
The SLAM Project: Debugging System Software via Static Analysis*

Thomas Ball and Sriram K. Rajamani
{tball,sriram}@microsoft.com

M i c r o s o ~ R e s e a r c h

h t t p : / / r e s e a r c h . m i c r o s o f t . c o m / s l a m /

A b s t r a c t . The goal of the SLAM project is to check whether
or not a program obeys "API usage rules" that specif[y what
it means to be a good client of an API. The SLAM toolkit
statically analyzes a C program to determine whether or
not it violates given usage rules. The toolkit has two unique
aspects: it does not require the programmer to annotate
the source program (invariants are inferred); it minimizes
noise (false error messages) through a process known as
"counterexample-driven refinement". SLAM exploits and ex-
tends results fi'om program analysis, model checking and au-
tomated deduction. }V~ have successfully applied the SLAM
toolkit to Windows XP device drivers, to both validate be-
havior and find defects in their usage of kernel APIs.

C o n t e x t . Today, many programmers are realizing the ben-
efits of using languages with static type systems. By pro-
viding simple specifications about the tbrm of program data,
programmers receive useful compile-time error messages or
guarantees about the behavior of their (type-correct) pro-
grams. Getting additional checking beyond the confines of
a particular type system generally requires programmers to
use assertions and pertbrm testing. A number of projects
have started to tbcus on statically checking programs against
user-supplied specifications, using techniques from program
analysis [18, 19], model checking [21, 17, 22], and automated
deduction [16, 12].

Specif icat ion. The goal of the SLAM project is to check
temporal sat>ty properties of sequential C programs [7].
Roughly stated, temporal sat~ty properties are those proper-
ties whose violation is witnessed by a finite execution trace
(see [24] ibr a formal definition). A simple example of a
sat>ty property is that a lock should be alternatingly ac-
quired and released. }¥~ encode temporal sat~ty properties
in a language called S a c (Specification Language for Inter-
face Checking) [9], which allows the definition of a sat~ty
automaton [30, 29] that monitors the execution behavior of
a program at the level of function calls and returns. The

* P r e s e n t e d b y the first a u t h o r .

Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted with-
out fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this no-
tice and the full citation on the first page. 2b copy oth-
erwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or at fee.
POPL '02, Jan. 16-18, 2002 Portland, OR USA
Copyright 2002 ACM ISBN 1-58113-450-9/02/01...$5.00

automaton can read (but not modify) the state of the C
program that is visible at the function call/return interface,
maintain a history, and signal when a bad state occurs. }V~
have developed Smc specifications for a variety of Windows
XP driver properties, ranging from simple locking proper-
ties (such as given above) to complex properties dealing with
completion routines, plug-and-play, and power management.

Given a program P and a S a c specification S, a pre-
processor creates an instrumented program P ' such that a
unique label ERROR is reachable in P ' if-and-only-if P does
not satisI} S. The goal then shifts to determining whether
or not the ERROR label is reachable in P ' , a generally unde-
cidable problem.

Design. The basic design of the SLAM process is to iterate
the creation, analysis and refinement of program abstrac-
tions, until either a t~asible execution path in P' to ERROR
is tbund~ the prograln P' is validated (EEROR is shown not
to be reachable), or we run out of resources or patience.

T h e SLAM process creates a sound boolears pr~gr~rrs ab-
straction B' of the C program p,.1 Boolean programs have
all the control-flow constructs of C programs, but contain
only boolean variables. Each boolean variable in B' con-
servatively tracks the state of a predicate (boolean expres-
sion) in the C program. Boolean programs are created au-
tomatically using the technique of predicate abstr~ctior~ [20].
If a teachability analysis of B' determines that the label
ERROR is not reachable in B' then it is not reachable in
P ' . It is possible that B' may be too coarse an abstrac-
tion of P ' (that is, ERROR is reachable in B' via a path p
but ERROR is not reachable in P' via p). V~ apply a method
known as cour~terw'arr~ple-driver~ ~vfir~err~er~t [23, 28, 27] to
create a more precise boolean program (by adding new pred-
icates/boolean variables) that does not contain the spurious
path p (or other paths that are spurious tbr the same reason
p is). Termination of the SLAM process is addressed below.

