (CDS) of an ad hoc net-
work according to these priorities. In doing so, TMPO
requires only two-hop neighbor information for the MDS
elections. The dynamic priorities assigned to nodes are de-
rived from the node identifiers and their “willingness” to
participate in the backbone formations. The willingness of
a node is a function of the mobility and battery life of the
node. The integrated consideration of mobility, battery life
and deterministic node priorities makes TMPO one of the
best performing heuristics for topology management in ad
hoc networks.

The rest of the paper is organized as follows. Section 2
describes the network topology assumptions made in this pa-
per. Section 3 specifies the minimal dominating set (MDS)
election algorithm based on node priorities. Section 4 de-
scribes the algorithm that extends the MDS into a con-
nected dominating set (CDS) of an ad hoc network. Sec-
tion 5 proves the correctness of these MDS and CDS elec-
tion algorithms. Section 6 analyzes the average size of the
elected MDS using a probabilistic model. Section 7 com-
pares TMPO with other CDS computation algorithms us-
ing simulations. Section 8 summarizes the paper and its key
contributions.

130

2. NETWORK ASSUMPTIONS AND
NOTATION

This work assumes that an ad hoc network comprises a
group of mobile nodes communicating through a common
broadcast channel using omni-directional antennas with the
same transmission range. The topology of an ad hoc network
is thus presented by an undirected graph G = (V, E), where
V is the set of network nodes, and E ⊆ V × V is the set of
links between nodes. The existence of a link (u, v) ∈ E also
means (v, u) ∈ E, and that nodes u and v are within the
packet-reception range of each other, in which case u and v
are called one-hop neighbors of each other. The set of one-
hop neighbors of a node i is denoted by N1

i . Two nodes that
are not connected but share at least one common one-hop
neighbor are called two-hop neighbor of each other.

Each node has one unique identifier, and all transmis-
sions are omnidirectional with the same transmission range.
Time is slotted, and synchronization among nodes exists to
the time-slot boundary. The current time t is defined by the
corresponding time slot number, starting from a consensus
temporal point in the past. In addition, a reliable neighbor
protocol is assumed to enable the quick update of two-hop
neighbor information at each node. Bao and Garcia-Luna-
Aceves [6] have proposed approaches for acquiring and syn-
chronizing two-hop neighbor information.

For convenience, the notation and terminology used in the
rest of this paper are summarized in Table 1.

Table 1: Notation

MDS The minimal dominating set.
CDS The connected dominating set.
Clusterhead A member of the MDS in a network.
Gateway A node that connects clusterheads to form

the CDS of the network.
Doorway A node that extends the reach of a cluster-

head to form the CDS.
Host A regular client of a network.

N1
i The set of one-hop neighbors of node i.

T Node priority recomputation interval.
i.off Time slot offset of node i for priority re-

computation.
i.prio The priority of node i.
i.type The type of node i, which is one of cluster-

head, host, gateway and doorway.
i.ch The clusterhead elected by node i.
i.workfor A set of clusterheads or doorways that

node i connects to form the CDS.

Ei The energy level of node i.
si The speed of node i in terms of meters per

second.
Wi The willingness value of node i.

3. MINIMAL DOMINATING SET

3.1 Clusterhead Election Approach
Our approach to establishing a minimal dominating set

(MDS) is based on three key observations. First, using ne-
gotiations among nodes to establish which nodes should be
in the MDS incurs substantial overhead when nodes move

around and the quality of links changes frequently. Hence,
nodes should be allowed to make MDS membership deci-
sions based on local information. Second, because in an
MDS every node is one hop away from a clusterhead, the
local information needed at any node needs to include only
nodes that are one and two hops away from the node it-
self. Third, having too many clusterheads around the same
set of nodes does not lead to an MDS. Hence, to attain a
selection of nodes to the MDS without negotiation, nodes
should rank one another using the two-hop neighborhood
information they need.

Based on the above, the approach adopted in TMPO
consists of each node communicating to its neighbors infor-
mation about all its one-hop neighbors. Using this infor-
mation, each node computes a priority for each node in its
two-hop neighborhood, such that no two nodes can have the
same priority at the same instant of time. A node then de-
cides to become a clusterhead if either one of the following
criteria are satisfied:

1. The node has the highest priority in its one-hop neigh-
borhood.

2. The node has the highest priority in the one-hop neigh-
borhood of one of its one-hop neighbors.

r
r

i

i

a b
c

d

e

a b

e

c

d

.4
.7

.3

.1

.6

.9

.1
.4

.7

.6

.9

.3

(a) (b)

Figure 1: Two cases that enable node i becoming a
clusterhead.

Figure 1 illustrates the two criteria that make node i a
clusterhead. In Figure 1 (a), node i has the highest priority
among its one-hop neighbors. In Figure 1 (b), node i has
the highest priority among node b’s one-hop neighbors. The
number next to each node is the sample priority at a partic-
ular moment. For convenience, we represent node priorities
using fractional numbers over the range [0, 1) throughout
this paper. The algorithms can be easily converted to inte-
ger operations in practice. We discuss the computation of
node priorities in the following sections.

3.2 Components of Node Priorities
Given that clusterheads provide the backbone for a num-

ber of network control functions, their energy consumption
is more pronounced than that of ordinary hosts. Low-energy
nodes must try to avoid serving as clusterheads to save en-
ergy. However, to balance the load of serving as cluster-
heads, every node should take the responsibility of serving
as a clusterhead for some period of time with some likeli-
hood. Furthermore, node mobility has to be considered in
clusterhead elections, so that the MDS experiences the least
structural changes over time.

To take into account the mobility and energy levels of
nodes in their election as members of the MDS, we define

131

the two-hop neighbor information needed to assign node pri-
orities as consisting of three components: (a) the identifiers
of the node’s neighbors, (b) the present time, and (c) a “will-
ingness” value assigned to a node as a function of its mobility
and energy level.

We denote the willingness value of node i by Wi, the speed
of node i by a scalar si ∈ (0,∞) in terms of meters per
second, and the remaining energy on node i as Ei ∈ [0, 1).
The willingness Wi = f(si, Ei) is a function that should be
defined according to the following criteria:

1. To enhance survivability, each node should have the
responsibility of serve as a clusterhead with some non-
zero probability determined by its willingness value.

