
On the Limit of Control Flow Analysis for Regression Test
Selection

Thomas Ball
Lucent Technologies, Bell Laboratories
1000 E. Warrenville Rd., Room 1G-359

Naperville, IL 60566 USA
tball@research.bell-labs.com

Abstract

Automated analyses for regression test selection (RTS) attempt to
determine if a modified program, when run on a test t, will have
the same behavior as an old version of the program run on t, but
without running the new program on t. RTS analyses must confront
a price/performance tradeoff: a more precise analysis might be able
to eliminate more tests, but could take much longer to run.

We focus on the application of control flow analysis and control
flow coverage, relatively inexpensive analyses, to the RTS problem,
considering how the precision of RTS algorithms can be affected
by the type of coverage information collected. We define a strong
optimality condition (edge-optimality) for RTS algorithms based on
edge coverage that precisely captures when such an algorithm will
report that re-testing is needed, when, in actuality, it is not. We
reformulate Rothermel and Harrold’s RTS algorithm and present
three new algorithms that improve on it, culminating in an edge-
optimal algorithm. Finally, we consider how path coverage can be
used to improve the precision of RTS algorithms.
1

Keywords

Regression testing, control flow analysis, coverage, profiling

1 Introduction

The goal of regression test selection (RTS) analysis is to answer the
following question as inexpensively as possible:

Given test input t and programs old and new, does new(t)
have the same observable behavior as old(t)?

1To appear, 1998 ACM/SIGSOFT International Symposium on
Software Testing and Analysis

Of course, it is desired to answer this question without running pro-
gram new on test t. RTS analysis uses static analysis of programs
old and new in combination with dynamic information (such as cov-
erage information) collected about the execution old(t) in order to
make this determination. An RTS algorithm either selects a test for
re-testing or eliminates the test.

Static analyses for RTS come in many varieties: some examine the
syntactic structure of a program [6]; others use control flow or con-
trol dependence information [11, 12]; more ambitious analyses ex-
amine the def-use chains or flow dependences of a program [9, 5].
Typically, each of these analyses is more precise than the previous,
but at a greater cost.

A safe (conservative) RTS analysis never eliminates a test t if new(t)
has different behavior than old(t). A safe algorithm may select
some test when it could have been eliminated.

We focus on the application of control flow analysis to safe regres-
sion testing (from now on we will use CRTS to refer to “Control-
flow-based RTS”). Previous work has improved the precision of
CRTS analysis but left open the question of what the limit of such
analyses are. CRTS can be improved in two ways: by increasing the
precision of the analysis applied to the control flow graph represen-
tations of programs old and new, or by increasing the precision of
the dynamic information recorded about the execution old(t). We
will address both issues and the interactions between them.

Our results are threefold:

� (Section 3) Building on recent work in CRTS by Rother-
mel and Harrold [12], we show a strong relationship between
CRTS, deterministic finite state automata, and the intersec-
tion of regular languages. We define the intersection graph
of two control flow graphs, which precisely captures the goal
of CRTS and forms the basis for a family of CRTS algorithms,
parameterized by what dynamic information is collected about
old(t).

� (Section 4) We consider the power of CRTS when the dy-
namic information recorded about old(t) is edge coverage (i.e.,
whether or not each edge of old’s control flow graph was
executed). We define a strong optimality condition (edge-
optimality) for CRTS algorithms based on edge coverage. We
then reformulate Rothermel and Harrold’s CRTS algorithm
in terms of the intersection graph and present three new al-
gorithms that improve on it, culminating in an edge-optimal
algorithm. The first algorithm eliminates a test whenever
the Rothermel/Harrold algorithm does, and safely eliminates
more tests in general, at the same cost. The next two algo-
rithms are even more precise, but at greater computational
cost.

� (Section 5) By recording path coverage information about
old(t) rather than edge coverage, we can improve upon edge-
optimal algorithms. However, if path profiling is limited to
tracking paths of a bounded length (which is motivated by con-
cerns of efficiency), then an adversary will always be able to
choose a program new that will cause any CRTS algorithm
based on path coverage to fail.

Section 6 reviews related work and Section 7 summarizes the paper.

2 Background

We assume a standard imperative language such as C, C++, or Java
in which the control flow graph of a procedure P is completely de-
termined at compile time. In P’s control flow graph G, each vertex
represents a basic block of instructions and each edge represents
a control transition between blocks. The translation of an abstract
syntax tree representation of a procedure into its control flow graph
representation is well known [1]. Since G is an executable repre-
sentation of P, we will talk about executing both P and G on a test
t.

We now define some graph terminology that will be useful in the
sequel.

Let G = (V; E; s; x) be a directed control flow graph with ver-
tices V , edges E, a unique entry vertex s, from which all vertices
are reachable, and exit vertex x, which has no successors and is
reachable from all vertices. A vertex v is labelled with BB(v), the
code of the basic block it contains. Two different vertices may have
identical labels. It is often convenient to refer to a vertex by its label
and we will often do so, distinguishing vertices with identical labels
when necessary.

