A Study of Effectiveness of Dynamic Slicing in Locating Real Faults

Xiangyu Zhang Neelam Gupta Rajiv Gupta
Department of Computer Science
The University of Arizona
Tucson, AZ 85737

Contact email: gupta@cs.arizona.edu

Abstract

Dynamic slicing algorithms have been considered to aid ibugdging for many years. However, as far as we know, no
detailed studies on evaluating the benefits of using dynatiing for locating real faults present in programs haveshe
carried out. In this paper we study the effectiveness oft faghtion using dynamic slicing for a set of real bugs repart
in some widely used software programs. Our results showdhdhe 19 faults studied, 12 faults were captured by data
slices, 7 required the use of full slices, and none of themired the use of relevant slices. Moreover, it was obserhatl t
dynamic slicing considerably reduced the subset of proggtatements that needed to be examined to locate faultyrstats.
Interestingly, we observed that all of the memory bugs irfaléy versions were captured by data slices. The dynaritess|

that captured faulty code included 0.45% to 63.18% of statemthat were executed at least once.

1 Introduction

The concept of program slicing was first introduced by Markid#te[21]. He introduced program slicing as a
debugging aid and gave the fistatic slicingalgorithm. The static slice of a reference to a variable atog@am
point is the set of program statements tban influencehe value of the variable at the given program point under
some execution. Therefore every statement in the program fvhich there is a chain of static data and/or control
dependences leading to the variable reference belongs &idtic slice of the variable reference. Let us consider a
program containing faulty statements. Given a programtiwhich the value of a variable is output, if the static
slice of this variable reference contains one or more fastliyements then under some executions incorrect results
may be produced at the output statement. By studying thie state of the output, a programmer may be able to
detect the faulty statements. However, since static stiemsbe large due to the use of conservative dependence

analysis, effort required to locate the faulty statemepkjzected to be large.

To improve the effectiveness of slicing in program debuggiforel and Laski proposed the idea dfnamic
slicing [14]. The dynamic slice of a variable at an execution poictudes all those executed statements which
actually effectedhe value of the variable at that point during a specific etienu In other words, a statement
belongs to the dynamic slice of a variable reference at aoutixm point if there is a chain afynamicdata and/or
control dependences from the statement to the variablesrgfe. By studying the dynamic slice of a variable we
are in a better position to determine the actual cause wiheidhd the variable having an erroneous value under
the specific execution being debugged. Since dynamic stioetin a significantly smaller subset of statements
belonging to corresponding static slices, they are motalsiai for debugging. Results of our study of dynamic slices
reported in [26] show that the number of distinct statemexrézuted at least once during a program execution were
2.46 to 56.08 times more than the number of statements in andigrslice. However, the above results were based
on computing large number of slices for correct versionsrofjmms. In this paper we will study the effectiveness

of dynamic slices for locating faults in program versioniweal bugs.

While in the above discussion we have considered dynangiessthat are computed by considering both data and
control dependences, previous works have considered varents of dynamic slices. Different dynamic slicing
algorithms use different notions of what they considemdisiencingthe value of a variable for a given program

execution. These three variants include:

¢ Data slicing. Statements that directly or indirectly influence the coragiah of faulty output value through

chains ofdynamic data dependenca® included in data slices [25].

e Full slicing. Statements that directly or indirectly influence the compian of faulty output value through

chains ofdynamic data and/or control dependenees included in full slices [14].

¢ Relevant slicingWhile relevant slices also consider data and control degreceb, in addition, they include
predicates that actually did not affect the output but ctwalde affected it had they been evaluated differently,
direct data dependences of these predicates, and chaiysafit data and control dependences of these

direct data dependences [3, 9].

While dynamic slicing has long been considered useful fudeging [1, 14, 2], experimental studies evaluating
the effectiveness of slicing have not been carried out. Tammoal of this paper is to experimentally evaluate the
three dynamic slicing algorithms. The effectiveness ofv@mgislicing algorithm in fault location is determined by
two factors:How often is the faulty statement present in the sliae@How big is the slice, i.e. how many statements
are included in the slice®e present a comparative evaluation of data and full dynafiding algorithms with
respect to these two criteria. The following relationshidds among the various slices: Static SliceRelevant
Slice D Full Slice D Data Slice. For the class of errors being considered, ajhaine faulty statement that causes
an erroneous output to be produced is guaranteed to be piliastre static slice and the relevant slice of the
erroneous output, it may or may not be captured by the dataaitid full slice.

We carried out experiments with a setrefl faulty program versions of some widely used programs. Tlye ke

results of our experimental study are as follows:

e Applicability. Our results show that dynamic slicing was found to be apblem all faults studied. For 15
faults, the dynamic slice considered was the backward dimsline of an erroneous output. For 4 faults the
program did not produce any output. In these cases we wezd@bapture the faults in the forward dynamic
slice of the minimal failure inducing input [10]. In our sudynamic slicing we found that 12 faults were
captured by data slices and 7 faults required the use oflfodiss Interestingly, we observed that all of the
memory bug#n the faulty versions which cause programs to crash duegmsetation fault were captured

by thedata slices

¢ Effectivenessit was observed that dynamic slicing considerably redubedstibset of program statements
that needed to be examined to locate faulty statements. yirtentic slices that captured faulty code included
0.45% to 63.18% of statements that were executed at least dhese statements represented only a fraction

of the total code (0.04% to 8.52%) in the programs.

