Dynamic Security Labels and Static Information Flow
Control

Lantian Zheng Andrew C. Myers
Computer Science Department
Cornell University, Ithaca, NY 14853

{z1t,andru}@cs.cornell.edu

Abstract

This paper presents a language in which information flow is securely controlled by a type system, yet
the security class of data can vary dynamically. Information flow policies provide the means to express
strong security requirements for data confidentiality and integrity. Recent work on security-typed pro-
gramming languages has shown that information flow can be analyzed statically, ensuring that programs
will respect the restrictions placed on data. However, real computing systems have security policies that
cannot be determined at the time of program analysis. For example, a file has associated access permis-
sions that cannot be known with certainty until it is opened. Although one security-typed programming
language has included support for dynamic security labels, there has been no demonstration that a gen-
eral mechanism for dynamic labels can securely control information flow. In this paper, we present an
expressive language-based mechanism for reasoning about dynamic security labels. The mechanism is
formally presented in a core language based on the typed lambda calculus; any well-typed program in
this language is secure because it satisfies noninterference.

1 Introduction

Information flow control protects information security by constraining how information is transmitted among
objects and users of various security classes. These security classes are explabséshasociated with

the information or its containers. Denning [8] showed how to use static analysis to ensure that programs
use information in accordance with its security class, and this approach has been instantiated in a number
of languages in which the type system implements a similar static analysis (e.g., [32, 15, 37, 26, 4, 28)).
These type systems are an attractive way to enforce security because they can be shown tom@mforce
interference[13], a strong, end-to-end security property. For example, when applied to confidentiality,
noninterference ensures that confidential information cannot be leaked by the program no matter how it is
transformed.

However, security cannot be enforced purely statically. In general, programs interact with an external
environment that cannot be predicted at compile time, so there must be a run-time mechanism that allows
security-critical decisions to be taken based on dynamic observations of this environment. For example, it
is important to be able to change security settings on files and database records, and these changes should
affect how the information from these sources can be used. A purely static mechanism cannot enforce this.

To securely control information flow when access rights can be changed and determined dynamically,
dynamiclabels [22] are needed that can be manipulated and checked at run time. Dynamic information
control mechanisms [33, 6, 11, 17, 29, 10] support dynamic labels and use run-time label tests to control
information flows. However, these dynamic mechanisms incur large run-time overhead and generally cannot
preventimplicit flowsarising from the control flow paths not taken at run time [7, 19]. Thus, it is desirable

to combine dynamic labels and static information flow control: making dynamic labels and run-time label
tests explicit in programs and using static program analysis to reason about their security properties.

JFlow [21] and its successor, Jif [24] are the only implemented security-typed languages supporting
dynamic labels. However, although the Jif type system is designed to control the new information channels
that dynamic labels create, it has not been proved to enforce secure information flow. Further, the dynamic
label mechanism in Jif has limitations that impair expressiveness and efficiency.

In this paper, we propose an expressive language-based mechanism for securely manipulating infor-
mation with dynamic security labels. The mechanism is formalized in a core language (based on
the typed lambda calculus) with first-class label values, dependent security types and run-time label tests.
We prove the correctness of this mechanism by showing that any well-typed program of the core language
satisfies noninterference, which intuitively means that confidential inputs cannot interfere with outputs ob-
servable to attackers. In this paper, attackers are assumegassiean the sense that they can compromise
data confidentiality only by observing program outputs. With this passive attack model, if a program satis-
fies noninterference, then attackers can learn nothing about confidential inputs of the program. This simple
form of noninterference is standard for security-typed languages, although dynamic labels introduce a subtle
complexity: whether an input is confidential may not be statically determinable.

Some previous MAC systems have supported dynamic security classes as part of a downgrading mech-
anism [30]. While downgrading is important, it is useful to treat it as a separate mechanism so that dynamic
manipulation of labels does not necessarily destroy noninterference.

This paper is a revised and expanded version of a paper presented at the second international Workshop
on Formal Aspects in Security and Trust [39]. Compared to that conference version, this paper includes
a complete proof that thapg.. type system enforces noninterference. Another improvement is that we
demonstrate the dynamic label mechanisms®f.. can be applied in practice by proposing a corresponding
extension to Jif.

The remainder of this paper is organized as follows. Section 2 presents some background on lattice
label models and security type systems. Section 3 introduces the core langtkageind uses sample
ADsec Programs to show some important applications of dynamic labels. Section 4 describes the type system
of Apse.. Section 5 proves that thepgs.. type system enforces noninterference. Section 6 interprets and
extends the dynamic label mechanism of Jif based on the ideass@f. Section 7 covers related work, and
Section 8 concludes.

2 Background

Static information flow analysis can be formalized as a security type system, in which security levels of
data are represented by security type annotations, and information flow control is performed through type
checking.

2.1 Security classes

We assume that security requirements for confidentiality or integrity are defined by assoseturgy
classeswith users and with the resources that programs access. These security classes forma aktice
write k C &’ to indicate that security clags is at least as restrictive as another security ckasin this
case it is safe to move information from security clage k', because restrictions on the use of the data are
preserved. To control data derived from sources with classeslk’, the least restrictive security class that
is at least as restrictive as bdthrand%’ is assigned. This is the least upper bound, or join, wriktenk’.

2.2 Labels

Type systems for confidentiality or integrity are concerned with tracking information flows in programs.
Types are extended with securlbelsthat denote security classes. A laBelppearing in a program may

be simply a constant security claksor a more complex expression that denotes a security class. The

notation/; C ¢, means that, denotes a security class that is at least as restrictive as that dendted by
Because a given security class may be denoted by different labels, the ré&lagjenerates a lattice

of equivalence classas labels withL as thejoin (least upper bound) operator. Two labéjsand/, are

equivalent, writter/; ~ fo, if £ C /5 andly C ¢1. The join of two labels{; LI /5, denotes the security

class that is the join of the security classes thatnd/,; denote. For example, if variabkehas label, and

variabley has labely, then the sumx+y is given the label, LI /.

2.3 Security type systems for information flow

Security type systems can be used to enforce security information flows statically. Information flows in
programs may be explicit flows such as assignments, or implicit flows arising from the control flow of the
program. Consider an assignment statemerty, which contains an information flow fromto x. Then
the typing rule for the assignment statement requireséthat /., which means the security level gfis
lower than the security level of, guaranteeing the information flow fropto x is secure.

One advantage of static analysis is the ability to control implicit flows in all possible execution paths.
Consider a simple conditional:

if s<=0then x:=0 else y:=0

Although there is no direct assignment framo x or y, this expression may cause implicit flows fram

into x andy, since the values aof andy depend ors after evaluating the expression. A standard technique
for controlling implicit flows is to introduce @rogram-counter labeJ7], written pc, which indicates the
security level of the information that can be learned by knowing the control flow path taken thus far. In
this example, the branch taken depends on the valge &b thepc in the then andelse clauses will be
joined with /g, the label ofs. The type system ensures that any effect of expressiwas a label at least

as restrictive as itpc. In other words, an expressiercannot generate any effects observable to users who
should not know the current program counter. In this example, the assignmewiltdoe permitted only if

pc C 4y, which ensureg; C /. Similarly, /s C /, is also ensured by the static analysis.

Dynamic mechanisms such as the Data Mark Machine [11] are able to control implicit flows by tracking
the program counter labgt at run time and check the constramt C /, or pc C ¢, depending on which
branch is taken. However, the dynamic mechanisms do not check the label constraints required by the
control flow path not taken at run time. For example, suppose the vakiésqgfositive, ancpc T ¢y, holds
while pc C /¢, does not hold. Then attackers can infer thiag positive from the absence of run-time label
test failures.

2.4 Noninterference

In general, the goal of static information flow control is to enforce noninterference, which intuitively means
that confidential inputs cannot interfere with outputs observable to attackers. Formally, the security level of
attackers is represented by a lalbel Then any input with a labelf such thatd Z L is confidential, and
any output with a label less than or equalltés observable to attackers.

Suppose expressiahis a program. Then the inputs efare the values of free variables ef and
the outputs are simply the result of evaluating More formally, the inputs ot are represented by an
input mapA, mapping free variables efto values, and the notatiariA] denotes the expression obtained
by substituting every free variable of e with A(z). Programe satisfies the noninterference property if
changing the confidential inputs efloes not affect the outputs observable to attackers, that is, the following
statement holds:

For two arbitrary labeld. and H and any two input mapd; and As of e satisfying

Base Labels kK e L
Variables z,y,f € V
Locations m € M
Labels /¢ ,pc == k| x| l1Ul
Constraints C = (L Cl,C|e
Base Types G == int | label | unit | 7ref | (z:71) ﬂ>7—2 | (z:71)[C] * T2
Security Types T = 0
Values v o= z|n |kl (O] m | Xe:m)[C;pc.e | (x=v1[C], va:T)
Expressions e = v | lUly |erex|le]| eg:=ey | ref"e | if {1 C ¢y then e; else e

| let(z,y)=e; ines

Figure 1: Syntax o pge.

e LIZH,
e the label ofe is less than or equal tb, and

e A =~y As, which means that for any free variahleof e, if the label ofz is not higher
than or equal td1, thenA; (z) = As(x),

if e[A;] ande[A;] are evaluated to; andvy, thenv; = vs.