An edge e = v !l w connects source vertex v to target vertex w
via a directed edge labelled l. The outgoing edges of each vertex
are uniquely labeled. Labels are values (typically, true or false for
boolean predicates) that determine where control will transfer next
after execution of BB(v).2 If a vertex v has only one outgoing edge,
its label is ε, which is not shown in the figures.

Since the outgoing edges of a vertex are uniquely labelled, an edge
v !l w may also be represented by a pair (v; l), which we call a
control transition or transition, for short. The vertex succ(v; l) de-
notes the vertex that is the l-successor of vertex v (if v !l w then
w = succ(v; l)).

A path in G is a sequence of edges

p = [e1;e2; : : : ;en]

where the target vertex of ei is the source vertex of ei+1 for 1 �
i < n. A path may be represented equivalently by an alternating
sequence of vertices and edge labels

p = [v1; l1;v2; l2; : : : ; ln;vn+1]

where vi is the source vertex of edge ei (for 1 � i � n), vn+1 is the
target vertex of en, and li is the label of edge ei (for 1 � i � n).
Given a path p of n edges (and n+ 1 vertices), let pv[i] be the ith

vertex (1� i� n+1), and let pl [i] be the ith edge label (1� i� n).

2The number of outgoing edges of vertex v and the labels on
these edges are uniquely defined by BB(v). Thus, different vertices
that have identical basic blocks will have the same number of out-
going edges with identical labels.

Paths beginning at a designated vertex (for our purposes, the entry
vertex s) are equivalently represented by a sequence of basic blocks
and labels (rather than a sequence of edges or vertices and labels):

p = [BB(v1); l1;BB(v2); l2; : : : ; ln;BB(vn+1)]

A complete path is a path from s to x.

Figure 1 shows two programs P and P0 and their corresponding
control flow graphs G and G0. For both G and G0, the entry vertex
is s = A and the exit vertex is x = X . The label of a vertex v denotes
its basic block BB(v). Graph G has one occurrence of basic block
C while graph G0 has two occurrences of C. The graph G00 is the
intersection graph of G and G0 and is discussed next.

3 CRTS and the Intersection Graph

In control flow analysis, the graphical structure of a program is an-
alyzed, but the semantics of the statements in a program are not,
except to say whether or not two statements are textually identical.
This implies that CRTS algorithms must assume that every com-
plete path through a graph is potentially executable (even though
there may be unexecutable paths). Unexecutable paths cannot af-
fect the safety of CRTS algorithms, but may decrease their preci-
sion, just as they do in compiler optimization.

CRTS algorithms must be able to determine if two basic blocks
are semantically equivalent. Of course, this is undecidable in gen-
eral. Following Rothermel and Harrold, we use textual equivalence
of the code as a conservative approximation to semantic equiva-
lence, which is captured in the definition of equivalent vertices:
Two vertices v and w (from potentially different graphs) are equiv-
alent if the code of BB(v) is lexicographically identical to BB(w).
Let Equiv(v;w) be true iff v is equivalent to w.3

Once we have equivalent vertices, we can extend equivalence to
paths, as follows: paths p and q are identical if p and q are the
same length, Equiv(pv[i];qv[i]) is true for all i, and pl [i] = ql [i] for
all i. That is, p and q are identical words (over an alphabet of basic
blocks and labels).

The following simple definition (a restatement of that found in [11])
precisely captures the power of CRTS:

If graph G run on input t (denoted by G(t)) traverses com-
plete path p and graph G0 contains complete path p0 iden-
tical to p, then G0(t) will traverse path p0 and have the
same observable behavior as G(t).

The above definition translates trivially into the most precise and
computationally expensive CRTS algorithm: record the complete
execution path of G(t) (via code instrumentation that traces the
path [4]) and compare it to the control flow graph of G0 to deter-
mine if the path exists there. We will see later in Section 5 that any
algorithm that does not record the complete execution path of G(t)
can be forced, by an adversary choosing an appropriate graph G0,
to select a test that could have been eliminated.

We observe that a control flow graph G may be viewed as a deter-
ministic finite automaton (DFA) with start state s and final state x
that accepts the language L(G), the set of all complete paths in G.
More precisely, a control flow graph G has a straightforward inter-
pretation as a DFA in which each vertex v in V corresponds to two

3The exit vertex x can only be equivalent to other exit vertices
(i.e., vertices with no successors).

B,B

V,V

U,U

t

t
f

f

t f

W,W
f

G’’ A,A

reject

accept

 C,C 1

t
 C,C 2

P’

if A {
 if B { U }
 V
 if C { Y } else { Z }
} else {
 if C { W }
}
X

2

1

B

V

U

t

t
f

f

X

t f

Y Z

W

t f

G’
A

C2

C1

if A {
 if B { U }
 V
}
if C { W }
X

P

B

X

V

U

W

t

t

t

f

f

f

G
A

C

Figure 1: Example programs P and P0, their corresponding control flow graphs G and G0, and the intersection graph G00 of G and G0.

states, v1 and v2. These states are connected by a state transition
v1 !BB(v) v2, labelled by BB(v). Edges in E are also interpreted as
state transitions: an edge v !l w is interpreted as a state transition
v2 !l w1. The alphabet of the DFA is the union of all basic blocks
and all edge labels, s1 is the start state, and x2 is the final state. The
DFA recognizes precisely the complete paths of G. Rather than
represent the control flow graph in this more verbose fashion, we
choose to present it in its traditional form but keep its DFA inter-
pretation in mind.