¢ Relevant SlicingAlthough in general faulty code may not be captured by fidesl and use of relevant slicing

may be required, we observed that for this set of real bugsigveat require the use of relevant slicing.

e Exploring SlicesHaving computed the fault candidate set in form of a dynaiiige sthis is next presented to
the programmer who must examine it to locate faulty statesétle found that if the programmer examines
statements starting from the statement that computed thaemus value going backwards in the order of
their appearance, 1.35% to 78.12% of the statements in thantig slices was examined before the faulty

statements were located.

The rest of the paper is organized as follows. In section 2 e describe data and full dynamic slicing. In
section 3 we give the overview of our slicing tool which cargasily adapted to compute different types of slices.
Section 4 presents the results of our experiments. Relabekl i presented in section 5 and the conclusions are

given in section 6.

2 Dynamic Slicing Algorithms

In this section we illustrate the strengths and weaknedsegodynamic slicing algorithms considered in this
paper using examples. We also briefly describe the dynaritmiation that must be captured in order to compute

the dynamic slices.

2.1 Data Slicing

Let us consider the execution of the program on an input thagals the fault by producing an erroneous output
value. Further let us assume that the presence of the faatgnsent does not alter the execution control flow, i.e.
the set of statements executed for this input are the samih&rtar not the fault is present. Under these conditions,
the erroneous output must have been produced by a fault fotineof a computational error in one of statements
whose computed value is related to the output value throwfiaim of dynamic data dependences. The data slice of
the erroneous output value includes all statements thafisited by starting from the output value and then taking
the transitive closure over dynamic data dependences., Tilntise above situation, the faulty statement will be
present in the data slice of the erroneous output. Becaugesardc data slice can be small and easy to understand,
the faulty statement is easier to locate by examining tha slate.

The example in Figure 1 illustrates data slicing. The progoa the left hand side of the figure is a faulty version
of the program in which statement 13 contains an error (asaited in the figure; = — y 4 1 should be replaced
by = = x — y). For a test input the correct and erroneous output valuestawn in the figure. As we can see,
this error does not alter the control flow up to the point thegpam generates an erroneous output value. The
computation of the data slice of the erroneous output valueyields the set of statemen{s, 6, 13,14}. Apart
from the read and output statements, we have statementthis data slice which is the faulty statement.

The computation of a data slice requires the identificatiodymamic data dependencatsruntime. In presence
of arrays and pointers we must maintain relevant infornmatiiodetect dynamic data dependences. An execution of
a statement at runtime is uniquely identified by the idemtitgtatement and the execution instance of that statement

(because a statement may be executed multiple times amentiA dynamic data dependence exists from an

1. read (a);
2. read (n);
3. i=0; (Faulty Statement)
4. while (i<n) { 13.z=x—y+1
5. read (x); shouldbel3. z =z —y
6. read (y);
7. a=gx;
8. b=x;
9. if (a>1) Inputita =2; n=1; x = —1; y = 1;
10. b=a-4; Erroneous outputz = —1;
11. if (b>0) Correct outputz = —2;
12. Z=X+Y;

else
13. Z=X-y+1;
14.output (2); Data Slice = {5,6,13,14}
15.i=i+1;

}

Figure 1. Example of Data Slice.

execution instance of a statement that defines a value ankeant®n instance of a statement that later uses that
value. For each address, we must remember the executiamagsof the statement that last wrote to that address.
Later when the value is used by an execution instance ofenséatt, we can establish the dynamic data dependence

between the relevant execution instances of two statements

2.2 Full Slicing

Let us consider another example in which the faulty statemsert captured by the data slice but it is captured by
the full slice. Figure 2 shows a faulty program where themengistake in statement 10 as shown. When this faulty
program is executed on the given input, incorrect outpulevdd produced at statement 14. The program outputs
the value4 at 14 while the correct output value & The faulty statement0 is not in set{5, 6,12, 14} which is
the data slice of at 14. This is because the fault does not affect value @it 14 through a chain of dynamic
data dependences. Instead fault in stateme@rsdffects the outcome of predicate Ht changing the direction of

the branch and thus causing stateniento be executed instead of statemé&Bit The value ofz thus computed is

altered. The data slice af at 14 contains statemen® which is executed by mistake but it does not contain the

faulty statementO.

1. read (a);
2. d (n);
3 r_eg (); (Faulty Statement)
B 10.b=a—3

4. while i<n) { should be— 10. b=a — 4
5. read (x);
6. read (y);
7. a=a/x;
g' |tf):(2>1) Input:a =8, n=1; 2 =2; y = 2;
16 beag | EfTOneousoutput: = 4;

© .~ ™ | Correct outputz = 0;
11, if (b>0) orrect outputz = 0;
12. Z=X+Y;

else

13. =X-Y;
14 Outputz(z;(_ Y\ Full Slice = {1,2,3,4,5,6,7,9,10,11,12, 14}
15.izi+1; 10 & Data Slice = {5,6, 12,14}

}

Figure 2. Example of Full Slice vs. Data Slice.