}V~ expect the SLAM process to work well tbr programs
whose behavior is governed by an underlying finite state pro-
tocol. Seen in this light, the goal of SLAM is tO tease out
the underlying "protocol" state machine ti'om the code, to
a level of precision that is good enough to find real errors

1Of course , w h e n e v e r one hea r s a c la im t h a t a n ana lys i s of C code
is % o u n d " , one m u s t ask % o u n d wi th r e spec t to w h a t a s sumpt ions ' . ' "
b e c a u s e of t he (po ten t i a l) use of a r b i t r a r y p o i n t e r a r i t h m e t i c . In
SLAM, %ve g u a r a n t e e s o u n d n e s s u n d e r t he a s s u m p t i o n t h a t t he C pro-
g r a m obeys a " logica l m e m o r y m o d e l ' in w h i c h the express ions *p a n d
*(p+i) re fer to t he s ame ob j ec t . A n o t h e r ana lys i s (see the work on
C C u r e d p r e s e n t e d a t th i s s y m p o s i u m [25]) is n e e d e d to d i s c h a r g e the
" logical m e m o r y " a s s u m p t i o n .

1

or validate the code. For example, while a video card driver
may have a huge data path, most of this data has no bearing
on the driver's interaction with the operating system. How-
ever, some of the driver data definitely are relevant to this
interaction, and correlations between these data may need
to be tracked.

I m p l e m e n t a t i o n . Three basic tools comprise the SLAM
toolkit (in addition to the SLI¢ preprocessor):

• C2Be, a tool that transtbrms a C program P into a
boolean program /31P(P,E) with respect to a set of
predicates E [2, 3]. C2Bp translates each procedure
of the C program separately, enabling it to scale to
large programs. Using the theory of abstract interpre-
tation [13], we have characterized the precision of the
boolean program abstractions created by C2ge [4].

• BEBOP, a too1 for performing reachability analysis of
boolean programs [6, 8]. BEBOe combines interproce-
dural dataflow analysis in the style of [26] with Binary
Decision Diagrams [10, 11] (BDDs) to etficiently rep-
resent the reachable states of the boolean program at
each program point.

• NEWTON, a too1 that discovers additional predicates to
refine the boolean program, by analyzing the t~asibility
of paths in the C program.

The SLAM process starts with an initial set of predicates E0
derived t¥om the SLI¢ specification, and iterates the follow-
ing steps:

1. Apply C2BP to construct the boolean program
13p(P', Ed.

2. Apply BEBOe to check if there is a path Pi in
BT'(P' , Ei) that reaches the ERROR label. If BEBOP de-
termines that ERROR is not reachable, then P satisfies
the SLI¢ specification and the process terminates.

3. If there is such a path pi, then NEWTON checks if Pi
is feasible in P ' . There are three possible outcomes:
"yes", the process terminates with an error path pi;
"no", in which case NEWTON finds a set of predicates
FFi that "explain" the ini~asibility of path pi in P ' ;
"maybe", the incompleteness of the underlying theo-
rem prover may cause this outcome, in which case user
input is required.

4. Let E/+l := E/U FFs, and i := i + 1, and proceed to the
next iteration.

T e r m i n a t i o n : T h e o r y a n d Prac t i ce . }V~ have proved a
strong relationship between a process based on iterative re-
finement of abstractions (such as in SLAM) and traditional
fixpoint analyses with widening (which is used to ensure
the termination of abstract interpretations in domains with
infinite ascending chains) [5]. Using widening, the latter
process always will terminate, but it may not give a defi-
nite result ("error found" or "program validated"). ~V~ have
shown that if there is an oracle that can provide a "widening
schedule" that causes the latter method to terminate with
a definite result then an iterative refinement process (which
does not rely on an oracle) will terminate with a definite
result. Intuitively, this means that iterative refinement has
the eft>ct of exploring the entire state space of all possible
sequences of widenings.

In practice, the SLAM process has terminated for all
drivers within 20 iterations. Our major concern has been
with the overall running time of the process. So far, we are
able to analyze programs on the order of 10,000 lines, and
abstractions with several hundred boolean variables in the
range of minutes to a half hour. In practice, we find that
most of the predicates SLAM generates are simple equalities
with possible pointer deret~rences. For this class of predi-
cates, we believe it is possible to scale the SLAM process to
several 100,000 lines of code through optimizations outlined
below.