The noninterference property discussed heteriination insensitivg28] because|A;| ande[A;] are
required to generate the same result only if both evaluations terminate. In this work, we do not attempt
to deal with termination and timing channels. Control of these channels is largely an orthogonal problem.
In average, termination channels can leak at most one bit per run, so they have often been considered
acceptable (e.g., [8, 32]). Some recent work [1, 27, 38] partially addresses the control of timing channels.

3 The xps.. language

The core languag@ ps.. is a security-typed lambda calculus that supports first-class dynamic labels. In
ADsee, labels are terms that can be manipulated and checked at run time. Furthermore, label terms can be
used as statically analyzed type annotations. Syntactic restrictions are imposed on label terms to increase
the practicality of type checking, following the approach used by Xi and PfenningioC) [36].

3.1 Syntax

The syntax of\ pg.. is given in Figure 1. We use the narhéo range over a lattice of label valuégmore
precisely, a join semi-lattice with bottom elemehn}, z, y to range over variable nam&s andm to range
over a space of memory addresges

To make the lattice explicit, we writ€ = k; C ko to mean thak; is at least as restrictive &s in
L,andL = k = k1 U ke to meank is the join ofk; andky in £. The bottom element of is L. Any
non-trivial label lattice contains at least two poiiteand H whereH [Z L. Intuitively, the labell. describes
what information is observable Hpw-security usersvho are to be prevented from seeing confidential
information. ThusJow-securitydata has a label bounded abovelyhigh-securitydata has a label (such
asH) not bounded by_.

In Apsec, @ label can be either a label valkga variablex, or the join of two other labelé; LI /5. For
example,L, z, and L U x are all valid labels, and, LI = can be interpreted as a security policy that is as
restrictive as bothl andx. The security type- = 3, is the base typg annotated with label. The base
types include integers, unit, labels, references, functions and products.

The function type(x : 1) Gike, T9 iS a dependent type sineg, 72, C and pc may mentionz. The
componentC' is a set oflabel constraintseach with the fornY; C ¢5; they must be satisfied when the
function is invoked. Thepc component is a lower bound on the memory effects of the function, and an
upper bound on thec label of the caller. Consequently, a function is not able to leak information about
where it is called. Without the annotatio@sandpc, this kind of type is sometimes written Hs: : 71 .75 [20].

The product typéx: 11)[C] 72 is also a dependent type in the sense that occurrenaesasf appear in
71, T2 @andC'. The component’ is a set of label constraints that any value of the product type must satisfy.
If 7 does not contain: andC' is empty, the type may be written as the more famitiak . Without the
annotationC, this kind of type is sometimes writtéfx: : 7.7 [20].

In Apsec, values include variables, integersn, constant label&, the unit value(), typed memory
locationsm”, functions\(z:7)[C'; pc]. e and pairdx =v1[C], va:7). A function\(z:7)[C'; pc]. e has one
argumentr with type 7, and the components andpc have the same meanings as those in function types.
For simplicity, C can be omitted if it is empty, and the component can be omitteddfhas no side effects.

A pair (x=v1[C], vo:7) contains two values; andvs. The second elemen has typer and may mention
the first element; by the name:. The component’ is a set of label constraints that the first element of the
pair must satisfy. For example, supp@seontains the constraint = L (which impliesv, is a label value),
thenv; C L must be true since inside the pair the value: @ v-.

Expressions include valuesvariablest, the join of two labeld; LI {5, applications; es, dereferences
le, assignments; := e,, referencesef”e, label-test expressions /1 C /5 then e else e, and product
destructordet (x,y) =e€; in es.

The label-test expressiaif ¢; C /5 then e; else es iS used to examine labels. At run time, if the
value of/, is a constant label at least as restrictive as the valdg,dhene; is evaluated; otherwisey is
evaluated. Consequently, the constrdint ¢, can be assumed when type-checking

The product destructdret (z, y) =e; in ey unpacks the result ef;, which is a pair, substitutes the first
element forz and the second fay, and then evaluates.

From the computational standpointys.. is fairly expressive, because it supports both first-class func-
tions and state, which together are sufficient to encode recursive functions. For example, sufjpase
7)[C'; pc]. e is a recursive functionf{ may appear ire) with type 7;. Then we can encode the recursive
function using the following\ ps.. code:

Az:7)[C; pe]. (My:unit)[C; pel. Im™) (m™ = AN(x:7)[C; pc]. e[!lm™ / 1))
wheree[!m/ f] is the expression obtained by substitutlng’s for f in e.

3.2 Operational Semantics

The small-step operational semantics\gfs.. is given in Figure 2. LetM represent a memory that is a
finite map from typed locations to closed values, anddetM/) be a machine configuration. Then a small
evaluation step is a transition frofa, M) to another configuratiote’, M), written (e, M) — (e’, M').

It is necessary to restrict the form ¢f, M) to avoid using undefined memory locations. led(e)
represent the set of memory locations appearing. i memory M is well-formed if every address:
appears at most once idom(M), and for anym™ in dom(M), loc(M(m™)) C dom(M), whereM (m")
denotes the value of location™ in M. The configuratione, M) is well-formed if M is well-formed,
loc(e) C dom(M), ande contains no free variables. By induction on the derivatiofeofM) — (e’, M"),
we can prove that ife, M) is well-formed, then(e’, M) is also well-formed.

The notatione[v/z] indicates capture-avoiding substitution of valuéor variablez in expressiore.
Unlike in the typed lambda calculusgiy /x] may generate a syntactically ill-formed expression #éppears
in type annotations inside andwv is not a label. However, this is not a problem because the type system

LEk=k Uk

LE1] Uy Uk, M) — (k, M)

[E2] (Im™, M) — (M(m"), M)

B3 m = newloc(M)

[E3] (ref™v, M) — (m™, M[m™ +— v])

[E4] (m™ = v, M) — ((), M[m" — v])

[E5] (A (z:7)[C;pc).€e) v, M)y — (e[v/x], M)
LEk Cko

[E6] (if k1 C ko then e; else ey, M) —— (ey, M)

[E7] L=k Lk

(if k1 C ko then e; else ey, M) —— (eq, M)
[E8] (let (z,y)=(x=v1[C], va:T) ine, M) — (e[va/y][v1/x], M)

(e, M) —> (¢!, M')

) (Blel, M) — (BT, 31
Bl w= Helol] | Hmelom[] | [] ret™[] | HUL | kU]
| if []C ¢o then e else ey | if ki C [] then e else ey | let (x,y)=[]ine

Figure 2: Small-step operational semantics\ gf..

of Apsec guarantees that a well-typed expression can only be evaluated to another well-typed and thus well-
formed expression.

The notationV/ [m” — v] denotes the memory obtained by assignirtg m™ in M.

The evaluation rules are standard. In rule (E3), the notaitfifiess-space(M) represents the set
of location names i/, that is,{m | 37 s.t. m" € dom(M)}; the allocatornewloc(M) deterministi-
cally generates a fresh memory locationsuch thatm ¢ address-space(M), and newloc(M') = m if
address-space(M') = address-space(M). In rule (E8),v2 may mentionz, so substituting; for y in e is
performed before substituting for . For simplicity, the variable name in the product value matches
that no variable renaming (alpha conversion) is needed when substitytamglv, for andy in e. In rule
(E9), E represents an evaluation context, a term with a single hole (denofddlipyredex position, and the
syntax of E specifies the evaluation order.

3.3 Examples

As discussed in Section 1, dynamic labels are vital for precisely controlling information flows between
security-typed programs and the external environment. A practical program often needs to access files or
communicate through networks. These activities can be viewed as communication thrdi@lclaannel

with a corresponding label consistent with the security policy of the entity (such as a file or network socket)
represented by the channel. Because the security policy of an external entity may be discovered and even
changed at run time, the precise label of an I/O channel is dynamic and operations on a channel cannot be
checked at compile time.

3.3.1 Run-time access control

Implementing run-time access control is one of the most important applications of dynamic label mecha-
nisms. Suppose there exists a file that stores one integer, and the access control policy of the file is unknown
at compile time. In\pg.., the file can be encoded as a reference of typelabel,) * (int, ref),,

wherez is a dynamic label consistent with the access control policy of the file, and the reference component
of type (int, ref), stores the contents of the file and can be viewed as modeling the physical address of
the file on a storage device. Thus storing an integer of iypg; in the file is equivalent to assigning the
integer to the memory reference component, which requiresctisaat least as high af. Since the value

of x is not known at compile time, the conditidih = = can only be checked at run time, using a label-test
expression. The following function stores a high-security integarthe file w:

Mw:((z:1label)) * (int, ref)), ref,). A\(z:inty)[H].
let (z,y)=!winif H C z then y := zelse ()

Note that thepc label of the function isH because the function body contains a memory effect of label
whenH C z.