Full slices correctly handle the above situation by comémdecontrol dependences. A statemerd true (false)
control dependent upon a predicat# and only if p’s true (false) outcome determines whetkavill be executed.
Full slices are computed by taking the transitive closurerdoth dynamic data and control dependence edges
starting from the output value. In the above example, wheh hypes of dependences are considered, statement
10 is included in the full slice. This is because statemiénis control dependent upon predicdtewhich is data
dependent upon statemeit

To compute full slices, in addition to detecting dynamicadd¢pendences, we must also detiyetamic control
dependencesWhile a statement can be statically control dependent upoltiple predicates, at runtime, each
execution instance of a statement is dynamically contrpeddent upon a single predicate. The predicate on which
the execution of a statement is control dependent is fourfollagvs. First let us assume that there are no recursive

procedures. Given an execution of a statemergrior to its execution, the most recently executed predipa

on which s is statically control dependent is found. The execution i dynamically control dependent upon
this execution ofp. Timestamps can be associated with execution instancdatefreents in order to evaluate the
above condition. A second condition is needed in presenoecofsion. For a given execution of statemetd be
dynamically control dependent upon an execution of a peadig the execution instances of both must correspond

to the same function invocation.

3 Our Slicing Tool

We have developed a dynamic slicing tool which was used tawucinthe experiments described in the next
section. Our tool executeg c compiler generated binaries for Intel x86 and computes olynalices based upon
forward computation algorithms described in the precegdiegtion. Even though our tool works on binary level,
the slices can be mapped back to source code level using bluggieg information generated igg c.

inputs ———— Instrumented bb Slicin g
i Instrumenter
binary Diablo* CD, PD basic block (bb)

- Valgrind

ici slices
> Levents SIICI.ng roBDD
Runtime
Outputs l

Figure 3. Slicing Infrastructure.

Figure 3 shows the main components of the tool. $taic analysisccomponent of our tool computes static
control dependence (CD) and potential dependence (PDiniration required during full and relevant slice com-
putations from the binary. The static analysis was impleleetnsing theDiablo [29] retargetable link-time binary
rewriting framework as this framework already has the céyalbf constructing the control flow graph from x86
binary.

Thedynamic profilingcomponent of our system which is based uporMalgrind memory debugger and profiler
[30] accepts the samgcc generated binary, instruments it by calling tiing instrumenterand executes the
instrumented code with the support of thlicing runtime The slicing instrumenter and slicing runtime were

developed by us to enable collection of dynamic informatiod computation of dynamic slices. Valgrind’s kernel

is a dynamic instrumenter which takes the binary and befeeeging any new (never instrumented) basic blocks
it calls the instrumentation function, which is providedthe slicing instrumenter. The instrumentation function

instruments the provided basic block and returns the neve bésck to the Valgrind kernel. The kernel executes

the instrumented basic block instead of the original onee ifistrumented basic block is copied to a new code
space and thus it can be reused without calling the instrtanagain. The instrumentation is dynamic in the sense
that the user can enforce the expiration of any instrumebsesit block such that the original basic block has to

be instrumented again (i.e., instrumentation can be tuomeand off as desired). Thus, we can easily turn off/on

the slicing instrumentation for sake of time performancéoorcertain code, e.g. library code. The slicing runtime

essentially consists of a set of call back functions foraiarevents (e.g., entering functions, accessing memory,
binary operations, predicates etc.). The CD and PD infdonatomputed by the static analysis component is

represented based on the virtual addresses which can bestowteby Valgrind.

Now let us briefly discuss the algorithms used for computiyrgganic slices. Two types of methods for computing
backward dynamic slices have been propodstkward computatiomethods [1, 25]; anébrward computation
methods [7, 24]. In backward computation methods the progtapendences that are exercised during a program
execution are captured and saved in the form of a dynamicndigmee graph. Dynamic slices are constructed
upon user’s requests by backward traversal of the dynanperd#ence graph. Although this approach allows
computation ofall dynamic slices of all variables at all execution points, abpgm with this method is its space
cost. Inforward computatiormethods [7, 24] latest backward dynamic slices of all progvariables are computed
and maintained as sets of statements as the program exekdi@stage of this approach is that the space costis no
longer proportional to the length of execution but rathepartional to the number of variables times the number
of statements in the program. Therefore we decided to usefdrcomputation method in this work.

As mentioned above, the forward computation algorithmsai the latest dynamic slice for each variable/location.
These dynamic slices are storedé@auced ordered Binary Decision DiagramBDD) [17] component of our sys-

tem. Earlier work [24] identifies three characteristics phidmic slices: same dynamic slices tenddappearfrom

time to time during execution, different slices tendtare statementandclusters of statementscated near each
other in the program often appear in a dynamic slice. Theamckeristics resulted in the observation that roBDD
representation of sparse sets was suitable for storingndignslices as it was both space and time efficient. The
roBDD benefits us in the following respects. Each uniqueesicpresented by unique integer number in roBDD,
which implies that if and only if two slices are identicalgthare represented by the same integer number. The
whole set of statements in the slice can be recovered fror@BpBsing that number. This is critical to our de-
sign because now for each variable (memory location) we ne8d to store one integer. Use of roBDD achieves
space efficiency because roBDD is capable of removing dateljoverlapping, and clustered sets which are exactly
the characteristics of slices. Using roBDD also providetetefficiency because roBDD implementations of set
operations are very efficient. More details about why and Wwewse roBDD can be found in [24].