2. To help with the stability of the MDS and the fre-
quency with which clusterhead elections must take place,
the willingness value of a node should remain constant
as long as the variation of the speed and energy level
of the node do not exceed some threshold values.

3. To avoid electing clusterheads that quickly lose con-
nectivity with their neighbors after being elected, the
willingness value of a node should decrease drastically
after the mobility of the node exceeds a given value.

4. To prolong the battery life of a node, its willingness
value should decrease drastically after the remaining
energy of the node drops below as given level.

There are many possible functions that can be used to
compute the willingness value of a node while adhering to
the above criteria. Our approach is given by Eq. (1).

Wi = 2log2(Ei∗0.9) log2(si+2) (1)

where the constants 0.9 and 2 in Eq. (1) eliminate the bound-
ary conditions in the logarithmic operations. The logarith-
mic operations on the speed and the remaining energy val-
ues render higher willingness values in the high energy and
low speed field, while giving close to zero values in the low-
energy and high-speed region. Figure 2 illustrates the effect
of the two factors on the willingness values.

0

20

40

60

80

100 0
0.2

0.4
0.6

0.8
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Energy

Willingness value

Speed (meter/second)

Figure 2: The willingness function based on speed
and remaining energy.

3.3 Clusterhead Election Algorithm
As stated before, time is slotted, and the time parameter

is represented by the current time-slot number. Node priori-
ties are computed using a pseudo-random number generator
based on the node identifiers, their willingness values, and
the current time.

The priorities of nodes change periodically to trigger clus-
terhead re-elections aimed at distributing the role of cluster-
heads among nodes. The recomputation period is denoted
by T and is a multiple of time slots and is the same for all
nodes in the network.

The priority of each node is recomputed asynchronously
using a time-slot offset so as to avoid synchronous sudden
loss of the old network states. Eq. (2) is used at each node
i to compute locally its time-slot offset, which is denoted by
i.off.

i.off = bHash(i) · T c (2)

where the function Hash(x) is a pseudo-random number gen-
erator that produces a uniformly distributed random num-
ber over range [0, 1) based on the input bit-stream x. The
floor operation gives an integer offset.

The recomputation of the priority of a node happens when-
ever the current time slot is a multiple of the recomputation
period T plus the time-slot offset of the node, i.e., when
the current time is t = kT + i.off, and k = 0, 1, · · · . At
that time slot, the priority of node i, denoted by i.prio, is
recomputed according to the following formula:

i.prio = Hash(k ⊕ i) · Wi ⊕ i (3)

where the function Hash is the same as the one defined for
Eq. (2), and the sign “⊕” is designated to carry out the
bit-concatenation operation on its operands, and has lower
order than other operations. The last concatenation with
i in the final result is included to distinguish the priorities
of different nodes. Once computed, the priority of a node
remains the same during the entire recomputation period T .

Because each node knows the node identifiers of its two-
hop neighborhood, node i can determine locally which other
nodes must recompute their priorities during the same time
slot from Eq. (equation:startuptime). Because the willing-
ness values are reported by nodes in its two-hop neighbor-
hood, node i uses Eq. (equation:priority) to compute its
own priority and the priorities of all nodes in its two-hop
neighborhood that must recompute their priorities. Because
Eq. (equation:priority) renders different priority values for
different node identifiers, only one node can be selected to
have the highest priority during the time slot when node
i must recompute its priority. Once nodes have consistent
two-hop neighborhood information, if node i decides that it
must become a clusterhead, its neighbors do too, because
the nodes run the same algorithms using the same informa-
tion.

The algorithms for determining the clusterhead status of
node i are described in Figures 3 – 4 using C-style pseudo
code.

Function Init in Figure 3 initializes the data structures
at node i. For simplicity, the energy level and speed remain
constant until the beginning of the next recomputation pe-
riod. The willingness value of node i is computed according
to Eq. (1) and the nodal type is initialized to Host (Init

132

/* Initialize */
Init(i, t)
{
1 i.workfor = ∅;
2 Wi = 2log2(Ei∗0.9) log2(si+2);
3 i.type = Host;

/* Recompute priorities. */
4 for (j ∈ N1

i ∪ (
S

k∈N1
i

N1
k)) {

5 if (t ≡ 0)
6 j.prio = Hash(j) · Wj ⊕ j;
7 else if (t − j.off mod T ≡ 0)

8 j.prio = Hash(t−j.off
T

⊕ j) · Wj ⊕ j;
9 }
} /* End of Init. */

Figure 3: TMPO function for initialization.

lines 2-3). Node i also computes the priority for each two-
hop neighbor according to the recomputation period of the
neighbor (Init lines 4-9).

isClusterhead(i)
{
1 for (j ∈ N1

i ∪ {i}) {
2 j.ch = j;

/* Find j’s clusterhead. */
3 for (k ∈ N1

j)
4 if (k.prio > j.ch.prio)
5 j.ch = k;

6 if (j.ch ≡ i)
7 i.type = Clusterhead;
8 }
} /* End of isClusterhead. */

Figure 4: TMPO function for electing a clusterhead.

Function isClusterhead in Figure 4 elects the cluster-
head of a node i, which is indicated by the field i.ch in the
neighbor data structure.

If node i becomes a clusterhead after computing the MDS
using function isClusterhead, its clusterhead-type attribute
needs to be propagated to its two-hop neighbors for further
computations.

4. CONNECTED DOMINATING SET

4.1 CDS Election
Because the maximum distance from a clusterhead in the

minimal dominating set (MDS) to the closest clusterhead
is three, which we prove in Theorem 2, we can derive the
CDS of a network by adding some nodes to the MDS, such
that clusterheads within two or three hops are connected.
Two other types of nodes, called doorways and gateways,
are elected to derive the CDS based only on the priorities of
the neighbors with two hops from each node.

The CDS of a network topology is constructed in two
steps. In the first step, if two clusterheads in the MDS

are separated by three hops and there are no other cluster-
heads between them, a node with the highest priority on the
shortest paths between the two clusterheads is elected as a
doorway, and is added to the CDS. Therefore, the addition
of a doorway brings the connected components in which the
two clusterheads reside one hop closer.