Given this insight, the CRTS question reduces to:

Is a complete path p from L(G) also in L(G0)?

Let I(G;G0) = L(G)\L(G0), the paths for which re-testing is not
needed, and let D(G;G0) = L(G)�L(G0), the paths for which re-
testing is needed.

A CRTS algorithm is optimal if, given any path p in I(G;G0), the
algorithm reports that p is in I(G;G0). A CRTS algorithm is safe
if, given any path p in D(G;G0), the algorithm reports that p is in
D(G;G0).

To help reason about I(G;G0) and D(G;G0), we define a new graph
G00 = (V 00

;E 00), the intersection graph of G = (V;E;s;x) and G0 =
(V 0

;E 0
;s0

;x0), which also has a straightforward interpretation as a
DFA.4 This graph can be efficiently constructed from G and G0.

The vertex set V 00 of G00 is simply the cross product of V and V0,
with two additional vertices:

V 00 = (V �V 0)[faccept;rejectg

We use the following relation to help define E00:

(v;v0) ,!l (w;w0) =
Equiv(v;v0);v !l w 2 E and v0 !l w0 2 E 0

4G00 is essentially an optimized version of a product automaton
of G and G0 [7].

The edge set E00 is defined in terms of ,!l and the Equiv relation.

E 00 = f (v;v0)!l (w;w0) j (v;v0) ,!l (w;w0);
Equiv(w;w0);w 6= x g

[f (v;v0)!l accept j (v;v0) ,!l (x;x
0);

Equiv(x;x0) g

[f (v;v0)!l reject j (v;v0) ,!l (w;w0);
not Equiv(w;w0) g

Vertex (s;s0) is the entry vertex of G00. We will restrict the vertex
and edge sets of G00 to be the vertices and edges reachable from
(s;s0). If no vertices (other than (s;s0)) or edges are reachable from
(s;s0) then s and s0 are not equivalent. A pair (v;v0) is reachable
from (s;s0) iff there is a path p in G from s to v that is a prefix of a
path in I(G;G0). Vertex reject represents the reject state, which cor-
responds to paths in D(G;G0). Vertex accept represents the accept
state, which corresponds to paths in I(G;G0).

Figure 1 shows the intersection graph G00 of the graphs G and G0 in
the figure. We can see that there are two paths in I(G;G0), corre-
sponding to the paths:

[(A;A); f ;(C;C2); f ;accept]

and
[(A;A); f ;(C;C2);t;(W;W);ε;accept]

in G00. The corresponding paths in G are: [A; f ;C; f ;X] and
[A; f ;C;t;W;ε;X]. Graph G00 also shows that any path that begins
with the transition (A;t) is in D(G;G0).

Two straightforward results about the intersection graph G00 will in-
form the rest of the paper: A path p is in I(G;G0) iff it is represented
by a path from (s;s0) to accept in G00; a path p is in D(G;G0) iff it
is represented by a path from (s;s0) to reject in G00. Of course, ev-
ery complete path p in G is either in I(G;G0) or D(G;G0). More
formally:

Theorem 1 Let G00 be the intersection graph of graphs G and G0.
Path

p = [s; l1; v2; l2; : : : ; ln; x]

from G is in I(G;G0) iff

[(s;s0); l1; (v2;v
0

2); l2; : : : ; ln; accept]

is in G00.

Theorem 2 Let G00 be the intersection graph of graphs G and G0.
Path

p = [s = v1; l1; v2; l2; : : : ; ln; x = vn+1]

from G is in D(G;G0) iff there exists i (1 � i � n) such that

[(v1;v
0

1); l1; (v2;v
0

2); l2; : : : ; li; reject]

is in G00.

Figure 2 shows how the intersection graph of graphs G and G0 is
computed via a synchronous depth-first search of both graphs. The
procedure DFS is always called with equivalent vertices v and v0.
If (v;v0) is already in V 00, this pair has been visited before and the
procedure returns. Otherwise, (v;v0) is inserted into V 00 and each
edge v !l w and its corresponding edge v0 !l w0 is considered in
turn.5 Edges are appropriately inserted into E00 to reflect whether
or not vertices w and w0 are equivalent, and whether or not w is the
exit vertex of G. The algorithm recurses only when w and w0 are
equivalent and w is not the exit vertex of G. The algorithm also
computes the set of vertices V00

accept from which accept is reachable
in G00, which will be used later.

The worst-case time complexity of the algorithm is O(jEj � jE0j).
Note that it is not necessary to store the relation E00 explicitly, since
it can be derived on demand from V00, E and E0. Thus, the space
complexity for storing the intersection graph (as well as V00

accept) is
O(jV j � jV 0j) in the worst case.

4 CRTS Using Edge Coverage

What is the limit of CRTS given that the dynamic information col-
lected about G(t) is edge coverage? Consider a complete path p
representing the execution path of G(t) and the set of edges Ep of
G that it covers. There may be another complete path q in G, dis-
tinct from p, such that Eq = Ep.6 Let Pp represent the set of paths
(including p) whose edge sets are identical to Ep.