We also implemented a simple debugging interface whichigesviimited capabilities including setting break-
points, continuing execution, stopping after certain stepexecution, slicing on a register, slicing on a memory

location, and slicing on the latest instance of a predicate.

4 Experimental Evaluation

In this section we present results of experiments that welected. For these experiments we collected faulty
versions of commonly used programs. Unlike our previoudysf3] of dynamic slicing algorithms that used faulty
versions of programs created by injecting faults in thers, study uses real programs with real bugs that were re-
ported by users of these programs. We carried out two maiararpnts. The first experiment involves a study of
the data and full slices of these programs. This experimaatbled the comparison of data and full dynamic slicing
in terms of their applicability (i.e., their ability to cape faults) and effectiveness (i.e., their sizes). The s&co

experiment shows how the computed dynamic slices may bemgby the programmer to locate faults.

The faulty versions of the programs along with the desaitiof the faults are given in Table 1. The source

from which the faulty version was obtained is also given. As @an see, these programs are widely used. In

10

addition we would like to note that the first nine faults (ifaults in programgr ep 2. 5 throughmake 3. 80)
cause the programs to produce wrong outputs while the lastatdts (i.e., faults in programgzi p- 1. 2. 4
throughnt- 4. 5. 55) contain memory bugs lead to a segmentation error. Memagyg basentially cause memory
corruption problems and when a corrupted memory locati@tigssed, the program crashes with a segmentation

fault error message.

Table 1. Faults Used in the Study.

| Program | Bug Description | Source |
| grep2.5 | using -i -o together produces wrong output | http://savannah.gnu.org |
grep2.5.1 (a) using -F -w together produces wrong output http://savannah.gnu.org
(b) using -o -n together produces wrong output http://comments.gmane.org/
gmane.comp.gnu.grep.bugs/
(c) "echo dofe — grep dofe” finds no match http://comments.gmane.org/
gmane.comp.gnu.grep.bugs/
flex 2.5.31 (a) some variable is not defined with option -I, http://soureforge.net
which fails the compilation of xfree86
(b) string "]]” is not allowed in user’s code http://soureforge.net
(c) the generated code contains extra #endif http://soureforge.net
make 3.80 (a) backslashes in dependency names are not remowih://savannah.gnu.org

(b) fail to recognize the updated file status while http://savannah.gnu.org
there are multiple target in the pattern rule

gzip-1.2.4 1024 byte long filename overflows into global variabl&ccMon [27]
ncompress-4.2.4 1024 byte long filename corrupts stack return addressccMon [27]
polymorph-0.4.0| 2048 byte long filename corrupts stack return addressccMon [27]

tar-1.13.25 wrong loop bounds lead to heap object overflow AccMon [27]
bc-1.06 misuse of bounds variable corrupts heap objects | AccMon [27]
tidy-34132 memory corruption problem AccMon [27]
mutt-1.4.2.1i heap buffer bound miscalculation http://www.securiteam.com/
pine-4.44 (a) missing end quote corrupts stack http://lwww.xatrix.com/

(b) special characters corrupt heap buffer http://www.securityfocus.com/
mc-4.5.55 uninitialized string corrupts stack http://www.securityfocus.com/

11

4,1 Data Slicesvs. Full Slices

Applicability and Effectiveness of Data and Full Dynamic Slicing. Our first experimented involved computing
the dynamic data slices and dynamic full slices for the fhilens that exercise the faults. Before we compute
dynamic slices we must identify a value in the failed run onichhto perform dynamic data/full slicing. We

encountered three kinds of situations in these faults wiviete handled as follows:

e For programs that produced an incorrect output value, bakwaynamic slicing was performed starting at

the first incorrect output value produced during the failewl. r

e For the programs that crashed, the value which when refeceoaused the crash served as the basis for

computing the backward dynamic slice.

e For the four faults irgr ep, it was not possible to perform backward dynamic slicing.eWWthese four faults
were exercised the program did not crash but rather it predlurccorrect output. However, this incorrect
output essentially waso output Since no output was produced, we did not have a value on wbiblase
backward slicing computation. To handle these situatioeagound the minimal failure inducing input [10]
which is the part of the input that triggered the failure. Thelty code was then captured in tfward

dynamic slice of the failure inducing input.

The results of dynamic slicing are shown in Table 2. The columindicates whether the faulty code was
captured by the data slice (DS), in this case it is also cegtby the full slice, or whether it is only captured by
the full slice (FS). As we can see, out of the 19 faults considel 2 faults were captured by dynamic data slices,
and the remaining 7 faults were captured only by dynamicdiides. We would like to mention that in case of
faults inpi ne andnt, where the faults are captured by the dynamic data slicesyave unable to compute the
sizes of the full dynamic slices. F@i ne, the version ofdi abl o used in our system was not able to handle the
compiled binary because it is very large (over thirty medabyand thus control dependence analysis could not be

performed. Font, we ran out of shadow space usedual gr i nd for computing full slices. However, we were

12

Table 2. Data Slices and Full Slices.