In the second step, if two clusterheads or one clusterhead
and one doorway node are only two hops away and there
are no other clusterheads between them, one of the nodes
between them with the highest priority becomes a gateway
to connect clusterhead to clusterhead or doorway to cluster-
head. After these steps, the CDS is formed. Figures 5 – 6
specify the two steps, and the function TMPO in Figure 7
combines all the topology management algorithms.

isDoorway(i)
{
1 if (i.type ≡ Clusterhead)
2 return;

3 for (j ∈ N1
i and j.type ≡ Clusterhead) {

4 for (k ∈ N1
i and k 6= j

and k.type 6= Clusterhead) {
5 for (n ∈ N1

k , n.type≡Clusterhead
and n 6∈ N1

i ∪ N1
j) {

/* Case (a) in Figure 8. */
6 if (∃m ∈ N1

i , {j, n} ⊆ N1
m)

7 continue n;

8 for (m ∈ N1
i) {

/* Case (b) or (c) in Figure 8. */
9 if (n ∈ N1

m and ((m.type ≡ Clusterhead) or
(∃p ∈ N1

i ∩ N1
m, p.type ≡ Clusterhead)))

10 continue n;
11 } /* m */

12 for (m ∈ N1
i ∩ N1

n) {
/* Case (d) in Figure 8. */

13 if ((m.prio > i.prio) or
14 (∃p ∈ N1

j ∩ N1
m, p.prio > i.prio))

15 continue n;
16 } /* m */

17 i.type = Doorway;
18 i.workfor = i.workfor ∪{j, n};
19 } /* n */
20 } /* k */
21 } /* j */
} /* End of isDoorway. */

Figure 5: TMPO function for electing a doorway.

Function isDoorway in Figure 5 determines whether node
i can become a doorway for other clusterheads. To decide
whether node i becomes a doorway for clusterhead n and j,
node i needs to assert that

1. Clusterheads n and j are not two hops away (isDoor-
way lines 3-7 illustrated by case (a) in Figure 8).

2. There is no other clusterhead m on the shortest path
between clusterhead n and j (isDoorway lines 8-11
illustrated by case (b) and (c) in Figure 8).

3. There is no other node m with higher priority than
node i on the three-hop path between clusterhead n
and j (isDoorway lines 12-16 illustrated by case (d)
in Figure 8).

133

isGateway(i)
{
1 if (i.type ∈ {Clusterhead, Doorway})
2 return;

3 for (j ∈ N1
i

4 and j.type ∈ {Clusterhead, Doorway}) {
5 for (k ∈ N1

i and k 6= j and k 6∈ N1
j and

6 k.type ∈ {Clusterhead, Doorway} and
7 (k.type 6≡ Doorway or
8 j.type 6≡ Doorway) {
9 if (∃n ∈ N1

j ∩ N1
k , n 6= i and

(/* Case (a) in Figure 9. */
10 n.type ∈ {Clusterhead, Doorway} or

/* Case (b) in Figure 9. */
11 n.prio > i.prio))
12 continue k;
13 else {
14 i.type = Gateway;
15 i.workfor = i.workfor ∪{j, k};
16 }
17 } /* k */
18 } /* j */
} /* End of isGateway. */

Figure 6: TMPO function for electing a gateway.

TMPO(i, t)
{
1 i.oldType = i.type;
2 Init(i, t);
3 isClusterhead(i);
4 isDoorway(i);
5 isGateway(i);

6 /* i’s status changes? */
7 if (i.type 6= i.oldType)
8 Propagate i.type;
} /* End of TMPO. */

Figure 7: TMPO description

If the three assertions are satisfied, node i becomes a door-
way (isDoorway line 17). The attribute i.workfor is the
set of clusterheads that make node i become a doorway (is-
Doorway line 18). A doorway needs to notify its one-hop
neighbors about its current status for gateway elections.

Function isGateway in Figure 6 determines whether node
i becomes a gateway to connect two clusterheads or one clus-
terhead and another doorway, k and j (isGateway lines 3-
8). According to Figure 9, if there is another clusterhead
or doorway between node k and j (isGateway line 10), or
there is another node with higher priority than node i be-
tween node k and node j (isGateway line 11), node i cannot
become a gateway. Otherwise, node i becomes a gateway,
and the attribute i.workfor is the set of nodes that make i
become a gateway (isGateway lines 13-16).

Function TMPO is called after every neighbor informa-
tion update or when the recomputation period of a neighbor
starts. After calling TMPO, if node i changes its role be-
tween clusterhead, doorway, gateway and host, then node
i needs to propagate its new status to its neighbors. Note
that the status changes to and from doorway and gateway

k
n

i

j

m

(a)

k
n

i

j

m

(b)

k
n

i

j

m

(c)

p

k
n

i

j

m

p

(d)

Figure 8: Four cases that may disable node i from
becoming a doorway

j

i n

k k

j

i n

(b)(a)

Figure 9: Two cases that disable node i from be-
coming a gateway.

are propagated only to one-hop neighbors, while the sta-
tus changes from/to clusterheads are required to propagate
within two hops, so as to inform other nodes when construct-
ing the CDS. It is the responsibility of a neighbor protocol to
propagate the changes in node types to the one- and two-hop
neighbors in time.

4.2 CDS Connections
The backbone topology is constructed by using links be-

tween the elected clusterheads, doorways and gateways present
in the original network topology according to the following
rules:

R1: All links between clusterheads are kept in the back-
bone topology.

R2: The one-hop links from doorways and gateways to the
nodes in their respective sets workfor are kept in the
backbone topology. Some nodes in the workfor set
may be outside of the one-hop neighborhood for door-
ways, and there are no links from the doorways to these
nodes.

The links of the original network topology between gate-
ways or between doorways are not kept in the CDS. Door-
ways are alway attached to a clusterhead on one end and
a gateway on the other end. Gateways are alway attached
with clusterheads or doorways.

Figure 10 illustrates the backbone topology construction
process using TMPO in four steps on a network graph gen-
erated by randomly placing 100 nodes over a 1000×1000
square meter area. The radio reception range is 200 meters
for all nodes. In Figure 10 (a), every node is a host and net-
work connectivity is very dense in some parts of the network,
which increases the overhead of network control functions.
In Figure 10 (b), clusterheads are elected, but are discon-
nected from each other. Hosts are attached to their cor-
responding clusterheads in their one-hop neighborhood. In
Figure 10 (c), gateways are elected. Without adding door-
ways for extending the coverage of clusterheads, we see that

134

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000 − Host

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

The original network topology

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000 − Clusterhead

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

The minimal dominating set (MDS)

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000 − Gateway

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

Addition of gateways alone

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000 − Doorway

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

Addition of doorways and gateways (CDS)

Figure 10: A network topology control example.

adding gateways alone cannot guarantee the connectivity of
the backbone topology. Once the doorways are added af-
ter the clusterheads election in Figure 10 (d), gateways are
again inserted, and the CDS is formed over the original net-
work topology using the CDS construction rules.