To determine whether or not G0 needs retesting, a CRTS algorithm
using edge coverage must consider (at least implicitly) all the paths
in Pp. If all of these paths are members of I(G;G0) then the CRTS
algorithm can and should eliminate the test that generated path p.
However, if even one of the paths in Pp is in D(G;G0) then the
algorithm must select the test in order to be safe.

Given this insight, we can now define what it means for a CRTS
algorithm to be edge-optimal:

A CRTS algorithm is edge-optimal if for any path p
such that Pp � I(G;G0), the algorithm reports that p is
in I(G;G0).

5Note that if v and v0 are equivalent then w0 = succ(v0
; l) must

be defined since BB(v0) is identical to BB(v).
6Note that no such paths can exist if G is acyclic. In this case,

each complete path has a different set of edges than all other com-
plete paths.

V 00 := freject;acceptg
V 00

accept := facceptg
if Equiv(s;s0) then

DFS (s;s0)
fi

procedure DFS(v;v0)
begin

if (v;v0) 62V 00 then
V 00 :=V 00[f(v;v0)g
for each edge v !l w 2 E(G) do

let w0 = succ(v0
; l) in

if Equiv(w;w0) then
if w = x then

E 00 := E 00[f(v;v0)!l acceptg
else

E 00 := E 00[f(v;v0)!l (w;w0)g
DFS(w;w0)

fi
else

E 00 := E 00[f(v;v0)!l rejectg
fi
if (w;w0) 2V 00

accept then
V 00

accept :=V 00

accept[f(v;v
0)g

fi
ni

od
fi

end

Figure 2: Constructing the intersection graph of G and G0 via
a synchronous depth-first search of the two graphs. The al-
gorithm also determines the set of vertices V00

accept from which
accept is reachable.

s,s’

acceptreject

s,s’

acceptreject

s,s’

acceptreject

Rothermel/Harrold algorithm Partial-reachability algorithm Full-reachability algorithm

s,s’

acceptreject

Valid-reachability algorithm

Figure 3: The four edge-based CRTS algorithms, summarized pictorially with the intersection graph. The dotted outline represents V00accept, the
vertices of G00 from which accept is reachable.

Algorithm Time Space Precision Edge-optimal?
Rothermel/Harrold O(jEj � (jE0j+ jT j)) O(jV j � jV 0j) > no
Partial-reachability O(jEj � (jE0j+ jT j)) O(jV j � jV 0j) >> no

Full-reachability O(jEj � jE0j � jT j) O(jV j � jV 0j) >>> no
Valid-reachability O(jEj � jE0j � jT j) O(jV j � jV 0j) >>>> yes

Table 1: Comparison of four edge-based CRTS algorithms.

We first present the Rothermel/Harrold (RH) algorithm, restated in
terms of the intersection graph. We then present three new algo-
rithms, culminating in an edge-optimal algorithm. Figure 3 illus-
trates what the RH algorithm and each of the four algorithms does,
using the intersection graph.7 Each picture shows the start vertex
(s;s0), and final states reject and accept. The dotted outline repre-
sents V 00

accept, the vertices of G00 from which accept is reachable.

� The RH algorithm detects whether or not Ep covers an edge in-
cident to reject. If it does not, then path p must be in I(G;G0).

� The partial-reachability algorithm detects whether or not Ep
covers a path in the intersection graph from an edge leaving
V 00

accept to the reject vertex. Again, if no such path exists then
p is in I(G;G0). A surprising result is that partial-reachability
of reject can be determined with time and space complexity
equivalent to the RH algorithm. This algorithm is more precise
than the RH algorithm since it may be the case that Ep contains
an edge incident to reject but does not cover a partial path from
a vertex in V 00

accept to reject.

� The full-reachability algorithm determines whether or not Ep
covers a path from (s;s0) to reject. If not, then p is in I(G;G0).
This algorithm is more precise than the partial-reachability al-
gorithm, but at a greater cost. However, it is still not edge-
optimal.

� The valid-reachability algorithm makes use of a partial order
v on edges in G to rule out certain “invalid” paths. We show
that if Pp � I(G;G0) then Ep cannot cover a valid reaching
path to reject from (s;s0), yielding an edge-optimal algorithm.

Table 1 summarizes the time and space complexity for the four al-
gorithms. T represents the set of tests on which G has been run.
All edge-based CRTS algorithms incur a storage cost of O(jEj � jT j)
for the edge coverage information stored for each test in T , which
we factor out when discussing the space complexity of these algo-
rithms.

7If s is not equivalent to s0, then I(G;G0) is empty. We assume
that all four algorithms initially check this simple condition before
proceeding.

4.1 The Rothermel-Harrold Algorithm

We now present the RH algorithm in terms of the intersection graph
G00 = (V 00

;E 00). The RH algorithm first computes the set D of con-
trol transitions incident to reject (using a synchronous depth-first
search of graphs G and G0 similar to that in Figure 2):

D = f(v; l) j ((v;v0)!l reject) 2 E00
g

Given D and an edge set Ep, the RH algorithm then operates as
follows: If Ep\D = /0 then path p must be in I(G;G0) since it con-
tains no transition from D, which is required for p to be in D(G;G0).
Otherwise, conservatively assume that p is in D(G;G0).