| Program | LOC| Exec(LOC%)| DS (Exec%)| FS (Exec%) In | Min (LOC%) |
grep 2.5 8581 | 1157 (13.48%) 67 (5.79%)| 731 (63.18%) FS| 731 (8.52%)
grep 2.5.1 (a) 8587| 500 (5.93%) 15(2.95%) 32 (6.29%)| FS| 32 (0.37%)
grep 2.5.1 (b) 8587 | 1123 (13.08%) 90 (8.02%)| 599 (53.34%) FS| 599 (6.98%)
grep 2.5.1 (c) 8587 | 1338 (15.58%) 6(0.45%)| 12 (0.90%)| DS| 6 (0.07%)
flex 2531 () | 26754| 1871 (6.99%) 159 (8.59%) 695 (37.16%) FS| 695 (2.60%)
flex 2.5.31 (b) || 26754| 2198 (8.22%)| 89 (4.05%)| 272 (12.37%) FS| 272 (1.07%)
flex2.5.31(c) || 26754| 2053 (7.67%)| 24 (L.17%)| 50 (2.44%)| DS | 24 (0.09%)
make 3.80 () | 29978 2277 (7.60%) 388 (17.04%) 981 (43.08%) FS| 981 (3.27%)
make 3.80 (b) | 29978 2740 (9.14%) 588 (21.46%)| 1290 (47.08%) FS | 1290 (4.30%)
9zip-1.2.4 8164| 118 (L.45%) 14 (11.86%) 34 (28.81%) DS| 14 (0.17%)
ncompress-4.2.4 1923| 59 (3.07%)| 13 (22.03%)] 18 (30.51%)| DS | 13 (0.68%)
polymorph-0.4.0] 716| 45 (6.29%)| 17 (37.78%)| 21 (46.67%)| DS | 17 (2.38%)
tar-1.13.25 25854| 445 (1.72%)| 44 (9.89%)| 105 (23.60%) DS | 44 (0.17%)
bc-1.06 8288| 636 (7.67%) 76 (11.95%) 204 (32.07%) DS | 76 (0.92%)
tidy-34132 31132| 15190 (4.88%) 148 (9.74%)| 554 (36.47%) DS | 148 (0.48%)
mutt-1.4.2.1 71774] 2551 (3.55%)| 242 (9.49%)| 1052 (41.24%)| DS | 242 (0.34%)
pine-4.44 (a) || 253832| 3930 (1.55%) 102 (2.60%) ~ DS | 102 (0.04%)
pine-4.44 (b) || 253832| 8956 (3.53%) 605 (6.76%) ~ DS | 605 (0.24%)
mc-4.5.55 66944| 3154 (4.71%) 48 (L.52%) “|DS| 48(0.07%)

Now let us see how dynamic slicing reduces the amount of doeelpriogrammer has to examine to locate faulty

relevant results for these programs are being reported.

13

able to compute dynamic data slices for these programse$iaalts were captured by the dynamic data slices, the

code. In Table 2L.OC is the lines of code in each programxecrepresents the lines of code that are actually
executed during the failed run (i.e., the remaining linesaafe are not executed during the failed run) — the number
in parenthesis is the value Bkecexpressed as a percentagd.6fC. DSandFSgive the lines of code that are not
only executed but also belong to the dynamic data slices ahdlices respectively — the numbers in parenthesis
are the values oDS andFS expressed as a percentagekosiec Finally, Min is the number of lines of code in
the smallest oExeg DS, andFSthat actually captures the faulty code — the number in phesig is the value of

Min expressed as a percentage @fC. In other wordsMin is the fault candidate set that must be examined by the

programmer to locate faulty code. From the data in Table 2amencake several observations.

By analyzing the above data we observe the following. Filstnatice that the lines of code Execis a small
percentage ranging from 1.45% to 15.58% of the total linesoofeLOC in the program. Sinc&xecis a small
percentage ofOC, even this rudimentary dynamic information is quite effexin reducing the size of the fault
candidate set presented to the programmer for examina&eeond, we observe that the sizes of dynamic data and
full slices are significantly smaller th&xec The sizes oDSrange from 0.45% to 37.78% of the sizesofecand
the sizes oFSrange from 0.90% to 63.18% of the sizednfec We also observe that sizes of dynamic data slices
are significantly smaller than sizes of dynamic full slicesriost of the cases. Finally, tidin column we present
the size of the fault candidate set that is of significancdaterprogrammer. We observe that the lines of code in
Min is a very small percentage ranging from 0.04% to 8.52%@C the total lines of code in the program. Thus

we conclude that dynamic information offers significanturetibns in the size of the fault candidate set.

Memory Bugs. One key issue is when to use dynamic data slices and when folldgnamic slices. We observe
that for all faults that are memory bugs dynamic data slieggured the faulty code. It is easy to identify that the
program has been effected by a memory bug when it crashesawitgmentation fault error. In such situations the
user can use dynamic data slicing instead of full dynami@rgli Through further analysis that we next describe, we
determined the reason due to which dynamic data slices affesdive for programs with memory bugs that cause
program to crash with a segmentation fault. In other wordenaghough data slicing is not effective in capturing
faulty statement in general, it is very effective for memaglated bugs. Since the data slices can be significantly
smaller than the full slices (e.g.ar, bc, etc.) and therefore using data slices for memory relateg ffuquite
advantageous.