The stability of the backbone topology is an important
goal in TMPO, and is achieved by the following mecha-
nisms. First, the period of willingness adjustment is long
to allow enough time to adjust to clusterhead changes. Sec-
ond, the willingness value is directly related with the speed
of nodes. Fast moving nodes get fewer chances to become
a clusterhead than slowly moving or static nodes, thus de-
creasing the possibility of topology changes due to mobility.
Third, the willingness value is also related to the remaining
energy of the node, so that the clusterhead role is sustained
longer and fewer topology changes happen. Forth, except for
clusterheads, doorways and gateways are not put in the rout-
ing tables built over the CDS, but only provide links between
clusterheads. When doorways or gateways fail, there can be
other hosts taking over the role, without any routing up-
dates. The transient period between clusterhead connection
re-establishment is equal to the delay of the neighbor pro-
tocol propagating one-hop neighbor updates. Lastly, nodes
change their priorities asynchronously, thus avoiding syn-
chronization problems from clusterhead changes and routing
updates.

4.3 Application of Topology Management
The CDS obtained from TMPO reduces the topology

information at each node with just enough links to main-
tain network connectivity. Previous research has gone down
this path using different topology control algorithms, and
applied the derived backbone topology to efficient data for-
warding or the provision of QoS services [25, 8].

4.3.1 Efficient Routing
Routing information requires only enough active nodes in

the network for connectivity and data forwarding purposes
among hosts and routers. The number of active nodes can be
dramatically smaller than the total number of nodes in the
network. The CDS of an ad hoc network provides the back-
bone of the network for this purpose, where clusterheads
are responsible for receiving or delivering data packets to
hosts under their dominance, while gateways and doorways
forward data packet between clusterheads for which they
work.

Another application for the CDS problem consists of car-
rying out reliable broadcasts in ad hoc networks, such that
each message from a source node reaches every other net-
work node reliably. Without proper control, broadcast mes-
sages may incur very high overhead as each node is exposed
to multiple copies of the same message. Utilizing the CDS
in the network, only clusterheads need to broadcast, while
the intermediate doorways and gateways relay the message
between gateways and can use more reliable mechanisms to
do so.

4.3.2 Energy Conservation
Energy consumption by nodes in an ad hoc network is

due to the data flows generated or forwarded by each node,
as well as the signaling overhead of network control proto-
cols. In a network with a flat network topology management,
nodes can consume large amounts of energy by maintaining
routing information exchanges with every neighbor.

To balance energy consumption as well as to maintain net-
work connectivity, TMPO elects a backbone of routers (the
CDS) to serve the network routing functionalities based on
their energy levels and mobility. Only clusterheads, door-
ways and gateways need to stay awake continuously. Hosts
that are not serving data forwarding can be put in sleep-
ing mode so as to conserve energy and prolong the network
lifetime. Routers in the CDS buffer information for sleeping
hosts until they wake up and receive the packets. If a back-
bone router becomes a host and the buffered data are not
delivered to the destination host yet, the backbone router
can keep holding the data and deliver or delegate them later.

5. CORRECTNESS

Theorem 1. The set of clusterheads elected by the algo-
rithm is a dominating set.

Proof: By the definition of a dominating set, a node is
either a dominator itself, or is a one-hop neighbor of a dom-
inator. Because a node either has the highest priority among
its one-hop neighbors such that it becomes a dominator it-
self, or has a neighbor with the highest priority among the
one-hop neighbors of the node, which elects the neighbor as a
dominator, the network always has a dominating set elected
after function isClusterhead is called at each node. 2

Theorem 2. In a dominating set, the maximum distance
to another closest clusterhead from any clusterhead is three.

Proof: We prove the theorem by contradiction. Assume
that the maximum distance from a clusterhead a to the
closest clusterhead e is four, as illustrated in Figure 11, ac-
cording to Theorem 1, node c must have been covered by a
clusterhead f , which is one hop closer to a than e, thus con-
tradicting the assumption that e is the closest clusterhead
to a. 2

135

a b c d e

f

Figure 11: The maximum distance between the clos-
est clusterheads.

Theorem 3. Two clusterheads that are within three hops
from each other are connected by a path in the CDS.

Proof: There are three cases to consider for the proof ac-
cording to the number of hops between the two clusterheads.

1. The two clusterheads are one hop away. In this case,
they are directly connected according to rule R1 in the
CDS.

2. The two clusterheads are two hops away. In this case,
one of the intermediate nodes between the clusterheads
either is a clusterhead itself, or becomes a gateway
according to the isGateway algorithm. Because the
link between gateway and clusterhead is kept in the
backbone topology by rule R2, the two clusterheads
are connected in the CDS.

3. The two clusterheads are three hops away. In this
case, if there is any clusterhead on the shortest paths
between the two clusterheads, then the connectivity
problem is converted to the previous two cases. Oth-
erwise, one of the nodes on the shortest paths has
to become a doorway according to function isDoor-
way. Because the doorway is treated like a clusterhead
when electing gateways (function isGateway), one of
the nodes between the newly elected doorway and the
other clusterhead must become a gateway. Because
the link between the doorway and the clusterhead for
which it works is kept in the backbone topology as well
as the links from the elected gateway to the doorway
and the clusterhead (rule R2), the path between the
two clusterheads is preserved in the backbone topol-
ogy. That is, the two clusterheads are still connected
via clusterheads, doorways or gateways in the CDS. 2

Theorem 4. After TMPO terminates, the CDS has the
same number of connected components as the original graph.

Proof: We prove that any pair of clusterheads that are
connected in the original graph is still connected via a path
in the CDS after TMPO terminates.