Consider the intersection graph of Figure 1. For this graph, D =
f(C;t);(C; f)g. Since every path from A to X in graph G contains
one of these transitions, the RH algorithm will require all tests to be
rerun on G0. However, in this example, for any path p in I(G;G0),
Pp � I(G;G0), so the RH algorithm is not edge-optimal. Consider
such a path

p = [A; f ;C;t;W;ε;X]

The transitions of G00 covered by Ep are shown as bold edges in
Figure 1. There is no complete path other than p that covers exactly
the transitions (A; f), (C;t) and (W;ε).

The time and space complexity to compute D is clearly the same as
that for the depth-first search algorithm of Figure 2. To compute, for
all tests t in a set of tests T , whether or not the set of edges covered
by G(t) contains a transition from D, takes O(jEj � jT j) time. Thus,
the RH algorithm has an overall running time of O(jEj �(jE0j+ jT j))
and space complexity of O(jV j � jV0j).

Rothermel and Harrold show that if G and G0 do not have a
“multiply-visited vertex” then their algorithm will never report that
p is in D(G;G0) when it actually is in I(G;G0). This means that
their algorithm is optimal (and thus edge-optimal) for this class of
graphs. Stated in terms of the intersection graph G00, a vertex v in G
is a “multiply-visited vertex” if:

jf(v;v0) 2V 00
gj> 1

So in Figure 1, vertex C of graph G is a multiply-visited vertex.
Rothermel and Harrold ran their algorithm on a set of seven small

A,A

B,B

V,V

U,U

t

t
f

f

t
f

W,W
f

C,C1

C,C2
t

G’’

reject

accept

C1

C2

A

B

V

U

t

t
f

f

X

t f

Y

W

t f

G’

B

X

V

U

W

t

t

t

f

f

f

G
A

C
if A {
 if B { U }
 V
 if C { Y }
} else {
 if C { W }
}
X

1

2

P’

if A {
 if B { U }
 V
}
if C { W }
X

P

Figure 4: An example that shows that the partial-reachability algorithm is not edge-optimal.

programs (141-512 lines of code, 132 modified versions) and one
larger program (49,000 lines of code, 5 modified versions), and
found that the multiply-visited vertex condition did not occur for
these programs and their versions [12]. Further experimentation is
clearly needed on larger and more diverse sets of programs to see
how often this condition arises.

4.2 The Partial-reachability Algorithm

Let us reconsider the example of Figure 1. The dotted outline in
graph G00 shows the set V 00

accept. The only transition leaving this set
is (A;t). Any path leading to reject must include this transition.
Thus, if this transition is not in Ep then p must be in I(G;G0), as is
the case with path

p = [A; f ;C;t;W;ε;X]

which has Ep = f(A; f);(C;t);(W;ε)g.

Consider the projection of Ep onto the edge set of G00:

E 00

p = f((v;v0); l) 2 E 00
j (v; l) 2 Epg

and the graph G00

p =(V 00
;E 00

p) that results (the edges of E00

p are shown
in bold in Figure 1). It is straightforward to see that, in general, for
any edge v00 ! w00 in G00

p, either accept or reject must be reachable
from w00 in G00

p. Therefore, for an edge v00 ! w00 in G00

p, if v00 is
in V 00

accept and w00 is not in V 00

accept it must be the case that reject is
reachable from w00.

This observation leads to the partial-reachability algorithm which
has time and space complexity identical to that of the RH algorithm,
yet is more precise. This algorithm does not require construction
of G00

p, but is able to determine whether or not reject is partially-
reachable from an edge leaving V00

accept.

Similar to the RH algorithm, this algorithm first computes a set
Dreject of transitions in G using the intersection graph:

Dreject = f (v; l) j ((v;v0)!l w00) 2 E 00
;

(v;v0) 2V 00

accept;w
00 62V 00

acceptg

The set Dreject contains transitions in G that transfer control out of
V 00

accept. The algorithm then operates as follows: If Ep\Dreject = /0
then p is in I(G;G0), since p must contain a transition from Dreject
in order to be in D(G;G0). Otherwise, conservatively assume that p
is in D(G;G0).

It is easy to see that the partial-reachability algorithm subsumes the
RH algorithm, since whenever Ep\Dreject is not empty, Ep\D also
will not be empty. Stated another way, whenever the RH algorithm
reports that p is in I(G;G0), the partial-reachability algorithm will
report the same.

As shown in Figure 2, the set V00

accept can be determined during
construction of the intersection graph, in O(jEj � jE0j) time and
O(jV j � jV 0) space. To compute Dreject takes O(jEj � jE0j) time and
simply requires visiting every edge e00 in E 00 to determine if e00

leaves V 00

accept. If so, then the transition e in G corresponding to
e00 is added to Dreject. Once Dreject has been computed, the rest of
the algorithm is identical to the RH algorithm: for each test in T ,
check whether or not the set of edges covered by the test has an edge
in Dreject. Thus, the time and space complexity of this algorithm is
identical to the RH algorithm.