The reason why data slices are so effective for memory bugsaisthe program crash is caused due to the
presence of amnexpected dynamic data dependeheéveen the point at which memory is corrupted and the
later point at which the corrupted value is used. In fact tleenory corruption typically corrupts a pointer and its

use causes a crash because it dereferences the pointemmidyaeta slice captures all appropriate dynamic data

14

strepy.c
36 strepy (char * _ restrict to, const char * __ restrict from)

Memory Layout

\ 40 for (; (*to=*from) !=0; ++from; ++to); \ Heap

41 return(save); BSS segment
Failure-inducing input
gzip.c: 0x8093214
152 #define MAX_PATH_LEN 1024 (char*) env
193 char * env; T aaa a | 000 ‘
198 CHAR ifname[MAX_PATH_LEN];
Overflow ...aaaaa...
...aaaaa...
836 local int get_istat(iname,sbuf) i -883aa. .
844 strcpy(ifname, iname); Shaifnatnc /e
0x8092400 ...aaaaa...

845 errno=0;

1341 local void do_exit(exitcode)

c) Data segment
1344 if (env!=NULL) free (env), env=NULL;

Figure 4. gzi p Buffer Overflow Bug.

dependences including the unexpected dynamic data depemdead therefore it is able to capture faulty code. To
illustrate the above, let us consider the casgazifp which contains a buffer overflow problem. In Figure 4, on the
left hand side we show the relevant code segment for the gamobThe problem happens in teér cpy statement

at line 844. Variable f name is a global array defined at line 198. The size of the arrayfisidé as 1024. Before
thest r cpy statement at line 844, there is no check on the length of tiregstnamne. If the length of string

i name is longer than 1024, then the buffer overflows. If the lendthtingi nane is larger than 3604, the value
of env is changed due to buffer overflow. This is because accorditiget memory layout shown in Figure 4, the
difference betweernv andi f nane is 3604 bytes. Later when at line 13#ée(env)is executed, the program
crashes due to presence of an illegal memory addremsvn When dynamic data slice is computed for this illegal

address, the faulty statementsitr cpy is captured in the dynamic data slice.

Relevant Slicing. It has been observed [3, 9] that in some situations faultiestants are not captured by full
slices. Consider the following faulty version of a progrdret us consider the situation in which statemgnt 0;
is erroneous and it causes the predigate 0 to evaluate to false instead of being true. False evaluatidghe

predicate causes the execution of the assignmeatitside the if-statement to be bypassed leading to incorrect

15

value ofz to be output. Since the statement inside the if-statememdtiexecuted there is not dependence between
the output statement and the faulty statemegrt 0;. In other words, the dynamic full slice does not capture the

faulty statement.

In general, the basic reason is that some statements whocidstiave been executed did not get executed due to
the fault. To handle the above situation a new form of depeceleeeds to be introduced between certain predicate
outcomes and uses. Given a uséet us define potentially dependset” D(u) such that the set contains members
of the form that specify predicates and their outcomes g’e.or p”). If p” (p!') is present inPD(u), it means
that if prior to the execution of predicatep was executed, and its outcome WA F'), then while no definition
corresponding ta. was encountered, it could have been encounterpchidd evaluated td” (T). For the above
example this means th&y > 0)' € PD(output(z)) because when the outcome of predicate- 0 is F, no
definition of x is encountered after executionpft> 0 while if y > 0 had evaluated t@' the definitionz = 2 would
have been encountered. The potentially depends propeatgtatic property ofi which is precomputed and later
used at runtime to compute relevant slices.

In an earlier study [23] we reported that when faults aregueim predicate statements, full slices are sometimes
inadequate and therefore one must use dynamic relevaas slic this earlier study faults were artificially injected
in predicates and studied. In contrast, the results repamtéhis paper are based upon some real bugs reported by
users. We observed that for these real bugs relevant ske&zgnot needed even though some of these bugs did

influence the outcomes of predicates during the failed runuriderstand why relevant slices were needed in the

16

earlier study but not in this new study we further studiedniature of bugs in the programs. In the earlier study
based upon Siemens suite we noticed that many bugs wereeijeg changing the predicates and even shortening
the predicates by eliminating part of the condition. As aultethe situation of the type illustrated earlier where
code that should have been executed is bypassed arosdrrgdné need for relevant slicing. On the other hand,
when we studied the incorrect evaluations of predicatesahlvugs we noticed a very different behavior. In most
of the cases incorrect evaluation of predicates was présgmograms with buffer overflow bugs. Here incorrect
evaluation of a look predicate caused the loop body to beutgddoo many times leading to buffer overflow and
memory corruption which caused the program to crash. Inratioeds, the incorrect evaluation of predicates did

not cause execution of code to be bypassed and hence theanessihiy relevant slicing did not arise.

4.2 Exploring Dynamic Slices

A dynamic slice provides a fault candidate set that the Enogmner must examine to identify the faulty statement.
Therefore smaller the set of statements that the user hasatoiee the better it is. Even though dynamic slices
produce fault candidate sets that are small in comparistiretset of executed statements, it can still be quite a lot
of work to examine all of the statements in these slices. dfioee we considered a strategy in which the statements
in the dynamic slice arerderedand the programmer examines the statements in that ordee Ba faulty code
is encountered by the programmer, the fault is located amgtbgrammer need not examine rest of the dynamic
slice. In other words, the programmer need not always e&pha entire dynamic slice. The strategy we used orders
the statements according to tlependence distantetween them and the statement at which error was observed.
More precisely, the dependence distance of a statemeng idythamic slice is the length of the minimum length
chain of dependences starting from the statement and eatlihg statement at which error was observed.