Suppose that the two clusterheads are v0 and vn, and the
path between them is p = v0 · v1 · v2 · · · vn−1 · vn in the
original graph. For the endpoints of any link vi · vi+1 on
the path p, where i = 0, 1, · · · , n − 1, there exist one or two
clusterheads that cover node vi and vi+1. For the case of
one clusterhead, the clusterheads of vi and vi+1 are trivially
connected. For the case of two clusterheads, the distance
between the clusterheads is less than three. From Theorem
3, it follows that the two clusterheads are still connected in
the backbone topology. Therefore, there is a path between
v0 and vn that is composed of clusterheads of the nodes on
the path p and other clusterheads, doorways or gateways
that connect them. That is, v0 and vn are still connected in
the CDS. 2

6. PERFORMANCE ANALYSIS OF TMPO
CLUSTERHEAD ELECTION

Guha and Khuller [14] and Jia et al. [16] evaluated the
performance of algorithms for constructing dominating sets
based on the performance ratio, which is the approximate
ratio of the cost of a solution derived from an algorithm to
the optimal one. In contrast, we evaluate the performance
of TMPO by the percentage of nodes being elected as clus-
terheads.

Despite the fact that TMPO actually provides a node-
weighted MDS election algorithm based on the willingness
parameter, the performance of the specified algorithm can
be evaluated regardless of such weights. Therefore, we con-
sider the case in which all nodes have the same willingness
to become a clusterhead, that is, Wi = 1,∀i ∈ V . Further-
more, we analyze the probability of a node being elected as a
clusterhead with the simplifying assumptions that all nodes
have the same effective transmission range r to communi-
cate with each other, and that the network is created by
uniformly placing an infinite number of nodes on an infinite
2-dimensional plane with average node density ρ.

With the above assumptions, the number of nodes within
an area of size S is a random variable following a Poisson
distribution as given in Eq. (4).

p(k, S) =
(ρS)k

k!
e−ρS . (4)

Because node priorities are evenly distributed over (0, 1]
according to Eq. (3), nodes have equal chances to become
clusterheads using TMPO. That is, the probability of a

node winning over k other contenders is
1

k + 1
.

For convenience, the variable T (N) and U(N) are intro-
duced to denote two probabilities when the number of con-
tenders k follows a Poisson distribution with mean N . T (N)
denotes the probability of a node winning among its con-
tenders. Because the number of contenders follows a Poisson
distribution with mean N and all nodes have equal chances
of winning, the probability T (N) equals

T (N) =

∞X
k=1

1

k + 1

Nk

k!
e−N =

eN − 1 − N

NeN
.

Note that k starts from 1 in the expression for T (N), because
a node with no contenders does not win at all. U(N) is the
probability that a node has at least one contender, which is
simply 1 − e−N .

In addition, N1 is introduced to denote the average num-
ber of one-hop neighbors of a node, which according to the
assumptions we have made equals

N1 = ρπr2

As mentioned before, a node i becomes a clusterhead if
either of the following two conditions holds:

1. Node i has the highest priority among its one-hop
neighbors;

2. Node i does not have the highest priority in its one-
hop neighbors, but has the highest priority among the
one-hop neighbors of one of i’s own one-hop neighbors.

136

For the first condition, the probability is:

p1 =
∞X

k=0

Nk
1

k!
e−N1 · 1

k + 1
=

U(N1)

N1
.

For the second condition to be satisfied, it must be true
that node i has a one-hop neighbor with higher priority,
while node i also has the highest priority around one of its
one-hop neighbors. Many situations can render node i as
the clusterhead in this case. Therefore, we have to consider
the lower bound of the probability that node i becomes a
clusterhead by considering only a single one-hop neighbor j
that makes node i a clusterhead. Under this simplification,
the geometric relation between node i and node j is shown
in Figure 12, and the distance between them is denoted by
tr.

r

tr
jA(t) i

Figure 12: Clusterhead election.

Accordingly, we need to compute the probability of node i
having the highest priority within the one-hop neighbors of
node j, and the probability of node i having lower priority
in the portion of its one-hop neighborhood outside of node
j’s coverage (the shaded area in Figure 12).

Denote the number of nodes in the shaded area by A(t).
We have

A(t) = 2ρr2
hπ

2
− a(t)

i
,

where a(t) = arccos t
2
− t

2

q
1 − � t

2

�2
. Therefore, the prob-

ability of node i having a lower priority than the nodes in
the shaded area is

p2 =

∞X
k=1

A(t)k

k!
e−A(t) k

k + 1
= U(A(t)) − T (A(t)) .

In addition, node i should have the highest priority among
node j’s one-hop neighborhood, of which the probability is:

p3 =

∞X
k=0

Nk
1

k!
e−N1 1

k + 2
=

N1 − 1

N1
· T (N1) + e−N1 .

Because the probability density function of parameter t is
p(t) = 2t, the probability that node i becomes a clusterhead
can be obtained by multiplying the above two probabilities
and integrating over the range t ∈ (0, 1]:

p4 =

Z 1

0

p2 · p3 · 2tdt =

�
N1 − 1

N1
· T (N1) + e−N1

�

·
Z 1

0

[U(A(t)) − T (A(t))]2tdt .

Because the two conditions are mutually exclusive, the

probability of node i becoming a clusterhead is thus:

pch = p1 + (1 − p1) · p4

=
U(N1)

N1
+

�
1 − U(N1)

N1

��
N1 − 1

N1
· T (N1) + e−N1

�

·
Z 1

0

[U(A(t)) − T (A(t))]2tdt .

Nodes are homogeneous in the randomly generated net-
work with regard to their priority generations and one-hop
neighbor information. Therefore, the probability of becom-
ing a clusterhead is also the same for all nodes. Given an
area with N nodes in an infinitely large network with uni-
form node density, the expected size of the MDS in the area
is:

|MDSN | = N · pch . (5)

To validate the result in Eq. (5) with the performance
of function isClusterhead, we randomly created a number
of networks by placing 100 nodes onto a 1000×1000 square
meter plane. The opposite sides of the square are seamed
together so as to emulate the infinite plane. All nodes have
the same transmission range, which increases from 1 to 400
meters in the individual experiment setting so as to evaluate
the performance of TMPO at different node densities.

A near-optimum MDS election is also carried out for com-
parison purposes in the same network topology. The near-
optimum election algorithm is based on the aforementioned
Max Degree algorithm, eliminating redundant clusterheads
in the MDS.