It is also important to be able to change file permissions at run time. The following code changes the
access control policy of the file to labelz. However, the original contents af need to be wiped out to
prevent them from being implicitly declassified, which provides stronger security assurance than an ordinary
file system. This is done by replacing the old memory reference component in the valueitsf a new
memory reference storing the initial valQe

Mw:((x:1label,)« int, ref)| ref). A\(z:label)[L].
(My:int, ref |)[L].w := (v=2, y:int, ref,))refi™t=(

3.3.2 Multilevel communication channels

Information flows inside a program are controlled by static type checking. When information is exported
outside a program through an 1/0O channel, the receiver might want to know the exact label of the informa-
tion, which calls formultilevel communication channgd&] unambiguously pairing the information sent or
received with its corresponding security label. Supporting multilevel channels is one of the basic require-
ments for a MAC system [9].
In Apsec, @ multilevel channel can be encoded by a memory reference oftypeabel,)*int,) | ref,
which stores a pair composed of an integer value and its label. The confidentiality of the integer component
is protected by the label component, since extracting the integer component from such a pair requires testing
the label component:
Az:((x:1label,) * int,),). let (z,y) ==z in
if z C L then mi®*L := yelse ()
In the above example, the constraint_ L must be satisfied in order to store the integer component in
mi®tL, Since the readability of the integer component depends on the valyéetfing = recursively label
itself ensures that all the authorized readers of the integer component canaedtretrieve the integer
value.
Sending an integer through a multilevel channel is implemented by pairing the integer and its label and
storing the pair in the reference representing the channel:

Az:(((x:1label,)) * int,) | ref)). A(w:1labely).
AMy:inty)[L]. 2z := (r=w, y:int,)

Like other 1/0 channels, a multilevel channel may have a label that is an upper bound of the security levels
of the information that can be sent through the channel. Product label constraints can be used to specify the

7

label of a multilevel channel. For example, a bounded multilevel channel can be represented by a memory
reference with typé(z:1label,)[z C /]xint,), ref, wherel is the label of the channel, and the constraint

x C /£ guarantees any information stored in the reference has a security label at most asthigerating
information through a bounded multilevel channel often needs a run-time check as in the following code:

AMz:(((z:1abely))[r C £] * int,) | ref)). A(w:labely,).
A(y:inty)[L].if w C £ then z:= (z=w, y:int,) else ()

The ability to recursively use a variable to construct the label of its own type provides a useful kind of
polymorphism, which this example demonstrates. Without recursive labels, the type of a multilevel channel
cannot be constructed so simply, because selecting a label for the label compbeenmes problematic.

Any constant label that is chosen may be inappropriate; for example, if the label has the thbalit may
be impossible to compute a suitable label to supply.a¬her possibility is to provide yet another label
that is to function as the label af but this merely pushes the problem back by one level. Givitite type
label, is a neat way to tie off this sequence.

4 Type system

This section describes the type system gf.., which is designed to check the label constraints that enforce
secure information flow.

4.1 Label constraints

Because of dynamic labels, it is not always possible to decide whether the relatiénghigs holds at
compile time; therefore, the label-test expressiof) Must be used to query the relationship. However, this
dynamic query may create new information flows; the languagg. and its type system are designed to
statically control these new information flows.

Although labels are first-class valuesing.., label terms have a restricted syntactic form so that any
label term can be used as a type annotation. Therefore, constraints on label terms are also type-level infor-
mation that can be used by the type checker.

Furthermore, in\pg.. label terms are purely functional: they have no side effects and evaluate to the
same value in the same context. As a result, any label constraint of théfarnd, that is known to hold in
a typing context can be used for type checking in that context. For example, consider the following code:

A(z:1label)). AN(y:(inty ref)). A(z:inty)[H].
if H C x then y := zelse ()

According to the semantics of the label-test expression, the assignmentz will be executed only if
H C x holds. Thus, the constraifif C « can be used to decide whether= z is secure. In this example,
any information stored in is only accessible to users with security level at least as high 8s it is secure
to storez in y becauser is at least as high a§.

In general, for each expressienthe type checker keeps track of the set of constrdirtisat are known
to be satisfied wheais executed, and usésin type-checking:.

4.2 Subtyping

The subtyping relationship between security types plays an important role in enforcing information flow
security. Given two security types = (31, andm = [,,, supposer; is a subtype ofr, written as
71 < 79. Then any data of type, can be treated as data of type Thus, data with label; may be treated
as data with labels, which required; C /5.

The type system keeps track of the set of label constraints that can be used to prove relabeling relation-
ships between labels. Lét - ¢; T ¢, denote that; C /¢, can be inferred from the set of constraints

8

£':klgk'2 LTl el
[c1] Ctky C ke (2] CkHl Tl
€3 CrHeCT [C4 CFL1C¢

[C5] CrHeTeur

Cl—flgfg CFEZEKS

[Co]

CHU; CYs
C|—€1§€3 Cl_fzggd
[€7] CHU UL Tl
Figure 3: Relabeling rules
[SI] Ctkn<mn CkFn<n
CFrmref <mref
Ctkrn<n Ck7<T}
Ckpcey,Cpey C,CFC
[SZ] . Ciipe; . Caipey
Ch(z:n) — 1 <(z:mn) —> 74
(53] Ctknn<mn Ck7<71, CCiFCy
Ch (x:m)[C1] 1 < (2:12)[Ca] * 75
CEFB < CHUCY
[54] B1 < B2 1 E 4

Cr (B1)e < (B2)e,
Figure 4: Subtyping rules

C. The inference rules are shown in Figure 3; they are standard and consistent with the lattice properties
of labels. Rule (C2) shows that all the constraint€imre assumed to be true. The constraint(3ehay
contain constraints that are inconsistent with the latficeuch asi{ C L. Inconsistent constraint sets are
harmless because they always indicate dead code, such as expees$sionf H C L then ej else ey”.

Since the subtyping relationship depends on the relabeling relationship, the subtyping context also needs
to include theC' component. The inference rules for provig- 71 < 7 are the rules shown in Figure 4
plus the standard reflexivity and transitivity rules.

Rules (S1)—(S3) are about subtyping on base types. These rules demonstrate the expected covariance or

contravariance. Irhpg.., function types contain two additional componeptsand C, both of which are

. . Ci; . (&
contravariant. Suppose the function type= (z: 1) ———% 7/ is a subtype of’ = (z: 75) ——2 75,

Then wherever functions with type can be called, functions with typecan also be called. This implies
two necessary premises. First, wheravgis satisfied(’; is also satisfied. Sina€ is satisfied, this premise
is written C, Cs F C7, meaning that for any constraifit C /¢, in C1, we can deriveC, Cs F £ C /5.
Second, the premisec, T pc; is needed because tipe of a function type is an upper bound on the
where the function is applied.

In rules (S2) and (S3), variableis bound in the function and product types. For simplicity, we assume
thatx does not appear i@/, sincea-conversion can always be used to renatrte another fresh variable.

[INT] I';C; pckn:inty

[LABEL] I';C; pck k : label |
I';C5 pek 4y label,; I';C5 pck 4y labely,
[JOIN]
I';C5 pek 4y I_Iﬁgzlabelylueé
I';Cspecke:r CkpcC T
[REF] =
I';C; pcrefTe: (rref),
Dz:7";C";pd Fe:T
AB 7. C/
[ABS] [;C;pck Az:7)[C";pc].e: ((z:1) Sl n
I';C; pecker: ((x:labely) lind, T)e
F;C; pc = EQ . labelel[gz/z]
C+ pcUl C pcla/x] CF C't/x]
x € FV(T)UFV({')UFV(C')UFV (pc)
[L-APP]
I';C; peter by Tl /z] UL
I';C; pek vy :7ifvr/z] Te:m b me
;C; pet vavi /] : To[v1 /2] C+ C'v /7]
[PROD] n n
;05 pet (x=v1[C"], va:m2) : ((w:71)[C] % 72) 1
[';C5 pek £ : 1abely i€ {1,2}
['; ColiEly; pcUliUbyber:T
[;CipcUliubybes: T
[IF]

I';C; pck if 41 C /3 then e else ex: T LA,

[UNIT] I';C; pet () :unit
Loc FV(r)=10
[| T;C; pckEm™ : (Tref) L
: T
VAR _xzrel
[] I'Cspekao:r
I';C; pcke: (T ref),
[DEREF] I';CspeHle: Tl
I';C; pcker: (7 ref),
ASSIGN I';Cipeckex:m ChpcUlE T
[] I';C; pckel :=ep :unit
[;C;pcker: ((z:7) RERLN T)e
I';C;pckes:7
Ct pcll C pc crc
¢ FV(T)UFV(r')UFV(C')UFV (pc
[APP] ¢ FV(r) () () (pc)
I';Cs5pckerex:TUL
[;C;peker: ((z:m)[C] % T2)e
I,z:mUly:mUl; C,C"; pcles: T
NPACK
[u] T';C; pct let (z,y)=e1 ines : 7
I';Cipcke: T Crr<7
[SUB]

I';C;pcke:1

Figure 5: Typing rules for the ps.. language

This assumption also applies to the typing rules.

Rule (S4) is used to determine the subtyping on security types. The préhisg; < (3, is natural.
The other premis€' - ¢; C /5 guarantees that coercing data fremto 7 does not violate information
flow policies.