The results of this experiment are discussed next. In Talpte olumnSlice Typendicates the kind of slice
that was explored in this experiment. As we can see, we exglire dynamic data slice®) for programs
with memory bugs and dynamic full sliceg'§) for other programs. Based upon the observations of theedieg

sections this choice is most appropriate. The coliBtioe SizgSS) gives the size of the dynamic slice being

17

Table 3. Exploring Dynamic Slices.

Program Slice | Slice Size| Explored SS| EDD
Type (SS) (ESS)
grep 2.5 FS 731| 86 (11.76%) 9
grep 2.5.1 (a) FS 32| 25(78.12%) 8
grep 2.5.1 (b) FS 599 | 157 (26.21%) 11
grep 2.5.1 (c) FS 12 6 (50.00%) 3
flex 2.5.31 (a) FS 695 13 (1.87%) 5
flex 2.5.31 (b) FS 272 | 109 (40.07%) 31
flex 2.5.31 (c) FS 50 3 (6.00%) 2
make 3.80 (a) FS 981 | 187 (19.06%) 21
make 3.80 (b) FS 1290| 53 (4.11%) 19
gzip-1.2.4 DS 14 2 (14.28%) 2
ncompress-4.2.4 DS 13 1(7.69%) 1
polymorph-0.4.0 DS 17 4 (23.53%) 3
tar-1.13.25 DS 44 5 (11.36%) 4
bc-1.06 DS 76 4 (5.26%) 3
tidy-34132 DS 148 2 (1.35%) 2
mutt-1.4.2.1 DS 242 17 (7.02%) 4
pine-4.44 (a) DS 102 3 (2.94%) 3
pine-4.44 (b) DS 605 38 (6.28%) 18
mc-4.5.55 DS 48 2 (4.17%) 2

explored andExplored Slice Sizgives the size of portion of the slice that was explored leetbe faulty code was
encountered. The size 1SS as a percentage &fS is also given in parenthesis. As we can see, the lines of code
in the dynamic slice that were explored as a percentage dbthklines of code in the dynamic slice ranges from
1.35% to 78.12%. In seven out of eleven cases this numbesiagte digits. Thus, using our proposed strategy, in
practice, a programmer has to examine far fewer statemeinislly the maximum dependence distance up to which
the dynamic slice was explore@ D D) is given. As we can see this dependence distance was fouredsimall for

programs where dynamic full slices were used and for prognaith memory bugs this distance was mostly one.

18

4.3 Cost of Dynamic Slicing

The cost of dynamic slicing consists of two main componetits:space cost which is the memory needed to
store the dynamic dependence graph (DDG) required for cangpthe dynamic slices; and the execution time cost
which includes the time to collect the runtime informatiordauild the dynamic dynamic dependence graph and
the time to perform dynamic slicing. The above costs for tdt§ studied are given in Table 4. The size of the
dynamic dependence graph is given in coluDIDG Size The size of the graph depends upon the length of the
failing program run. As we can see the size varies from 173 &Betarly 209 MB. The time spent on building the
dynamic dependence graph, given by coludidG Time ranges from 0.4 seconds to 284.1 seconds. As we can see,
the time is typically proportional to the length of the rure.ithe size of the DDG. The slicing times are given in

columnSilicing Timeand they range from 0.01 to 6.71 seconds.

Table 4. Dynamic Dependence Graph Size and Execution Times.

Program DDG Size| Slicing Time | DDG Time

(KB) (seconds) (seconds
grep 2.5 760 0.04 35.5
grep 2.5.1(a) 794 0.04 29.2
grep 2.5.1(b) 333 0.02 4.4
grep 2.5.1(c) 968 0.06 20.1
flex-3.51(a) 196131 4.39 135.5
flex-3.5.31(b) 202441 3.14 138.9
flex-3.5.31(c) 199170 6.71 130.2
make 3.80(a) 17409 0.24 28.0
make 3.80(b) 15801 1.74 34.6
gzip-1.2.4 164 0.01 1.2
ncompress 211 0.03 1.1
polymorph 173 0.03 0.4
tar 420 0.01 10.9
bc 1404 0.15 6.7
tidy 92872 0.53 17.5
mutt-1.4.2.1 74358 4.34 284.1
pine-4.44 (a) 44108 6.16 63.5
pine-4.44 (b) 70266 4.33 68.4
mc-4.5.55 208849 0.6 120.7

19

5 Reated Work

Dynamic slicing was introduced as an aid to debugging by Kard Laski in 1988 [14]. Although the idea seems
very promising, it has not been used in practice. There isatjgal reason for this. The problem of the high cost
of computing dynamic slices had not been addressed tilhtbcdn recent work [26, 24], we developed practical
implementations of dynamic slicing for both backward comapion [26] and forward computation [24] algorithms
have been developed. We demonstrated that dynamic sliqgeegfam runs that were 67 million to 140 million
instructions in length, on an average, took 1.92 second6.@b&econds to compute [26].