0 100 200 300 400
10

0

10
1

10
2

Transmission range (m)

N
um

be
r

of
 c

lu
st

er
he

ad

Comparisons between analysis and simulation

Analysis
MDS in TMPO
Near−optimum

0 100 200 300 400
0.8

1

1.2

1.4

1.6

1.8

Transmission range (m)

P
er

fo
rm

an
ce

 r
at

io

Performance Ratio

MDS in TMPO vs. analysis
Near−optimum vs. analysis

Figure 13: Comparison between theoretical analyses
and simulations.

Because we ran the experiments in different network sce-
narios for many times, and recomputed the MDS at each
experiment setting, we achieve the average performances of
both algorithms. The analytical results and the results from
the experiments of TMPO and the near-optimum MDS al-
gorithm are shown in Figure 13. As the results in the left
portion of Figure 13 illustrate, the number of elected clus-
terheads drops quickly as the node transmission range in-
creases, because clusterheads have larger and larger cover-
age.

The performance ratios of TMPO vs. the analytical
model, and the near-optimum MDS algorithm vs. the an-
alytical model are shown in the right portion of Figure 13.
It appears that the near-optimum MDS algorithm performs
close to the lower-bound of the MDS, while the performance
of TMPO digresses when the node transmission range in-
creases. The performance ratio between TMPO and the
analytical results offsets from 1 by as far as 48%, and is due
to the simplifications made in our analytical model.

137

7. SIMULATIONS
We compare the performance of TMPO with the opti-

mum topology management algorithm and four other topol-
ogy management algorithms based on different heuristics us-
ing simulations. To establish a fair comparison among these
algorithms, some MDS stability optimizations and cluster-
head negotiation procedures presented in the original papers
are omitted. The algorithms differ from one another only in
the clusterhead election process, and use the same proce-
dure to connect clusterheads using doorways and gateways
to form the CDS, which does not need negotiation packets
and actually improves the performance of the original algo-
rithms based on other heuristics. The following five schemes
are compared with TMPO:

• OPTIMUM: This is a near-optimum approach that
uses global topology information, the MDS is con-
structed by selecting nodes with the highest degree
one by one until all nodes outside the MDS are cov-
ered by the MDS. Individual nodes with low degree in
the MDS are inspected and eliminated from the MDS
if the node and its dominated nodes are covered by
other clusterheads in the MDS.

• Lowest ID [1, 3, 11, 13, 19]: In this approach, the
node identifier is used to elect MDS members. A node
is elected into the MDS if it has the lowest identifier in
the one-hop neighborhood of itself or one of its one-hop
neighbors.

• Max Degree [14, 16, 25]: In this approach, a node
is elected into the MDS if it has the highest degree in
the one-hop neighborhood of itself or one of its one-hop
neighbors.

• MOBIC [7]: In this approach, each node computes a
mobility metric based on the received-signal strength
variations from its one-hop neighbors. A node becomes
a clusterhead if it has the lowest mobility metric in the
one-hop neighborhood of itself or one of its one-hop
neighbors.

• Load Balance [2]: This approach is similar to Low-
est ID except that it is based on a virtual identifier
(VID) assigned to each node. The VID of a node in-
creases every time slot if the node is a host, or remains
constant if the node is a clusterhead. Each clusterhead
runs a budget that decreases every time slot. A clus-
terhead resets its VID to 0 and returns to host status
when the budget runs out, thus providing load balanc-
ing between network nodes.

The simulations are carried out in ad hoc networks gen-
erated over a 1000×1000 square meter area with 100 nodes
moving in random directions at random speeds. In order
to simulate infinite plane, the opposite sides of the area is
seamed together so that the simulation plane forms a torus.
To mobility scenarios are simulated, of which the speed is
selected from 0 to 5 meters/second in low mobility scenar-
ios, or from 0 to 50 meters/second in high mobility scenar-
ios. In each mobility scenario, the radio transmission range
is set at different values in each simulation, chosen from
100 to 500 meters, so as to demonstrate the effects of the
one-hop neighborhood density in the clusterhead elections.

In TMPO, the node priority recomputation period is one
minute.

Different types of nodes consume energy at different rates.
We ignore the energy consumed due to local computations,
but assume that the energy consumption rate is only depen-
dent on the type of the node. A host consumes 0.6% of the
total energy per minute in these algorithms, a clusterhead
consumes 3%, and a doorway or a gateway consumes 2.4%.
Every node starts with an energy level of 1 at the beginning
of each simulation.

The algorithms are compared using six different metrics,
and the results are shown in Figures 14-16:

100 200 300 400 500
0.5

1

1.5

2

2.5

Transmission Range (meter)

D
ur

at
io

n
(h

ou
r)

Speed Limit=5 meter/second

TMPO
OPTIMUM
Lowest ID
Max Degree
MOBIC
Load Balance

100 200 300 400 500
0.5

1

1.5

2

2.5

Transmission Range (meter)

D
ur

at
io

n
(h

ou
r)

Speed Limit=50 meter/second

(a) Simulation duration.

100 200 300 400 500
0

0.2

0.4

0.6

0.8

Transmission Range (meter)

A
vg

 E
ne

rg
y

Le
fto

ve
r

Speed Limit=5 meter/second

TMPO
OPTIMUM
Lowest ID
Max Degree
MOBIC
Load Balance

100 200 300 400 500
0

0.2

0.4

0.6

0.8

Transmission Range (meter)

A
vg

 E
ne

rg
y

Le
fto

ve
r

Speed Limit=50 meter/second

100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

Transmission Range (meter)

E
ne

rg
y

S
td

 D
ev

ia
tio

n

Speed Limit=5 meter/second

100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

Transmission Range (meter)

E
ne

rg
y

S
td

 D
ev

ia
tio

n

Speed Limit=50 meter/second

(b) The mean energy left and its standard deviation.

Figure 14: Simulation duration and energy left.

The simulations stop once any node runs out of energy in
the network. The simulation duration (Figure 14(a)) mea-
sures the load balancing capability of the heuristics to pro-
long the system lifetime by rotating the clusterhead roles
between network nodes. MOBIC and Lowest ID perform
the worst, because the clusterheads are mostly fixed over
certain nodes throughout the simulations. In Lowest ID,
the fact that the node with the lowest identifier is always in
the MDS terminates the simulations in fixed time. TMPO
is one of the best heuristics.