4.3 Typing

The type system ohpgs.. prevents illegal information flows and guarantees that any well-typed program
satisfies the noninterference property discussed in Section 2. The typing rules are shown in Figure 5. The
notation label(5;) = ¢ is used to obtain the label of a type, and the notatibris ~ andr C ¢ are
abbreviations fof C label(7) andlabel(7) C ¢, respectively.

The typing context includes gpe assignmerit, a set of constraint§’ and the program-counter label
pc. I is a finiteorderedlist of = : 7 pairs in the order that they came into scope. For a givehere is at
most one pair:7inT.

A variable appearing in a type must be a label variable. Therefore, artigoeell-formed with respect
to type assignmerit, writtenI" - 7, if I maps all the variables in to label types. The definition of well-
formed labels F /) is the same. Considétr = z1:7,...,x,:7,. FOrany0 < i < n, the typer; may
only mention label variables that are already in scapghroughz;. Thereforel" is well-formed if for any

10

0 < i < n, 7 is well-formed with respect ta; : 71,...,x; : 7;. For example, & : labely,y : int,” iS
well-formed, but % : int,, x:1abel” is not. A constraint/; C /5 is well-formed with respect td' if both
£1 and/, are well-formed with respect 0. A typing context T'; C'; pc” is well-formed if T" is well-formed,
andpc and all the constraints i@ are well-formed with respect .

The typing assertiolt ; C'; pc F e : 7 means that with the type assignmé&htcurrent program-counter
label aspc, and the set of constrain€s satisfied, expressianhas typer. The assertiol’; C'; pck- e : Tis
well-formed if " ; C'; pc is well-formed, and™ F 7.

Rules (INT), (UNIT), (LABEL) and (LOC) are used to check values. Valugs types, if v has base
type 8. Rule (LOC) requires typed locatian™ contain no label variables so that” remains a constant
during evaluation. This is enforced by the premiS€(r) = (), whereFV (7) denotes the set of free
variables appearing in.

Rule (VAR) is standard: variablehas typd’(z). Rule (JOIN) checks the join of two labels and assigns
a result label that is the join of the labels of the operands.

Rule (REF) checks memory allocation operations. Ifgb&abel is high, the generated memory location
must not be observable to low-security users, which is guaranteed by the p@ntispc = 7. Rule
(DEREF) checks dereference expressions. Since some information about a reference can be learned by
knowing its contents, the result of dereferencing a reference with (typsf), has typer U ¢, where
TUL= ﬁg/u[if 7is ﬁg/.

Rule (ASSIGN) checks memory update. As in rule (REF), if the updated memory location has type
(T ref)y, thenC + pc C 7 is required to prevent illegal implicit flows. In addition, the premise-
pc U ¢ C 7 implies another conditiol + ¢ C 7 that is required to protect the confidentiality of the
reference that is assigned to. Consider the following code that allows low-security users to learn whether
x C L by observing which ofny andms is updated t@:

Az :labely)[L]. ((if x C L then mi™* else my"*") :=0)

The code is not well-typed because the conditibk ¢ T 7 does not hold for the assignment expression.

Rule (ABS) checks function values. The body is checked with the constraiat setd the program-
counter labepc’, so the function can only be called at places whétés satisfied and thec label is not
more restrictive thapc'.

Rule (L-APP) is used to check applications of dependent functions. Expressiuas a dependent
function type((z : labely) <, 7)¢, Wherex does appear i, C’, pc’ or 7. As a result, rule (L-
APP) needs to usé[ly/xz]|, C'[l3/x], pc'[l2/x] andT[l2/x], which are well-formed sincé; is a label.

That also explains why;, with its dependent function type, cannot be applied to an arbitrary expression
eo: substitutinge, for z in ¢/, C’, pd and T may generate ill-formed labels or types, and it is generally
unacceptable for the type checker to evalugtéo valuev, and substitute, for z, which would make
type-checking undecidable. The expressivenessgf. is not substantially affected by the restriction that

a dependent function can only be applied to label terms, because the function can be applied to a variable
that receives the result of an arbitrary expression. For example, in the following code, the apptication
indirectly appliese; to es:

(M(z:1labely).if x C L then ejz else ())es

This works as long as the function enclosing: is not dependent.

In rule (L-APP), the label ot/s is at least as restrictive &s preventing the result of; from being
leaked. The premis€ + C’[¢3 /x| guarantees that’[¢,/x] are satisfied when the function is invoked. The
premiseC' pc ¢ C pc[¢2/x] ensures that the invocation cannot leak the program counter or the function
itself through the memory effects of the function.

Rule (APP) applies when does not appear i6”, pc’ or . In this case, the type ef; is just a normal
function type, s@; can be applied to arbitrary terms.

11

Rule (PROD) is used to check product values. To cheglthe occurrences af in v2 andr, are both
replaced by, sincex is not in the domain of’. If v; is not a label, therr cannot appear im,. Thus,
To[v1/x] is always well-formed no matter whether is a label or not. Similarly, the occurrenceszoin 7
andC’ are also replaced by, whenv; andC’ are checked.

Rule (UNPACK) checks product destructors straightforwardly. After unpacking the product value, those
product label constraints i@’ are in scope and used for checking

Rule (IF) checks label-test expressions. The constfgint ¢, is added into the typing context when
checking the first branch,. When checking the branches, the program-counter label subsumes the labels
of £, and/s to protect them from implicit flows. The resulting type contafthsnd?/, because the result is
influenced by the values @f and/s.

Rule (SUB) is the standard subsumption ruler I§ a subtype of’ with the constraints i satisfied,
then any expression of typealso has type’.

This type system satisfies the subject reduction property and the progress property, as stated in the
following two theorems. Theorem 4.1 is an instantiation of Theorem 5.1, which is proved in Section 5.

Definition 4.1 (Well-typed memory). A memory M is well-typed if for any memory locatiom™ in M,
FM(mT):T.

Theorem 4.1 (Subject reduction). Supposepc + e : 7, and M is a well-typed memory. Ife, M) —
(e, M"y, thenM’ is well-typed, angpc F €’ : 7.

Theorem 4.2 (Progress)If pct e : 7, andFV (e) = (), andM is a well-typed memory such thét, M) is
a well-formed configuration, then eithers a value or there exists and M’ such thate, M) — (¢/, M)
andFV (¢/) = 0.

Proof. By induction on the derivation gc - e : 7. The base cases are cases (INT), (UNIT), (LABEL),
(LOC), (ABS), (PROD), in whicte is a value.

e Case (JOIN). In this case,is ¢; Ll £5. If ¢1 is not a value, thef¢y, M) — (¢}, M) by induction,
and(e, M) — (¢} LU ¢5, M) by rule (E9). If¢; is a value, ands is not a value, there, M) —
(€1 U, M) by the same argument. Otherwige.and/, are both values, thefe, M) — (k, M)
by rule (E1), wherd: = ¢1 LI /5.

e Case (VAR). Sinc&V (e) = 0, this case cannot occur.

e Case (REF)e is ref” e;. If e; is not a value, there;, M) —— (e}, M’) by induction, and
(ref™ ey, M) — (refT €}, M'). If e; is a valuev, then(ref” e;, M) — (m”, M[m” — v]) by
rule (E3).

e Case (DEREF). By induction and rule (E2).
e Case (ASSIGN). By induction and rule (E4).

e Cases (L-APP) and (APPR)is ejes. If 1 Orey is not a value, thee, M) — (e/, M’) by induction
and (E9). Otherwises; is A\(z:7)[C'; pc]. €], andes is v. By rule (E5),(e, M) — (€} [v/x], M).
SinceFV (e}) = FV(e1) U{z} = {z}, we haveFV (¢} [v/z]) = 0.

e Case (UNPACK). By induction and rule (E8).
e Case (IF). By induction and rules (E6) and (E7).
e Case (SUB). By induction.

12

5 Noninterference

This section proves that any well-typed program jix.. satisfies the noninterference property as discussed
in Section 2. Let—"* denote the transitive closure of the- relationship. The following definitions and
theorem formalize the claim that the type system gf.. enforces noninterference. For simplicity, we only
consider that results are integers because they can be compared outside the cantext of

Definition 5.1 (Well-typed input). An input mapA is well-typed with respect td, writtenT" - A, if for
anyz in dom(I"), we have- A(x) : T'(x)[A], whereI'(x)[A] represents the type obtained by substituting
every free variablg in I'(z) with A(y).

Definition 5.2 (Input low-equivalence). Two input mapsA; and A, are equivalent with respect toand
label H, written asI" - A; ~g Ao, if I' F Ay, Ao, and for anyz in dom(I"), H £ I'(x) implies A;(x) =
Ag(x).

Noninterference Theorem. Supposel. IZ H, andIl' - ¢ : inty. Given two input mapsi; and As such
thatl' - Ay ~pg As, if (e[A;], M) —* (v;, M]) fori € {1, 2}, thenv; = vs.