A major expense in the SLAM process is the reacha-
bility step (BEgot'), which has worst case running time
O(N(GL)a), where N is the size of the boolean program, G
is the number of global states, and L is the maximum num-
ber of local states over all procedures. The number of states
is exponential (in the worst-case) in the maximal number of
variables in scope.

The key to scaling for the SLAM process is in control-
ling the complexity of the boolean program abstraction.
Satyaki Das has implemented a predicate abstraction tech-
nique based on successive approximations [15] in the SLAM
toolkit, which has proven quite useful in this regard. Also
relevant here is the paper on "lazy abstraction" in this sym-
posium [21].

Additionally, there is substantial overhead in having to
iterate the SLAM process many times, which can be ad-
dressed by both the "lazy abstraction" method as well as
methods tbr heuristically determining a "good" initial set
of predicates. }V~stley }V~imer has implemented an algo-
ri thm in SLAM that, given the set of predicates present in
the SLI¢ specification, determines what other predicates in
the C program will very likely be needed in the future. This
technique, based on the value-flow graph [14], greatly re-
duces the number of iterations of the SLAM process.

Cha l lenges , ~¥~ summarize by discussing some of the chal-
lenges inherent in the endeavor of checking user-supplied
properties of sottware.

Specification burden. The creation of correct specifications
is a hard problem requiring human time and energy (in the
extreme, it is as hard as writing a program). If the effort
put into developing specifications is not paid back in terms
of discovered detects, then there is little incentive to develop
specifications in the first place. }V~ focused our specification
effort at the level of the API so that specifications may be
reused across different programs using the API. SLI¢ spec-
ifications can be partial. V~ started by first specit~ing a
small set of errors in SLI¢, and then gradually enlarging the
set. Nevertheless, the complexity of the device driver API
meant that it took considerable eflbrt to arrive at a use-
ful specification that tbund real detects. The "chicken and
egg" problem of specifications is the topic of a paper in this
symposium [1].

Annotation burden. By "annotation", we mean a modifica-
tion to the program text inserted by a programmer explic-
itly to help an analysis tool make progress. Examples of
such annotations include loop invariants and pre- and post-
conditions for procedures, such as required by the ESC-Java
tool [16]. In SLAM, annotations are not required. Instead,
the abstract fixpoint analysis of the BEBOP too1 discovers
inductive invariants (loop invariants as well as procedure
call summaries) expressed as a boolean combination of the
predicates that are input to the C2BP tool.

2

Ou@ut. Generating good explanations of errors and their
causes is a complicated affair, made more difficult as the
expressivity of the specification language increases. When
the SLAM toolkit finds an error, it presents it as an error
path in the source code using an interface that resembles
a source level debugger. However, there is sometimes an
overwhelming amount of detail in these traces. }¥~ are de-
veloping techniques for presenting both short and detailed
summaries of errors.

Soundness~Completeness~Usefulness. An analysis is
%ound" if every true error is reported by the analysis, "com-
plete" if every reported error is a true error (no noise),
and "use%l" if it finds errors that someone (programmers,
testers, customers) cares about. Detbct detection tools such
as LCLint [19], Metal [18] and PREfix [12] are neither sound
nor complete, yet are demonstrably useful. SLAM is sound
(relative to the assumptions stated before), incomplete and
is starting to demonstrate usefulness in the domain of device
drivers.

A c k n o w l e d g e m e n t s . Many people have contributed to
the SLAM project. V ~ have been fortunate to have many
excellent interns who helped push the project forward over
the summer months of 2000 and 2001. Sagar Chaki, Rupak
Majumdar and Todd Millstein were 2000 summer interns.
Sagar Chaki, Satyaki Das, Robby and }¥~stley }¥~imer were
2001 summer interns. V ~ have had a long and fYuitful col-
laboration with Andreas Podelski, who has helped us un-
derstand the theoretical limits of the SLAM approach.