4.3 The Full-reachability Algorithm

Figure 4 shows that the partial-reachability algorithm is not edge-
optimal. In this example, the intersection graph G00 has

D = Dreject = f(C;t)g

Thus, for the path p = [A; f ;C;t;W;ε;X], which is in I(G;G0)
and for which Pp � I(G;G0), both the RH algorithm and partial-
reachability algorithm will fail to report that p is in I(G;G0) since
transition (C;t) is covered by path p. Note, however, that in G00

p the
reject vertex is not reachable from (s;s0).

In general, either reject or accept must be reachable from (s;s0)
in G00

p. The full-reachability algorithm is simple: If reject is not
reachable in G00

p then p is in I(G;G0). Otherwise, conservatively
assume that p is in D(G;G0).

Consider graph G in Figure 4. Any complete path in G containing

P’

U
while A { }
V

P

G

A

V

t
f

U U
if A {
 if A {
 while A { }
 }
} else { Y }
V

1

2

3

f

t

f

t

f

t

G’’
A,A1

A,A2

A,A3

U,U

f
t

f

A1

A2

t

f

t

V

A3

G’

Y

U

reject

accept

Figure 5: An example that shows that the full-reachability algorithm is not edge-optimal.

the transition (A; f) is in I(G;G0) and, additionally, does not contain
the transition (A;t). Therefore, for any such path p, vertex reject is
not reachable from vertex (A;A) in G00

p.

The DFS algorithm in Figure 2 can be easily modified to compute
the reachability of reject in G00

p, but must be run for each test in T ,
resulting in an overall running time of O(jEj � jE0j � jT j). The space
complexity remains the same as before.

4.4 The Valid-reachability Algorithm: An
Edge-optimal Algorithm

As shown in Figure 5, the full-reachability algorithm is not edge-
optimal. Consider the path

p = [U;ε;A;t;A; f ;V]

in graph G, which is in I(G;G0) and has coverage Ep =
f(U;ε);(A;t);(A; f)g. Every path in G that covers exactly these
transitions is in I(G;G0). Nonetheless, the projection of Ep onto G00

yields a graph in which reject is reachable from (U;U) via the path

[U;ε;A; f ;reject]

However, notice that for any path in graph G that includes both the
transitions (A;t) and (A; f), the first occurrence of the transition
(A;t) in the path must occur before the first occurrence of (A; f).
Therefore, all paths in Pp must have this property, since by defini-
tion they cover (A;t), (A; f), and (U;ε). While the set of transitions
in the path by which reject is reachable in G00

p includes (U;ε) and
(A; f), it does not include (A;t) before (A; f). So, this path cannot
be in Pp and should be ignored.

The problem then is that the full-reachability algorithm considers
paths that are not in Pp but reach reject in G00

p. By refining the
notion of reachability, we arrive at an edge-optimal algorithm. We
define a partial order on the edges of graph G as follows:

e v f iff for all complete paths p containing both edges
e and f , the first instance of e in p precedes the first in-
stance of f in p.

We leave it to the reader to prove that v is indeed a partial order
(it is anti-symmetric, transitive, and reflexive). An equivalent but
constructive definition of v follows:

e v f iff e dominates f 8 or (f is reachable from e, and e
is not reachable from f).

The v relation for graph G in Figure 5 is (U;e)v (A;t)v (A; f).

The valid-reachability algorithm is based on the following observa-
tion: If a path q contains a transition f 2 Ep but does not contain
a transition e 2 Ep such that e v f in G, then any path with q as a
prefix cannot be a member of Pp. We say that such a path does not
respect v.

The valid-reachability algorithm first checks if reject is reachable
from (s;s0) in G00

p. If not, then p is in I(G;G0), as before. If (s;s0) is
reachable, the algorithm computes R00, the set of transitions in G00

p
that are reachable from (s;s0) and from which reject is reachable. It
also computes the projection R of these transitions onto G. That is,

R = f(v; l) j ((v;v0); l) 2 R00
g

R is a subset of Ep. If Ep contains edges e and f such that
e 62 R, f 2 R and e v f , then the algorithm outputs that p is in
I(G;G0). Otherwise, the algorithm conservatively assumes that p is
in D(G;G0).

It is straightforward to show that the valid-reachability algorithm is
safe. The following theorem shows that it is also edge-optimal:

Theorem 3 Given graphs G and G0 and their intersection graph
G00. If Pp � I(G;G0) for any complete path p in G, then either

� reject is not reachable from (s;s0) in G00

p, or

� 9fe; fg � Ep s.t. e v f ;e 62 R; f 2 R

Proof: If reject is not reachable in G00

p then we are done. Instead,
suppose that reject is reachable from (s;s0) in G00

p. Furthermore,
assume that for all f 2 R and e2 Ep, if ev f in G then e 2 R. Given
these assumptions, we will show that there is a complete path q in
D(G;G0) such that Eq = Ep, contradicting our initial assumption
that all paths with edge coverage equal to Ep are in I(G;G0).