To prove this noninterference theorem, we adapt the elegant proof technique developed by Pottier and
Simonet for an ML-like security-typed language [26]. Suppose expressian only one free variable To
show that noninterference holds, it is necessary to reason about the executions of two relateddefms:
ande[vs/x]. We extend\ pg.. with a bracket construde; | es) that represents alternative expressions that
might arise during the evaluation of two programs that differs initially onlyjirandvs. Thene[v; /x|
ande[vs/x] can be incorporated into a single teefiw; | v2)/z] in the extended languagé,.., providing
a syntactic way to reason about two executions. We can show thah pyg terms only differ at the
confidential part if the two terms can be encoded by a well-typggd,. term. Therefore, proving the
noninterference theorem afps.. can be reduced to proving the subject reduction theorent,gf.. The
major extension to Pottier's proof technique is that the bracket construct must also be applied to labels.
Because types may contain bracketed labels, the projection operation also applies to typing environments.
The rest of this section details the syntax and semantic extensiorjsf and proves the key subject
reduction theorem oi%,sec and the noninterference theoremgfs,..

5.1 Syntax extensions
The)\%sec language extendsps.. With the bracket constructs and a new valsed that can have any type:

¢ o= o] (00
n= L } (v|wv) | void

(efe)

where the ellipses represent the terms also belongingte.. The bracket constructs cannot be nested,
so the subterms of a bracket construct mush pe.. terms orvoid. A \%,,.. memory encodes tWapge.
memories, which may have distinct domains. The bindings of the fafm— (v | void) andm™ —
(void | v) represent situations whene” is bound within only one of the twapg.. memories.

Given a/\2DSec expressiore, let |e]; and |e|, represent the two\ pg.. terms thate encodes. The
projection functions satisfy(e; |e2) |; = e; and are homomorphisms on other expression forms. In addition,
(e1 | e2)[v/x], the capture-free substitution offor x in (e; | e2), must use the corresponding projection of
v in each branchfe; | e2)[v/z] = (e1[|v]1/x] | e2]|v]2/2]).

In)\%Sec, labels can be bracket constructs, and types may contain bracketed labels. Thus, the projection
operation can be applied to labels, types, type assignments, and label constraints. Similarly, the projection
functions are homomorphisms on these typing constructs. For exapipley, | f)]1 = inty, and |z :

oy =x: 7Ly T

e u=

13

The following relabeling rule is added to reason about relabeling relationship between bracketed labels:

|CliF [41]1 E 21 |Cla b [41]2 C [l2]2
CkH¥V1C Yy

5.2 Operational semantics

Since a\?,,,. term effectively encodes twps.. terms, the evaluation of &2, . term can be projected

into two A pse. evaluations. An evaluation step of a bracket expresgipfes) is an evaluation step of either

ey Or es. ande; Or e can only access the corresponding projection of the memory. Thus, the configuration
of A3, has an index € {e, 1,2} that indicates whether the term to be evaluated is a subterm of a bracket
expression, and if so which branch of a bracket the term belongs to. For example, the configaration
means that belongs to the first branch of a bracket, andan only access the first projection bf. We

write “(e, M)" for “ (e, M)s", which means: does not belong to any bracket.

The operational semantics af,... is shown in Figure 6. It is based on the semantics\ .. and
contains some new evaluation rules (E10-E14) for manipulating bracket constructs. Rules (E2)—(E4) are
modified to access the memory projection corresponding to indéhe rest of the rules in Figure 2 are
adapted to\3,,,. by indexing each configuration with The following two lemmas state that the operational
semantics oixg%c satisfies (A1) and (A2), and is adequate to encode the execution of fwg terms.

Lemma 5.1 (Soundness)If (e, M) — (¢/, M'), then(|e]|;, | M |;) —* (|€];, | M'];) fori e {1,2}.
Proof. By inspection of the evaluation rules. O

Lemma 5.2 (Completeness)If (|e];, [M];) —* (v;, M]) for i € {1,2}, then there exists a configura-
tion (v, M’y such thate, M) —* (v, M').

Proof. First, (e, M) cannot admit an infinite evaluation sequence. Rules (E11)-(E16) can only be applied
for finite times because each of these rules moves some pair constructor strictly closer to the term’s root.
These rules are the only rules that leave both projections of a configuration unchanged. Therefore, by
Lemma 5.1, an infinite evaluation sequence(@f M) implies that for some < {1,2}, (|e];, |M];)
admits an infinite evaluation sequence, which contradiets, | M |;) —* (v;, M/), since the operational
semantics of\ pg,. is deterministic.

By induction on the structure af, we can prove that ife, M) is stuck, then(|e];, | M |;) for some
i € {1,2} is also stuck. Thereforée, M) cannot be stuck, and then it must terminate normally.

O

5.3 Typing and subject reduction

The type system OA%SSC includes all the typing rules in Figure 5 and has two additional rules, one for
typing void, the other for typing bracket constructs.

[VOID] I';C; pckvoid: T

ITJ1;1Claslpd JiFer s [T
[TJ2;[ClaslpcJa ezt [T]2
HupcCpd HCT

BRACKET
[] [;C5pek(er|e): T

Before proving the\?,. . type system satisfies the subject reduction property, we first prove some lem-
mas about projection and substitution.

14

[E2) (Im7, M); — (read; M(mT), M);

m = newloc(M)

[E3] (refTv, M); — (m™, M[m” +— new; v]);

[E4] (m™ :=v, M); — {((), M[m™— update; M (m") v]);

<€7;, M>Z — <6/ M/>Z €j = 6;- {Zaj} = {112}

79

((ex]e2), M) — ((€] | e3), M')

[E10]

[EH] - ((v1 | v2)v, M) — ((01[v]1 [va]v]2), M)
[E12] ((v1]v2) := v, M) — ((v1 = [v]1 [vz == [v]2), M)
[E13] <!(U1 |’()2), M> — <(!’Ul ‘ !Ug), M>

[El4] (if v1 C vy then e else ey, M) — ((2]1 then |e1]; else |e2]1 |

|vi]1 C v
v1]2 C |vg]2 then |e1]q else |ea]s), M)

if

if |
if v = (v|v)orvy=(v|v)

[EI5] (viUwy, M) — {(|v1]1 U |v2]1 | [v1]2 U |va]2), M) if v = (v|v') or vy =(v|v)

[E16] (let (z,y)=((z=v1[C], v2:7) | (z=01[C"], v3:7")) ine, M) — (e[(v2 | v3)/y][(v1 | v1)/2], M)

[Auxiliary functions]

new, v = v update, vv' = v’ read, v = v
new; v = (v | void) update; vv’ = (v | [v]2) read; v = [v]1
newy v = (void | v) updates vv’ = (|v]1 | V') reads v = |v]9

Figure 6: Small-step operational semantic\§f;,.

Lemma 5.3 (Label Projection). If C'+ ¢; C 45, then|C|; - |¢1]; T | 2], fori € {1,2}.

Proof. By induction on the derivation af' - ¢; C /5.]
Lemma 5.4 (Constraint Reduction). If I'; C, ¢4 C le;pcke: TandC F ¢ E o, thenl;C'; pcke: 7.
Proof. By induction on the derivation df ; C, 41 C o ;pct e : 7. O
Lemma 5.5 (Projection). If I'; C'; pc+ e : 7, then|T'|;;|C];;|pcli F el : | 7]4, fori € {1,2}.

Proof. By induction on the derivation df ; C'; pc - e : 7, and using the label projection lemma. O

Lemma 5.6 (Store Access)Leti be in{e, 1,2}. Supposect v : 7 andpc - v’ : 7. In addition,i € {1,2}
impliesH C 7. Thenpc - read; v : |T];, pct new; v : T andpc I~ update; vv’ : 7.

Proof. By the definition of the functionsead, new andupdate in Figure 6, by the projection lemma, and
rules (VOID) and (BRACKET). O

Lemma 5.7 (Substitution). If z:7/,T;C;pct e : 7, and- v : 7'[v/z], thenl'[v/x]; Clv/z]; pclv/x] b
elv/x] : T[v/z].

15

Proof. By induction on the derivation of: 7/, T";C';pc e : 7. O

Theorem 5.1 (Subject reduction). Supposec - e : 7, memoryM is well-typed,(e, M); — (¢/, M");,
andi € {1,2} impliesH C pc. Thenpct ¢’ : 7, andM’ is also well-typed.

Proof. By induction on the derivation ofe, M); — (e/, M');. Without loss of generality, we assume
that the last step of the derivation pf - ¢ : 7 does not use the rule (SUB). Suppose the derivation of
pc = e : 7 ends with using (SUB). Then there existssuch thapc - e : 7/, andr’ < 7, and the derivation
of pc - e : 7/ does not end with using (SUB). If we can shpwt- e : 7/, which satisfies the assumption,
thenpc t- e : 7 by (SUB). Therefore, the assumption does not lose generality.