The SLAM toolkit would not be possible without the soft-
ware it builds upon. V ~ thank Manuvir Das for providing
us his one-level flow analysis tool. }¥~ thank the develop-
ers of the AST toolkit at Microsot% Research, and Manuel
Fghndrich for providing us his OCaml interface to the AST
toolkit. Additionally, we have made good use of the publi-
cally available OCaml language, the Simpli[v and Vampyre
theorem provers, and the BDD libraries of CMU and Col-
orado.

Thanks also to the members of the Sot%ware Productiv-
ity Tools research group at Microsot% Research tbr many
enlightening discussions on program analysis, programming
languages and device drivers. Finally, thanks to Jim Larus,
who initially suggested device drivers as an interesting ap-
plication domain.

R e f e r e n c e s

[1] G. AInInons,]~. Bodik , and J. I~. Larus. Mining specif icat ions .
In P O P L '02. ACM, J a n u a r y 2002.

[2] T. Ball , I~. M a j u m d a r , T. Mil ls te in , and S. K. l~ajamani . Auto-
mar ie p red ica te a b s t r a c t i o n of C programs. In PLD1 01: Pro-
g r ~ i ~ 9 L ~ g u ~ g e Desig~ ~ d l~p~e~e~t~t io~, pages 203
213. ACM, 2001.

[3] T. Ball , T. Mil ls te in , and S. K. l~ajamani . Po lymorph ic predi-
ca te abs t rac t ion . Technica l Igeport MSIg-TI%-2001-10, Microsot~
Igesearch, 2001.

[4] T. Ball , A. Podelski , and S. K. l~ajamani . Boolean and car te-
s ian abs t r ac t i ons for mode l checking C programs. In T A U A S
01: :Ibo~s and Algorithms fur Construction ~nd Analysis of
System, s, LNCS 2031, pages 268 283. Springer-Verlag, 2001.

[5] T. Ball , A. Podelski , and S. K. l~ajamani . Oil the re la t ive com-
p le teness of ab s t r ac t i on ref inement . Technica l l~eport MSI~-TI~-
2001-106, Microsot t Igesearch, 2001.

[6] T. Bal l and S. K. t t a j a m a n i . Bebop: A symbol ic model checker
tbr Boolean programs. In S P I N 00: S P I N Workshop, LNCS
1885, pages 113 130. Springer-Verlag, 2000.

[7] T. Ball and S. K. Ru,ju, nlu, ni. AutomaticMly validating temporM
sM'ety properties of interfaces. In SPIN 01: 5'PIN Workshop,
LNCS 20557, pages 103 122. Springer-Verlag, 2001.

[8] T. Bal l and S. K. Ru.ju.Inani. Bebop: A pa th -sens i t ive in terpro-
cedura l da taf low engine. In PAb'TE 01: Workshop on Program
Anelysis fur b'@w~re 2bols ~nd ET~giT~eeriT~9, pages 97 103.
ACM, 2001.

[9] T. Bal l and S. K. R a j a m a n i . SLIC: A speci f ica t ion l anguage
tbr in terface checking. TechnicM Repor t MSR-TR-2001-21, Mi-
crosot% Research, 2001.

[10] R. Bryant . Graph-based a lgo r i thms tbr boo lean func t ion manip-
u la t ion . 1EEE 2}'ansactions on Cow,parers, C-35(8):677 691,
1986.

[11] J. Burch, 19. Clarke, K. McMil lan , D. Dill, and L. t iwang . Sym-
bolic model checking: 102° s t a t e s and beyond. Information and
Computation, 98(2):142 170, 1992.

[12] YV. I~. Bush, J. D. Pincus , and D. J. Sielaff. A s ta t i c ana lyze r
tbr f inding dynamic p r o g r a m m i n g errors, b'@ware-Prac~ice and
Experience, 30(7):775 802, June 2000.

[13] P. Cousot and I~. Cousot . A b s t r a c t i n t e rp re t a t ion : a unif ied
l a t t i ce mode l for the s ta t i c ana lys i s of p rograms by construc-
t ion or a p p r o x i m a t i o n of f ixpoints . In P O P L 77: Principles of
P r o g r ~ i n g Languages, pages 238 252. ACM, 1977.

[14] M. Das. Uni f ica t ion-based po in te r ana lys i s w i t h d i rec t iona l as-
s ignInents . In PLD1 00: P r o g r a ~ i n g Language Design and
Implementation, pages 35 46. ACM, 2000.