There are two parts to the proof: 1. show that there is a path q1 in G
from entry to v that covers only transitions from R, respects v and

8An edge e dominates edge f in graph G if every path from s to
f in G contains e.

U
while A { }
V

P

G

A

V

t
f

U

f
t

f

t

f

t

G’’
U,U

A,A1

A,A2

A,A3

P’ G’

f
t

f

A1

A2

t

f

t

V

X

A3

U

U
if A {
 if A {
 while A { }
 X
 }
}
V

1

2

3

reject

accept

Figure 6: An example for which any CRTS algorithm based on edge coverage cannot distinguish a path in I(G;G0) from a path in D(G;G0).

induces a path in G00 from (s;s0) to reject; 2. show that there is a
path q2 from v to x in G that covers the transitions in Ep�Eq1 and
does not cover a transition outside Ep. The concatenation of paths
q1 and q2 yields a path q in D(G;G0) such that Eq = Ep.

The existence of path q1 follows from the closure property of R
with respect to v (if f 2 R, e 2 Ep and e v f then e 2 R), and the
fact that R is the projection of R00, the transitions by which reject is
reachable from (s;s0) in G00

p.

We now show the existence of path q2. Let e be the last edge in
path q1. Since Ep is the edge coverage of a complete path p, it
follows that for all edges e and f in Ep, either f is reachable from e
in G via transitions in Ep or e is reachable from f via transitions in
Ep. Since the path q1 respects v, it also follows that for all edges
f in Ep �Eq1 , either e v f or e and f cannot be related by v. In
the former case, f is reachable from e via transitions in Ep. In the
latter case, edges e and f are not related by v, so it follows that e
and f must both be reachable from the other via transitions in Ep,
completing our proof.

The time complexity of the valid-reachability algorithm is O(jEj �
jE 0j � jT j). The algorithm requires, for each test in T , the construc-
tion of G00

p and the set R, which takes time O(jEj � jE0j), dominating
all other steps in the algorithm. Using an extended version of the
Lengauer/Tarjan immediate dominator algorithm [8], the immedi-
ate v relation for G can be computed in near-linear time and space
in the size of G. To determine whether or not the set of edges R
is closed with respect to Ep and v requires the following steps: 1.
projecting Ep onto v to create vp, an O(E) operation; 2. visiting
each immediate relation evp f to check if e 62 R and f 2 R. As two
constant-time set membership operations are performed for each
immediate vp relation, of which there are O(E), this step takes
O(E) time. The space complexity of the valid-reachability algo-
rithm remains at O(jV j � jV 0j).

5 CRTS Using Path Coverage

Figure 6 shows that any CRTS algorithm based on edge coverage
can be forced to make an incorrect (but safe) decision. It presents
two programs, their graphs G and G0, and their intersection graph
G00

: The path

p = [U;ε;A;t;A; f ;V]

is in I(G;G0). The path p has Ep = f(U;ε);(A;t);(A; f)g. This is
exactly the same set of edges covered by any path in D(G;G0), such
as:

q = [U;ε;A;t;A;t;A; f ;V]

Thus, it is impossible to determine whether a path in I(G;G0) or in
D(G;G0) produced the edge set Ep.

We consider how the path profiling technique of Am-
mons/Ball/Larus (ABL) [2] applied to the graphs in Figure 6
can separate the paths p and q. The ABL algorithm decomposes
a control flow graph into acyclic paths based on the backedges
identified by a depth-first search from s. Suppose that v ! w is a
backedge. The ABL decomposition yields four classes of paths:

(1) A path from s to x.
(2) A path from s to v, ending with backedge v ! w.
(3) A path from w to v (after execution of backedge v!w) ending

with execution of backedge v ! w.
(4) After execution of backedge v ! w, a path from w to x.

Graph G has backedge A !t A. Applying the ABL decomposition
to graph G in Figure 6 yields a total of four paths (corresponding to
the four types listed above):

p1 = [U;ε;A; f ;V] p3 = [A;t;A]
p2 = [U;ε;A;t;A] p4 = [A; f ;V]

The ABL algorithm inserts instrumentation into program P to track
whether or not each of these four paths is covered in an execution.
Recall the paths p and q that got edge-based CRTS into trouble.
Path p is composed of the paths p2 followed by p4, so ABL will
record that only these two paths are covered when p executes. On
the other hand, the path q is composed of p2, followed by p3, fol-
lowed by p4. Thus, for this example where edge coverage could not
distinguish the two paths, the ABL path coverage does.

As mentioned in the introduction, an adversary can create a graph
G0 such that any control-flow-based RTS algorithm that records less
than the complete path executed through G will be unable to distin-
guish a path in I(G;G0) from a path in D(G;G0). This is only true
if G contains cycles, as it does in our example

In the example from Figure 6, we can defeat the ABL path coverage
by adding another if-then conditional (with basic block A) around
the outermost conditional in program P0. Now, the path

q = [U;ε;A;t;A;t;A; f ;V]

is in I(G;G0) and the path in which (A;t) occurs one more time,

r = [U;ε;A;t;A;t;A;t;A; f ;V]

is in D(G;G0). However, both these paths cover exactly the set of
ABL paths fp2; p3; p4g, so they will not be distinguished unless
longer paths are tracked. For any cutoff chosen, we can add another
level of nesting and achieve the same effect.