The mean and the standard deviation of the energy left
per node when the simulation is over (Figure 14 (b)) indi-
cate the load balancing capability of the heuristics. After
each simulation, TMPO leaves the network nodes with the
least energy and the lowest standard deviation because of
its energy-awareness when selecting the MDS, while Low-

138

est ID performs the worst because it always has nodes that
are always or never elected to the MDS. The curves peak at
transmission range 300- or 350-meter because the two-hop
neighborhood of each node begins to overlap in the oppo-
site directions on the plain, which renders less clusterheads
and more opportunities to rotate clusterhead roles for some
heuristics.

100 200 300 400 500
10

0

10
1

Transmission Range (meter)

A
vg

 C
lu

st
er

he
ad

 N
um

be
r

Speed Limit=5 meter/second

TMPO
OPTIMUM
Lowest ID
Max Degree
MOBIC
Load Balance

100 200 300 400 500
10

0

10
1

Transmission Range (meter)

A
vg

 C
lu

st
er

he
ad

 N
um

be
r

Speed Limit=50 meter/second

(a) Average number of clusterheads.

100 200 300 400 500

10
−1

10
0

10
1

Transmission Range (meter)

C
lu

st
er

he
ad

 C
ha

ng
e

(p
er

 s
ec

on
d)

Speed Limit=5 meter/second

100 200 300 400 500

10
0

10
1

Transmission Range (meter)

C
lu

st
er

he
ad

 C
ha

ng
e

(p
er

 s
ec

on
d)

Speed Limit=50 meter/second

TMPO
OPTIMUM
Lowest ID
Max Degree
MOBIC
Load Balance

(b) Clusterhead change rate.

100 200 300 400 500
10

0

10
1

Transmission Range (meter)

C
lu

st
er

 M
em

be
rs

hi
p

C
ha

ng
e

(p
er

 s
ec

on
d) Speed Limit=5 meter/second

100 200 300 400 500
10

1

10
2

Transmission Range (meter)

C
lu

st
er

 M
em

be
rs

hi
p

C
ha

ng
e

(p
er

 s
ec

on
d) Speed Limit=50 meter/second

TMPO
OPTIMUM
Lowest ID
Max Degree
MOBIC
Load Balance

(c) Cluster membership change rate.

Figure 15: Statistics about clusterheads.

The average number of clusterheads (Figure 15 (a)) is
measured each time slot when clusterhead recomputation
happens. As Figure 15 (a) shows, all heuristics perform al-
most identically, which suggests that the MDS cardinality
can hardly prove the advantage of topology management
algorithms. It is the topology stability and load-balancing
features of the algorithms that make the difference.

The clusterhead change rate (Figure 15 (b)) measures the
stability of the MDS in a mobile network. TMPO, Low-
est ID and Load Balance are the best performing, be-
cause they depend on relatively static attributes for cluster-
head election, such as node identifiers and priorities which
change less frequently than node locations. OPTIMUM,
Max Degree and MOBIC perform the worst because the
MDS elections depend on the volatile mobility and network
topology of ad hoc networks.

The cluster membership change rate (Figure 15 (c)) mea-
sures the stability of network connections in the presence

of mobility. The cluster membership change rates align
to the clusterhead change rates of the examined heuristics.
TMPO, Lowest ID and Load Balance still perform the
best in both high and low mobility scenarios.

100 200 300 400 500
10

−2

10
0

10
2

Transmission Range (meter)

C
om

bi
ne

d
M

et
ric

Speed Limit=5 meter/second

100 200 300 400 500
10

−2

10
0

10
2

Transmission Range (meter)

C
om

bi
ne

d
M

et
ric

Speed Limit=50 meter/second

TMPO
OPTIMUM
Lowest ID
Max Degree
MOBIC
Load Balance

Figure 16: Combined evaluations.

Given the above metrics, it is not easy to see the ad-
vantages of different heuristics. The combined metric (Fig-
ure 16) is the product of the average energy, its standard
deviation, the average number of clusterheads, the cluster-
head change rate and the cluster membership change rate
of the respective simulations. Although it is meaningless
to simply multiply several independent metrics, the prod-
uct fairly compares the overall performance if the individ-
ual metrics are equally important. The lower the combined
metric of a heuristic, the better the heuristic performs in
terms of the clusterhead load-balancing capability and the
MDS/CDS stability. As shown in Figure 16, TMPO per-
forms near, if not always, the best among all heuristics in
both low mobility and high mobility scenarios. Load bal-
ance is the second best in general. The simulations favored
Load balance, because it assumes that all nodes start with
the same energy level [2], which is the setup of the simula-
tions.

Overall, when the mobility increases from 5 meter/second
to 50 meters per second, TMPO shows better load balanc-
ing capability (Figure 14) and higher topology maintenance
stability (Figure 16).

8. CONCLUSION
We have presented TMPO, a novel energy-aware topol-

ogy management approach based on dynamic node priorities
in ad hoc networks. TMPO consists of two parts that im-
plement the MDS and CDS elections, respectively. TMPO
builds a stable and energy-aware CDS from the MDS to sim-
plify the topology information for sufficient network connec-
tivity and efficient data communication. Compared to five
prior heuristics of MDS and CDS elections in ad hoc net-
works, TMPO offers four key advantages. First, TMPO
obtains the MDS and CDS of the network without any nego-
tiation stage; only two-hop neighbor information is needed.
Second, TMPO allows nodes in the network to periodi-
cally recompute their priorities, so as to balance the cluster-
head role and prolong the battery life of each node. Third,
TMPO introduces the willingness value of a node, which
decides the probability of the node being elected into the
MDS according to the battery life and mobility of the node.
Fourth, TMPO introduces doorway concept for the CDS
in addition to the well-known gateway and clusterhead con-
cepts.

A key contribution of this work consists of converting the

139

static attributes of a node, such as node identifier, into a
dynamic control mechanism that incorporates the three key
factors for topology management in ad hoc networks — the
nodal battery life, mobility, and load balancing. Although
existing proposals have addressed all these aspects, TMPO
constitutes a more comprehensive approach. TMPO is
unique in that the election of the MDS is locally determined,
without the need for any negotiation phase.