[15] S. Das and D. L. Dill. Successive a p p r o x i m a t i o n of a b s t r a c t t ra i l -
s i t ion re la t ions . In LJC'S 01: b 'y~pos iu~ on Logic i7~ C'on~puter
b'cieT~ce, 2001.

[16] D. L. Detlet%, K. I~. M. Leino, G. Nelson, and J. B. Saxe. l~x-
t ended s ta t i c checking. TechnicM Igeport l~esearch Igeport 159,
CoInpaq Sys tems Igesearch Center , December 1998.

[17] M. Dwyer, J. t ia tcl i ff , I~. Joehanes , S. Laubach , C. Pasa reanu ,
l~obby, VV. Visser, and It. Zheng. Too l - suppor ted p rog ram ab-
s t r ac t ion for f in i te -s ta te ver i f icat ion. In 1USE 01: b'@w~re En-
gineering, pages 177 187, 2001.

[18] D. l~ngler, B. Chelf, A. Chou, and S. t i a l l em. Checking sys t em
rules using system-specif ic , p r o g r a m m e r - w r i t t e n compi le r exten-
sions. In Oh'D1 00: (gpera~ing b'ys~e~ DesigT~ aT~d l~p~e~en-
~gion . Usenix Associa t ion , 2000.

[19] D. l~vans. S ta t i c de t ec t ion of dynamic m e m o r y errors. In PLD1
'96, pages 44 53. ACM, May 1996.

[20] S. Graf and It. Sa;fdi. Cons t ruc t i on of a b s t r a c t s t a t e g raphs w i t h
PVS. In C'AV P7: Cow,purer Aided Verijic~ion, LNCS 1254,
pages 72 83. Springer-Verlag, 1997.

[21] T. A. t i enz inger , I~. Jha la , I~. M a j u m d a r , and G. Sutre. Lazy
abs t r ac t ion . In P O P L '02. ACM, J a n u a r y 2002.

[22] G. t Io l zmann . Logic ver i f icat ion of ANSI-C code wi th Spin.
In SP1N 00: SP1N Workshop, LNCS 1885, pages 131 147.
Springer- Verlag, 2000.

[23] I%. Kurshan . Co~pu~er-eided Verij ic~ion of Coordinating Pro-
cesses. P r i n c e t o n Univers i ty Press, 1994.

[24] L. Lampor t . P rov ing the correc tness of mul t ip rocess programs.
1EEE 2}'ansactions o n b'@ware Engineering, S19-3(2):125 143,
1977.

[25] G. Necula, S. McPeak, and VV. YVeinler. CCured : Type-sM:e
re t ro f i t t ing of legacy code. In P O P L '02. ACM, J a n u a r y 2002.

[26] T. l~eps, S. t torwi tz , and M. Sagiv. Precise i n t e rp rocedura l
da ta f low ana lys i s via g raph reachabi l i ty . In P O P L PS: Prin-
ciples of P r o g r ~ i ~ 9 L~gu~ges , pages 49 61. ACM, 1995.

[27] V. l~usu and 1~. S ingerman. Oil p rov ing safety p roper t i e s by in-
t e g r a t i n g s ta t i c analysis , t heo rem proving and abs t rac t ion . In
TAUAS PP: :lbo~s ~nd Algorithms for Uons~ruc~ion ~nd Anal-
ysis of System, s, LNCS 1579, pages 178 192. Springer-Verlag,
1999.

[28] It. Sa:{di and N. S h a n h m A b s t r a c t and model check while you
prove. In C'AV PP: C'o~pu~er-~ided Verijic~ion, LNCS 1633,
pages 443 454. Springer-Verlag, 1999.

[29] F. B. Schneider . Enforceable secur i ty policies. A C M :I~'ansac-
~ions on l n f o r ~ i o n ~nd 5'ys~e~ 5'ecuri~y, 3(1):30 50, Febru-
a ry 2000.

[30] M. Y. Vardi and P. YVolper. An a u t o m a t a theore t i c apporach to
a u t o m a t i c p rog ram verif icat ion. In L1US 86: Logic in C'o~puter
Scie~ce, pages 332 344. I191919 C o m p u t e r Socie ty Press, 1996.

3