Here we just show eight cases: (E3), (E5), (E6), (E8), (E10), (E11), (E14) and (E16). The rest of
evaluation rules are treated similarly.

e Case (E3).e isref” v, andr is (7' ref) . Thene' ism™. By (LOC),pc b ¢ : (7' ref),. By
Lemma 5.6pc - new;v : 7. Thus,M[m” — new,v] is well-typed.

e Case (E5)cis (A(z:7")[C";pc].€")v. Thenpc - A(z:7")[C";pc].€ : ((x:7") Clipd, 71)¢, and
pc b v : 7", and- C"[v/x]. By rules (APP) and (L-APP), = 7i[v/x] U ¢, andpc C pc’[v/x].
By rules (ABS) and (SUB)z : 7/;C";pcd F €' : 7, and- 77 < 7/, F pd” C pd, andC” - (.
Therefore}- C'[v/x], andpc C pc’[v/x]. By the substitution lemma;’[v/z] ; pd'[v/x] b €' [v/x] :
71[v/x]. By Lemma5.4pc[v/x] F €'[v/x] : 71[v/x]. Sincepe C pd[v/x] andr [v/z] C 7, we have
pcteév/z]: .

e Case (E6). Byrule (IF§; C ka;pck ey : 7. By Lemma5.4 and |= k1 C ko, we havepc - e : 7.

e Case (E8)cislet (z,y)=(z=v1[C], v2:72) in€’. By rule (UNPACK),pc - (x =v1[C], v2:72) :
((x:71)[C] *)¢, andz: 7y UL,y : o U L;pc € : 7. By rule (PROD),pc F v : 71[v1 /2], and
pc - vavr/z] : mvi/x], and- Clvy /z]. Using the substitution lemma twice, we @éfv; /x| ; pc -
e'[v1/x][ve[v1/x]/y] : T[v1/x][v2[v1/x]/y]. Itis straightforward to show that[v, /z][ve[v1 /2] /y] =
e'[va/y][v1/z]. According to rule (UNPACK)z,y ¢ FV (7). Thus,t[vy/x][ve[vi/x]/y] = 7. In
addition, we havé- Clvy /z]. Thereforepc - e[vy/x][va/y] : T.

e Case (E10)e is (e1 | e2). Without loss of generality, assunie;, M), — (e}, M'); andey = €.
By rule (BRACKET),H C pc, and|pc|i F ey : |7]1. H C pcimpliesH C |pcl;. By induction,
|pcl1 €} : |7]1, andM" is well-typed. Using rule (BRACKET), we can ggt - (¢} | €5) : 7.

e Case (E11)c s (v1 | v2)v. By (APP) and (L-APP)pc F (v |v2) = ((z:7) S2E% 77),, andpe - o :
7’. Thenr = 7"[v/x] L. In addition,pcLi¢ C pc’. By (BRACKET), H C ¢, which impliesH C pc'.
By Lemma 5.5,[pc|; I v; ¢ (& : |7');) ~HPL 1715, and |pe); F [v]i : [#']i, which
imply |pc|i - vi|v]; : |7]:. According to (APP) and (L-APP), a well-typed application expression
ei1es can be type-checked with thee component of the type af; in the typing context. Therefore,
lpc |; b vi|v]; : | 7] SinceH C pc, we can apply (BRACKET) to ggic - (vi|v |1 | v2|v]2) : 7.

e Case (E14)eis if v C vy then e else ey, and there existg € {1,2} such that; = (v | v').
Supposepc F v; : 1labely, for i € {1,2}. Sincew; is a bracket construct{ C ¢;. By (IF), bothe;
ande, are type-checked withc LI ¢4 LI /5 in the typing context. Thus, we can getl | ¢; L1fs e : 7.
By Lemma 5.5,(pc U ¢; U ds]; & |el; = |7];. H T ¢; impliesH T |pcU ¢ U/, Applying
(BRACKET), we getpc - (|e]1 | [e]2) : T.

16

e Case (E16)eis let (z,y) = ((x =v1[C], va:7) | (. =v{[C’], v4:7')) in ¢/. Suppose expression
((x=n[C], va:7) | (x=v][C"], v§:7")) has type(z:71)[Co] * 2) 1 . It is easy to show thal | v])
and(vq |vh) have typer; andr, respectively. Then this case is reduced to case (E8), which is standard.

O]

5.4 Noninterference proof

Theorem 5.2 (Noninterference).Supposel, Z H, andl’ - e : int;. Given two input maps$i; and A,
suchthafl' - A; =g As, ifif <6{Al], M> — <’UZ', MZ/> fori e {1,2}, thenv; = vs.

Proof. First, we incorporated; and A, into a\?,... input mapA such that for any: in dom(I'), A(z) =
Aji(x) if Aj(x) = As(z), andA(z) = (Ai(x) | Az(z)) if otherwise. Sincd” - A; ~gx Az, A(z) is a
bracket construct only iff C I'(x)[A1] andH C I'(x)[Az2], or equivalentlyH C I'(z)[A]. Therefore A is
a well-typed input map with respectfo By Lemma 5.7} e[4] : inty.

Because(e[4;], M) —* (v;, M]) ande[A;] = [e[A]]; for i € {1,2}, (e[(v1 | v2)/x], M) —*
(v, M') by Lemma 5.2. Moreovet; v : int; by Theorem 5.1. Thusy is not a bracket value, and
lv]1 = |v]2. By Lemma 5.1,(e[4;], M) —* (|v];, |[M'|;) for i € {1,2}. Since the operational
semantics of\ pg.. is deterministic, we have, = |v |1 andvy = |v |2, which implyv; = vs. O

6 Dynamic labels in practice

The simplicity of Apgs.. helps proving the correctness of its dynamic label mechanism, but makes
impractical to use. This section shows that the dynamic label mechanisipsef can be applied to a
practical programming language such as Jif. First, we show that the existing dynamic label mechanism of
Jif can be interpreted usingps... Second, we propose an extension to the dynamic label mechanism of Jif
based o\ pge..

6.1 Dynamic labels in Jif

Jif [24] is the only implemented security-typed language supporting dynamic labels. Jif extends the Java
language [14] with static information flow control. Jif aims to provide a usable programming model, in
which the dynamic label mechanism plays an important role.

In Jif, labels can also be used as first-class values, and a variable atfiygemay be used as a label for
other values. Jif provides tharitch label statement for run-time label tests. For example, the following
code uses thewitch label statement to send a value through a communication channel with a dynamic
label:

(A) final label{l} x;
Channel{*x} c;
int{H} y;
switch label(y) {
case (int{*x} z) c.send(z);
else throw new UnsafeTransfer();

3

The send operation is secure only i is a high-security label, which has to be determined at run time. The
notation*x refers to the label value of; it can be used as a label onlysifis declared as &inal variable,

to prevent assignments from changing the meaning of types that mention it. In the examplhe tthie

label statement executes the first of the cases whose associated label is at least as restrictive gs that of
The value ofy is assigned to the corresponding variable (for examg)ldn this example, the first case will

be executed only it C xx, guaranteeing thatis a high-security channel.

17

In general, the statemestiitch label(e){case (int{¢} =) Si; else Sz} can be encoded as the
following pseudo-code it pge.:

if . C ¢ then (A(z:inty)[pc]. S1)e else So

where/, represents the label ef andpc is an upper bound to the labels of the effectsSof By rule (IF),
{1 U /4y C pcneeds to hold, wher§ and/s are the labels of, and/, respectively. Indeed, the type system
of Jif ensured; LI /5 C pc.

In Jif, labels are specified using tdecentralized label mod§3]. These labels may explicitly mention
principals. For example, a value with typet{Alice:Bob} is an integer owned by principallice and
readable byalice andBob. Like labels, principals may also be used as first-class values at run time. The
statementctsFor (pl, p2)S executes the statemeftif the principalpl can act for the principab2.

This acts-for relationship between andp2 is equivalent to{p2:} C {p1:}. Thus theactsFor statement
essentially implements a run-time label test, and can be encoded as:

if {p2:} C {p1:} then Selse ()

The Jif type system checkswith a program counter labgk such that'; LI /s = pc, wherel; and/s are
the labels ob1 andp2, respectively. This is consistent with the type system gf...

6.2 The Jif-DX language

The original Jif dynamic label mechanism appears to be sound but has several limitations. First, label
checking of the clauses ofsawitch label statement does not fully exploit the label constraint enforced

by the run-time test. Second, Jif supports only one kind of statically specified label constsaitdSor
constraints, which give information about principals but are not as powerful as general label constraints.
Third, in Jif only variables or fields of the enclosing class declaration can be used as dynamic labels, but in
practice other expressions may be useful in dynamic labels.

These limitations of Jif make it difficult or awkward to write some applications that need to manipulate
dynamic labels. Therefore, we propose the Jif-DX language, which extends Jif with a better dynamic label
mechanism, including the label-test statement, method and field label constraints, and more general label
expressions. These new language features are based on the construcigof In particular, the label-
test statement resembles the label-test expressionaf.; a method label constraint corresponds to the
label constraint component of a lambda term; a field label constraint corresponds to the label constraint
component in a pair value.

6.2.1 The label-test statement

Jif-DX provides the label-test statement, which is a more flexible way to implement run-time label checks
than theswitch label statement. The label-test statement resembles the conditional label-test expression
of Apsee, €xcept that the conditional branches are statements instead of expressionéf;<¢=/(,) S
else S>". Intuitively, S; is executed i?; C /5 is true at run time; otherwise, is executed. AS i\ pgec,
{1 C 45 can be assumed to hold when type-checking

Both theswitch label statement and thectsFor statement in Jif can be encoded with the label-test
statement. For example, the statementtsFor (p1, p2) S”is equivalentto if ({p2:}<={p1:}) 5"

1Some of the proposed features have been incorporated into Jif version 3.0.