9. REFERENCES
[1] A. Amis, R. Prakash, T. Vuong, and D.T. Huynh.

MaxMin D-Cluster Formation in Wireless Ad Hoc
Networks. In Proceedings of IEEE Conference on
Computer Communications (INFOCOM), Mar. 1999.

[2] A.D. Amis and R. Prakash. Load-balancing clusters in
wireless ad hoc networks. In Proceedings 3rd IEEE
Symposium on Application-Specific Systems and
Software Engineering Technology, pages 25–32, Los
Alamitos, CA, Mar. 24-25 2000.

[3] D.J. Baker and A. Ephremides. The architectural
organization of a mobile radio network via a
distributed algorithm. IEEE Transactions on
Communications, COM-29(11):1694–701, Nov. 1981.

[4] S. Banerjee and S. Khuller. A Clustering Scheme for
Hierarchical Control in Multi-hop Wireless Networks.
In Proceedings of IEEE Conference on Computer
Communications (INFOCOM), Anchorage, Alaska,
Apr. 2001.

[5] L. Bao and J.J. Garcia-Luna-Aceves. A New
Approach to Channel Access Scheduling for Ad Hoc
Networks. In Proc. ACM Seventh Annual
International Conference on Mobile Computing and
networking, Rome, Italy, Jul. 16-21 2001.

[6] L. Bao and J.J. Garcia-Luna-Aceves. Transmission
Scheduling in Ad Hoc Networks with Directional
Antennas. In Proc. ACM Eighth Annual International
Conference on Mobile Computing and networking,
Atlanta, Georgia, USA, Sep. 23-28 2002.

[7] P. Basu, N. Khan, and T. D.C. Little. A Mobility
Based Metric for Clustering in Mobile Ad Hoc
Networks. In International Workshop on Wireless
Networks and Mobile Computing (WNMC2001),
Scottsdale, Arizona, Apr. 16-19 2001.

[8] B. Chen, K. Jamieson, H. Balakrishnan, and
R. Morris. Span: an Energy-Efficient Coordination
Algorithm for Topology Maintenance in Ad Hoc
Wireless Networks. In Proc. 7th ACM MOBICOM,
Rome, Italy, Jul. 2001.

[9] C.C. Chiang, H.K. Wu, W. Liu, and M. Gerla.
Routing in clustered multihop, mobile wireless
networks with fading channel. In IEEE Singapore
International Conference on Networks SICON’97,
pages 197–211, Singapore, Apr. 14-17 1997.

[10] T. Clausen, P. Jacquet, A. Laouiti, P. Muhlethaler,
a. Qayyum, and L. Viennot. Optimized Link State
Routing Protocol. In IEEE INMIC, Pakistan, 2001.

[11] A. Ephremides, J. E. Wieselthier, and D. J. Baker. A
design concept for reliable mobile radio networks with
frequency hopping signaling. Proc. of IEEE,
75(1):56–73, Jan. 1987.

[12] M.R. Garey and D.S. Johnson. Computers and
intractability. A guide to the theory of

NP-completeness. Freeman, Oxford, UK, 1979.

[13] M. Gerla and J.T.C. Tsai. Multicluster, mobile,
multimedia radio network. Wireless Networks,
1(3):255–65, 1995.

[14] S. Guha and S. Khuller. Approximation algorithms for
connected dominating sets. Algorithmica, 20,
(no.4):374–87, Apr. 1998. Springer-Verlag.

[15] L. Hu. Topology control for multihop packet radio
networks. IEEE Transactions on Communications,
41(10):1474–81, Oct. 1993.

[16] L. Jia, R. Rajaraman, and T. Suel. An Efficient
Distributed Algorithm for Constructing Small
Dominating Sets. In Twentieth ACM Symposium on
Principles of Distributed Computing PODC’01,
Newport, Rhode Island, Aug. 26-29 2001.

[17] P. Krishna, N. Vaidya, M. Chatterjee, and
D. Pradhan. A cluster-based approach for routing in
dynamic networks. ACM SIGCOMM Computer
Communication Review, pages 49–65, Apr. 1997.

[18] L. Li, V. Bahl, Y.M. Wang, and R. Wattenhofer.
Distributed Topology Control for Power Efficient
Operation in Multihop Wireless Ad Hoc Networks. In
Proceedings of IEEE Conference on Computer
Communications (INFOCOM), Apr. 2001.

[19] C.R. Lin and M. Gerla. Adaptive Clustering for
Mobile Wireless Networks. IEEE Journal on Selected
Areas in Communications, 15(7):1265–75, Sep. 1997.

[20] S. Narayanaswamy, V. Kawadia, R. S. Sreenivas, and
P. R. Kumar. Power Control in Ad-Hoc Networks:
Theory, Architecture, Algorithm and Implementation
of the COMPOW Protocol. In Proceedings of the
European Wireless Conference – Next Generation
Wireless Networks: Technologies, Protocols, Services
and Applications, pages 156–162, Florence, Italy, Feb.
25-28 2002.

[21] R. Prakash. Unidirectional links prove costly in
Wireless Ad-Hoc Networks. In Proceedings of the
Discrete Algorithms and Methods for Mobile
Computing and Communications - DialM, Seattle,
WA, Aug. 20 1999.

[22] R. Ramanathan and R. Rosales-Hain. Topology
Control of Multihop Wireless Networks using
Transmit Power Adjustment. In Proceedings of IEEE
Conference on Computer Communications
(INFOCOM), page N.A. IEEE, Mar. 26-30 2000.

[23] R. Ramanathan and M. Steenstrup.
Hierarchically-organized, multihop mobile wireless
networks for quality-of-service support. Mobile
Networks and Applications, 3(1):101–19, 1998.

[24] P. Sinha, R. Sivakumar, and V. Bharghavan.
Enhancing ad hoc routing with dynamic virtual
infrastructures. In Proceedings of IEEE Conference on
Computer Communications (INFOCOM), pages
1763–72, Anchorage, AK, USA, Apr. 22-26 2001.

[25] R. Sivakumar, P. Sinha, and V. Bharghavan. CEDAR:
a core-extraction distributed ad hoc routing
algorithm. IEEE Journal on Selected Areas in
Communications, 17(8):1454–65, Aug. 1999.

[26] H. Takagi and L. Kleinrock. Optimal transmission
ranges for randomly distributed packet radio
terminals. IEEE Transactions on Communications,
32(3):246–57, Mar. 1984.

140