6 Related Work

Rothermel and Harrold define a framework for comparing different
regression test selection methods [11], based on four characteris-
tics:

� Inclusiveness, the ability to choose modification revealing
tests (paths in D(G;G0));

� Precision, the ability to eliminate or exclude tests that will not
reveal behavioral differences (paths in I(G;G0));

� Efficiency, the space and time requirements of the method, and
� Generality, the applicability of the method to different classes

of languages, modifications, etc.

Our approach shares many similarities with the RH algorithm. The
three reachability algorithms are based on control flow analysis and
edge coverage. The partial-reachability algorithm is just as inclu-
sive as the RH algorithm but is more precise with equivalent effi-
ciency. The full-reachability and valid-reachability algorithms are
even more precise, but at a greater cost. We have not yet considered
how to generalize our algorithms to handle interprocedural control
flow, as they have done.

Rothermel shows that the problem of determining whether or not
a new program is “modification-traversing” with respect to an old
program and a test t is PSPACE-hard [10]. Intuitively, this is be-
cause the problem involves tracing the paths that the programs ex-
ecute and the paths can have size exponential in the input program
size (or worse). Of course, given a complete path through an old
program and a new program, it is a linear-time decision procedure
to determine if the new program contains the path. However, this
defines away the real problem: that the size of the path can be un-
bounded. We have considered the best a CRTS algorithm can do
when the amount of information recorded about a program’s execu-
tion is O(E) (edge coverage) or exponential in the number of edges
(ABL path coverage).

7 Summary

We have formalized control-flow-based regression test selection us-
ing finite automata theory and the intersection graph. The partial-
reachability algorithm has time and space complexity equivalent to
the best previously known algorithm, but is more precise. In ad-
dition, we defined a strong optimality condition for edge-based re-
gression test selection algorithms and demonstrated an algorithm
(valid-reachability) that is edge-optimal. Finally, we considered
how path coverage can be used to further improve regression test
selection.

A crucial question on which the practical relevance of our work
hinges is whether or not the “multiply-visited” vertex condition de-
fined by Rothermel and Harrold occurs in practice. For versions of
programs that do not have this condition, the RH algorithm is op-
timal. When this condition does occur, as we have shown, the RH
algorithm is not even edge-optimal. We plan to analyze the exten-
sive version control repositories of systems in Lucent [3] to address
this question.

Acknowledgements

Thanks to Mooly Sagiv and Patrice Godefroid for their suggestions
pertaining to finite state theory. Thanks also to Glenn Bruns, Mary
Jean Harrold, Gregg Rothermel, Mike Siff, Mark Staskauskas and
Peter Mataga for their comments.

References
[1] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Tech-

niques and Tools. Addison-Wesley, Reading, MA, 1986.

[2] G. Ammons, T. Ball, and J. Larus. Exploiting hardware per-
formance counters with flow and context sensitive profiling.
ACM SIGPLAN Notices, 32(5):85–96, June 1997. Proceed-
ings of the SIGPLAN ’97 Conference on Programming Lan-
guage Design and Implementation.

[3] T. Ball, J.-M. Kim, A. A. Porter, and H. P. Siy. If your ver-
sion control system could talk... In ICSE ’97 Workshop on
Process Modelling and Empirical Studies of Software Engi-
neering, May 1997.

[4] T. Ball and J. R. Larus. Optimally profiling and tracing pro-
grams. ACM Transactions on Programming Languages and
Systems, 16(4):1319–1360, July 1994.

[5] S. Bates and S. Horwitz. Incremental program testing using
program dependence graphs. In Proceedings of the 20th ACM
Symposium on Principles of Programming Languages, pages
384–396, January 1993.

[6] Y.-F. Chen, D. Rosenblum, and K. Vo. Testtube: A system
for selective regression testing. In Proceedings of the 16th In-
ternational Conference on Software Engineering, pages 211–
222, 1994.

[7] J. Hopcroft and J. Ullman. Introduction to Automata The-
ory, Languages, and Computation. Addison-Wesley, Reading,
MA, 1979.

[8] T. Lengauer and R. E. Tarjan. A fast algorithm for finding
dominators in a flow graph. ACM Transactions on Program-
ming Languages and Systems, 1(1):121–141, July 1979.

[9] T. Ostrand and E. Weyuker. Using data flow analysis for
regression testing. In Proceedings of the 6th Annual Pa-
cific Northwest Software Quality Conference, pages 233–247,
September 1988.

[10] G. Rothermel. Efficient, Effective Regression Testing Using
Safe Test Selection Techniques. Ph.D. thesis, Clemson Uni-
versity, December 1995.

[11] G. Rothermel and M. Harrold. Analyzing regression test se-
lection techniques. IEEE Transactions on Software Engineer-
ing, 22(8):529–551, August 1996.

[12] G. Rothermel and M. Harrold. A safe, efficient regression
test selection technique. ACM Transactions on Software En-
gineering and Methodology, 6(2):173–210, April 1997.