18

6.2.2 Method label constraints

Jif-DX allows general label constraints to be specified in method signatures, whereas Jif only provides
actsFor constraints. The following example shows a use of a label constraint on a method:

(B) class Keylprincipal pl {
int{} encrypt(label{} 1b, int{*1b} x) where {*1b}<={p:} { ... }
}

The clasXey [principal p] represents a key belonging to princigal The encrypt method takes in
a labellb and an integex labeled with{*1b}, and attempts to encrygtwith the key of principap and
return the encrypted result as a public integer. This method should only encrypt the data owned by principal
p, because the result can be decryptedbyfhis requirement is captured by the method label constraint
{*1b} C {p:}. The compiler ensures that the constraint is satisfied wherever this method is called.
Another way to write this code would be to insert a run-time check in the method body and make the
method throw an exception #f*x1b} T {p:} is not satisfied at run time. This code would incur some
unnecessary run-time label checks, and the caller would have to handle the exception somehow. Indeed,
one advantage of the method label constraint is its ability to exploit information available at the caller side
to reduce the number of run-time checks. For example, in the following Jif-DX code the compiler can
determine that the method constraint is satisfied without a run-time check:

(C) Key[Alicel{} k;
int{Alice:Bob} x;
k.encrypt ({Alice:Bob}, x);

6.2.3 Field label constraints

In Jif-DX, label constraints can also be specified on class fields oftypel. The compiler ensures that

the field label constraints of a class are satisfied whenever a new instance of the class is created. All fields
appearing in a label constraint must be final, so field label constraints that are satisfied when an object is
created will hold for the lifetime of the object.

Like method label constraints, field label constraints can be used to reduce the number of run-time label
checks. For example, sending an integer through a multilevel communication channel withrizdpgires
sending the exact label of the integer through the channel. The natural way to implement it is to wrap the
integer and its label in an object of thebeled class and send the object through the channel.

(D) class Labeled {
public final label{{} 1b;
public int{*1b} content;
public Labeled(label{/} x, int{*x} y) { 1b = x; content = y; }
}

The label of fieldlb is ¢, ensuring thatb itself can be sent through the channel. But the label of field
content IS dynamic, and the constraif&1b} C ¢ needs to hold for fieldontent to be sent safely
through the channel. This constraint can be enforced by a run-time label check, but it can also be enforced
statically by specifying a field label constraif#1b} C ¢, as in theUBLabeled (“UB” stands for upper
bound) class. SendingiLabeled object through a channel with labéls always safe.

(E) class UBLabeled {
public final label{/} 1b where {*1lb}<=/;
public int{*1b} content;
public UBLabeled(label{/} x, int{*x} y) where {*x}<=/¢ {

19

1b = x; content = y;
}

6.2.4 Path-expression labels

Consider thé.abeled class again, and supposés aLabeled object. Then what is the type of content?
According to theLabeled class, the precise type would bet{*o.1b}, which cannot be expressed in Jif
because Jif does not allgwath expressionsuch as .1b to appear in labels.

In Jif-DX, a path expression with the tygabel can be used in label expressions as long as all the
identifiers in the path expression are final, ensuring that the path expression always has the same value. For
example, ifo is a final variable, thed*o.1b} is a legitimate label, and the following code can be used to
access . content While preserving its precise type.

(F) int{*0.1b} y = o.content;

If o were not a final variable, thes. content would not be well-typed in Jif-DX. But there is an easy
workaround: assigm to a final variablefo and access theontent field by fo.content, which has a
well-formed typeint{*fo.1b}. This workaround is like unpacking a pair valuelpge..

6.2.5 Example: bounded dynamic labeling

In this section, we show how to use the new dynamic label constructs in Jif-DX to implement a MAC
mechanism, which would be much harder and unintuitive to implement in Jif. The MAC mechanism in the
MITRE CMW system [34] associates two labels with each objedtoating labeland a fixedmandatory
label The floating label is updated accordingly when the content of the object is updated, but is bounded by
the fixed mandatory label in order to prevent the covert channel caused by label updates. The doubly labeled
object can be represented byBLabeled (see code fragment E) object in Jif-DX, and the policy that the
floating label be bounded by the mandatory label is represented by the field constiaihtC ¢, where
{*1b} is the floating label, andis the mandatory label.

The following code shows how to update the label and access the contdrioftse1ed object. Simple
as it is, this example demonstrates several subtle issues related to manipulating dynamic labels.

(G) UBLabeled o;
final label{} x, y;
int{*x} data;

(1) if ({*x}<=/¢) o = new UBLabeled(x, data);
final UBLabeled{} fo = o;
(2 if ({*fo.1b}<={*y})
if ({*y}<=/{) o = new UBLabeled(y, fo.content);

(3) int{/} output = fo.content;
int{Alice:} output2;
(4) if ({*fo.lb} <= {Alice:}) output2 = fo.content;

The first label-test statement (1) attempts to update the contenaafl the constraintxx} <= ¢ guarantees
the label of the new value is bounded by the mandatory lab&€he constructor callew UBLabeled(x,
data) is well-typed because of the constra{mx} C ¢ enforced by the label test.

The second label-test statement (2) attempts to just update the label fieltbof. The first test
{*fo.1b} <= {*y} is necessary faiew UBLabeled(y, fo.content) to be well-typed, because the type

20

of fo.content (int{*fo.1b}) must be a subtype dint{*y}. Essentially, the constraint prevents down-
grading the label of the object content. Furthermore, this example shows that the immutability requirement
for label fields is not a fundamental limitation because adding a level of indirection makes it possible to
updateo . 1b even though the fieldb is final.

The last two statements (3,4) attempt to aceessntent. The assignment toutput is well-typed
because of the field label constraif#fo.1b} C ¢. The assignment toutput2 might appear secure
because a label test is used to ensure the lakeltgfut2 is at least as restrictive as the labefof content.
However, there is an implicit flow fromio . 1b to output?2 in the label-test statement. The implicit flow is
legal only if ¢ C {Alice:}, which prevents a possible covert channel caused by dynamic labeling.

7 Related Work

Dynamic information flow control mechanisms [33, 34] track security labels dynamically and use run-time
security checks to constrain information propagation. These mechanisms are transparent to programs, but
they cannot prevent illegal implicit flows arising from the control flow paths not taken at run time.

Various general security models [18, 30, 12] have been proposed to incorporate dynamic labeling. Unlike
noninterference, these models define what it means for a system to be secure according to a certain relabeling
policy, which may allow downgrading labels.

Using static program analysis to check information flow was first proposed by Denning and Denning [8];
later work phrased the analysis as type checking (e.g., [25]). Noninterference was later developed as a more
semantic characterization of security [13], followed by many extensions. Volpano, Smith and Irvine [32] first
showed that type systems can be used to enforce noninterference, and proved a version of noninterference
theorem for a simple imperative language, starting a line of research pursuing the noninterference result for
more expressive security-typed languages. Heintze and Riecke [15] proved the noninterference theorem for
the SLam calculus, a purely functional language. Zdancewic and Myers [37] investigated a secure calculus
with first-class continuations and references. Pottier and Simonet [26] considered an ML-like functional
language and introduced the proof technique that is extended in this paper. A more complete survey of
language-based information-flow techniques can be found in [28, 40].

One problem with type-based static information flow analyses is that they tend to be conservative and
may identify information flows that do not exist. For example, consider the following code:

if s<=0then x:=0 else x:=0

in which x does not depend a#y but most security type systems still enstye_ /.. Some recent work [2,
16] partially addresses this problem by using flow-sensitive static analyses.

The Jif language [21, 24] extends Java with a type system for analyzing information flow, and aims to be
a practical language for developing secure applications. However, there is not yet a noninterference proof
for the type system of Jif, because of its complexity. This work is inspired by the dynamic label mechanism
of Jif, although the dynamic label mechanismlpg.. is more expressive. Jif provides two constructs
for run-time label tests: thewitch-label statement and thectsFor statement, both of which can be
encoded using the label-test expression jz... The typing rules foswitch-label andactsFor are as
restrictive as the typing rule of the label-test expression. Thus, the noninterference resgli.faorovides
strong evidence that these dynamic label constructs in Jif are secure.

Banerjee and Naumann [5] proved a noninterference result for a Java-like language with simple access
control primitives. Unlike in\pg.., run-time access control in their language is separate from information
flow control in the sense that the result of a run-time access check does not affect the security of any
information flow in a program.

Concurrent to our work, Tse and Zdancewic proved a noninterference result for a security-typed lambda
calculus fgp) with run-time principals [31]. Run-time principals are closely related to dynamic labels, as

21

labels are composed of principals in the decentralized label model of Jif. Howgwealtpes not support
references or existential types, which makes it unable to represent dynamic security policies that may be
changed at run time, such as file permissions. As discussed in Section 1, modeling real systems requires
this ability. By comparison, impg.. the label stored in a reference may be updated at run time, and
with dependent existential types, we can ensure that a piece of data and its label are updated consistently.
In addition, support for references makkgs.. more powerful tharmzp computationally. The\gp type
system uses singleton types (types containing only one value [3]) for relating type information to term-
level constructs. We have chosen to use dependent types because it is the approach used by Jif, and the
approach based on singleton types neither provides more expressiveness nor simplifies the type system or
the noninterference proof in any substantial way. In general, we feel that the choice between dependent
types and singletons is a matter of taste.

Other work [36, 35] has used dependent type systems to specify complex program invariants and to
statically catch program errors considered run-time errors by traditional type systems. This work also makes
a trade-off between expressive power and practical type checking.

8 Conclusions

This paper formalizes computation and static checking of dynamic labels in the type system of a core
language\ ps.. and proves a noninterference result: well-typed programs have the noninterference property.
The language pgs.. is the first language supporting general dynamic labels whose type system is proved to
enforce noninterference. Based on the dynamic label mechanidmgsgf, we propose an extension to Jif,
making it easier to write programs manipulating dynamic labels efficiently.

An important direction for future work is to investigate the interaction between dynamic labels and
parametric polymorphism.

Acknowledgements

The authors would like to thank Greg Morrisett, Steve Zdancewic and Amal Ahmed for their insightful
suggestions. Many thanks also to Steve Chong, Nate Nystrom, Michael Clarkson, and the anonymous
reviewers, who all provided useful feedbacks on earlier drafts of this paper.

This work was supported by the Department of the Navy, Office of Naval Research, under ONR Grant
N00014-01-1-0968. Any opinions, findings, conclusions, or recommendations contained in this material are
those of the authors and do not necessarily reflect views of the Office of Naval Research. This work was
also supported by the National Science Foundation under grants 0208642, 0133302, and 0430161, and by
an Alfred P. Sloan Research Fellowship.

References

[1] Johan Agat. Transforming out timing leaks. Bmoc. 27th ACM Symp. on Principles of Programming Languages (POPL)
pages 40-53, Boston, MA, January 2000.

[2] Torben Amtoft and Anindya Banerjee. Information flow analysis in logical formTHe Eleventh International Symposium
on Static Analysis Proceedingsages 100-115, Verona, Italy, 2004.

[3] David Aspinall. Subtyping with singleton types. @omputer Science Logic (CSL), Kazimierz, Polgrmjes 1-15. Springer-
Verlag, 1994.

[4] Anindya Banerjee and David A. Naumann. Secure information flow and pointer confinement in a Java-like langBege. In
15th IEEE Computer Security Foundations Workshlyme 2002.

[5] Anindya Banerjee and David A. Naumann. Using access control for secure information flow in a Java-like langBage. In
16th IEEE Computer Security Foundations Workstggmes 155-169, June 2003.

[6] D.E.Belland L. J. LaPadula. Secure computer systems: mathematical foundations and model. Technical Report M74-244,
MITRE Corp., Bedford, MA, 1973.

[7] Dorothy E. Denning.Cryptography and Data Securithddison-Wesley, Reading, Massachusetts, 1982.

22

(8]

9]
(10]
(11]
(12]
(13]
(14]
(15]
(16]
(17]

(18]
(19]

(20]
[21]

[22]

(23]

(24]

(25]

(26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

Dorothy E. Denning and Peter J. Denning. Certification of programs for secure information @owm. of the ACM
20(7):504-513, July 1977.

Department of DefenseDepartment of Defense Trusted Computer System Evaluation Cyi2@® 5200.28-STD (The
Orange Book) edition, December 1985.

Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey, David Ziegler, Eddie Kohler, Davidrearrans
Kaashoek, and Robert Morris. Labels and event processes in the Asbestos operating syBt@m. 20th ACM Symp. on
Operating System Principles (SO$SPB)ctober 2005.

J. S. Fenton. Memoryless subsystei@emputing J.17(2):143-147, May 1974.

Simon Foley, Li Gong, and Xiaolei Qian. A security model of dynamic labeling providing a tiered approach to verification.
In IEEE Symposium on Security and Privapgges 142—-154, Oakland, CA, 1996. IEEE Computer Society Press.

Joseph A. Goguen and Jose Meseguer. Security policies and security modBlec.llEEE Symposium on Security and
Privacy, pages 11-20, April 1982.

James Gosling, Bill Joy, Guy Steele, and Gilad Bracfiie Java Language Specificatiodddison Wesley, 2nd edition,
2000. ISBN 0-201-31008-2.

Nevin Heintze and Jon G. Riecke. The SLam calculus: Programming with secrecy and integfitgc125th ACM Symp.
on Principles of Programming Languages (POPpages 365—-377, San Diego, California, January 1998.

Sebastian Hunt and David Sands. On flow-sensitive security typéaotn 33th ACM Symp. on Principles of Programming
Languages (POPL.pages 79-90, Charleston, South Carolina, USA, January 2006.

M. Douglas Mcllroy and James A. Reeds. Multilevel security in the UNIX traditiSoftware—Practice and Experience
22(8):673-694, August 1992.

John McLean. The algebra of security.IFEEE Symposium on Security and Privapgges 2—7, Oakland, California, 1988.

Catherine Meadows. Policies for dynamic upgradingDétabase Security, 1V: Status and Prospeptges 241-250. North
Holland, 1991.

John C. Mitchell.Foundations for Programming Languageknhe MIT Press, Cambridge, Massachusetts, 1996.

Andrew C. Myers. JFlow: Practical mostly-static information flow control. Pioc. 26th ACM Symp. on Principles of
Programming Languages (POPLpages 228-241, San Antonio, TX, January 1999.

Andrew C. Myers and Barbara Liskov. A decentralized model for information flow controRrdn. 17th ACM Symp. on
Operating System Principles (SOSPages 129-142, Saint-Malo, France, 1997.

Andrew C. Myers and Barbara Liskov. Protecting privacy using the decentralized label thGd&[Transactions on Software
Engineering and Methodolog9(4):410-442, October 2000.

Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong, and Nathaniel Nystrom. Jif: Java information flow.
Software release, at http://www.cs.cornell.edu/jif, July 2001—.

Jens Palsberg and Peter @rbaek. Trust inttoalculus. InProc. 2nd International Symposium on Static Analysismber
983 in Lecture Notes in Computer Science, pages 314-329. Springer, September 1995.

Francois Pottier and Vincent Simonet. Information flow inference for ML.Ptac. 29th ACM Symp. on Principles of
Programming Languages (POPLpages 319-330, 2002.

Andrei Sabelfeld and Heiko Mantel. Static confidentiality enforcement for distributed prograr®sodeedings of the 9th
International Static Analysis Symposiumlume 2477 o£ NCS Madrid, Spain, September 2002. Springer-Verlag.

Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow secliiBE Journal on Selected Areas in
Communications21(1):5-19, January 2003.

Ray Spencer, Stephen Smalley, Peter Loscocco, Mike Hibler, David Andersen, and Jay Lepreau. The flask security architec-
ture: System support for diverse security policiesThe Eighth USENIX Security Symposium Proceedipages 123—-139,
August 1999.

lan Sutherland, Stanley Perlo, and Rammohan Varadarajan. Deducibility security with dynamic level assignnigats. In
2nd IEEE Computer Security Foundations WorksHe@nconia, NH, June 1989.

Stephen Tse and Steve Zdancewic. Run-time principals in information-flow type systelBEBBymposium on Security
and Privacy Oakland, CA, May 2004.

Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type system for secure flow andlygisal of Computer
Security 4(3):167-187, 1996.

Clark Weissman. Security controls in the ADEPT-50 time-sharing systemAFIRS Conference Proceedingslume 35,
pages 119-133, 1969.

23

(34]

(35]

(36]

(37]

(38]

(39]

[40]

John P. L. Woodward. Exploiting the dual nature of sensitivity labeldEEE Symposium on Security and Privapages
23-30, Oakland, California, 1987.

Hongwei Xi. Imperative programming with dependent types.Ptoceedings of 15th Symposium on Logic in Computer
ScienceSanta Barbara, June 2000.

Hongwei Xi and Frank Pfenning. Dependent types in practical programmingron 26th ACM Symp. on Principles of
Programming Languages (POPLlpages 214-227, San Antonio, TX, January 1999.

Steve Zdancewic and Andrew C. Myers. Secure information flow via linear continuatidigher Order and Symbolic
Computation 15(2—3):209-234, September 2002.

Steve Zdancewic and Andrew C. Myers. Observational determinism for concurrent program securityc. Ih6th IEEE
Computer Security Foundations Workshppges 29-43, Pacific Grove, California, June 2003.

Lantian Zheng and Andrew C. Myers. Dynamic security labels and noninterferend@rodn2nd Workshop on Formal
Aspects in Security and Trust, IFIP TC1 WGI1Springer, August 2004.

Lantian Zheng and Andrew C. Myers. Dynamic security labels and noninterference. Technical Report 2004-1924, Cornell
University Computing and Information Science, 2004.

24