Dynamic slicing has been studied as an aid to debugging by mesearchers [2, 13, 15, 4, 18]. Agrawal et
al. [4] proposed subtracting a single correct executioretfaom a single failed execution trace. In [18], Pan and
Spafford presented a family of heuristics for fault locatian using dynamic slicing. Compared to these previous
works, we are the first one to compare the effectiveness admymslicing algorithms in fault location.

General studies of dynamic slice sizes have been conduEtegdexample in our work in [26] showed that the
number of distinct statements executed at least once daimggram execution were 2.46 to 56.08 times more than
the number of statements in the dynamic slice. Howevergthesults are based upon computing dynamic slices of
randomly selected values computed by correct versionsagframs. In another study [23] we computed dynamic
slices based upon failed runs of faulty versions of prograhiese faults had been injected into the programs. In
contrast the study presented in this paper consider a seabfaults reported by users of widely used programs.
Some of the observations of this study based upon real fatdtglifferent from those of the previous study of

injected faults. The differences and the explanation feséhdifferences are as follows:

e First, in our current study, for the faults gr ep, no output was produced and hence instead of backward
dynamic slices we had to make use of forward dynamic sliciesilé® situation did not arise for the Siemens

suite programs used in the earlier study [23].

e Second, in the earlier study the need for using relevaringligrose while in our current study data and full

dynamic slices were able to capture all faults. As explaeadier, in our current study that contains many

20

memory bugs, most of the situations where predicates aealuacorrectly, the incorrect evaluation did not
cause bypassing of the code but rather execution of the ¢@deshould have been bypassed. Therefore,

relevant slicing was not needed.

We would also like to point out that, while examining the staents in a dynamic slice, the relevance of de-
pendence distance from the erroneous output has long beesideced useful [5, 6, 16]. Therefore in tools for
visualizing dynamic slices, ways have been explored to conicate to the programmer the dependence distance
information. For example, in [16], Krinke uses differenadis of gray to highlight the statements in the dynamic
slice. In particular, the darker the shade, the smalleragigpendence distance. In this paper, through experiments,
we have validated the merit of using dependence distancmiattion while exploring dynamic slices.

A lot of interesting research other than dynamic slicingdta@en carried on in fault location. Zeller has presented
a series techniques [10, 22, 8] from isolating the critioglit to isolating cost-effect chains in both space and time.
The basic idea is to find the specific part of theut/program statevhich is critical to the program failure by
minimizing the difference between tigut/program statéeading to a passing run and that leading to a failing run.
We believe our technique can be combined with Zeller’s temin many aspects, for instance, the isolatedses
are perfect slicing criteria starting from which dynamicisig may produce a much smaller fault candidate set than
from the failure point. Renieris and Reiss [20] presenteglchnique that selects the single passing run that most
resembles to the failing run and reports the difference betwthese two runs. Jones [12] presented a technique that
uses software visualization to assist fault location. Tteshnique provides a ranking of each statement according

to its ratio of failing tests to correct tests.

6 Conclusions

The development of dynamic slicing was motivated by the j@mtof locating the faulty code when an execution
of a program fails. There has been a significant amount oreben developing algorithms for computing different

types of dynamic slices. The contribution of this paper ipr@sent an experimental evaluation of effectiveness of

21

dynamic slices for the benefit of using them to locate a fastiyement in a program. In particular, this is the first
study based upon real faults reported by users of widely peegtams. From our experiments we found that data
slices were found to be very effective for memory relatedtéaand for remaining faults full slicing was adequate.
None of the faults required the use of relevant slicing. fmeve found that even if the slice size is large, the user

may have to examine only a subset of statements in the slioesbencountering the faulty statement.

Acknowledgements:

We would like to thank the reviewers for their suggestioret #ncouraged us to do even more through job of

revising the original submission.

References

[1] H. Agrawal and J. Horgan, “Dynamic Program SlicindyCM SIGPLAN Conference on Programming Lan-

guage Design and Implementatiqgrages 246-256, 1990.

[2] H. Agrawal, R. DeMillo, and E. Spafford, “Debugging witbynamic Slicing and Backtracking3oftware

Practice and Experien¢&/l. 23, No. 6, pages 589-616, 1993.

[3] H. Agrawal, J.R. Horgan, E.W. , and S.A. London, “Increrte Regression TestingTEEE Conference on

Software Maintenanggages 348-357, Montreal, Canada, 1993.

[4] H. Agrawal, J. Horgan, S. London, and W. Wong, “Fault Liication Using Execution Slices and Dataflow

Tests,"6th IEEE International Symposium on Software ReliabilinglBeering pages 143-151, 1995.

[5] G. Antoniol, R. Fiutem, G. Lutteri, P. Tonella, S. Zanfand E. Merlo, “Program Understanding and Main-
tenance with the CANTO Environmentjiternational Conference on Software Maintenangages 72-, Bari,

Italy, October 1997.

[6] T. Ball and S.G. Eick, “Visualizing Program SlicesEEE Symposium on Visual Languagpages 288-295,

St. Louis, Missouri, October 1994,

22

[7]1 A. Beszedes, T. Gergely, Z.M. Szabo, J. Csirik, and T.n@thy, “Dynamic Slicing Method for Maintenance
of Large C Programs 5th European Conference on Software Maintenance and Ressgig pages 105-113,

March 2001.

[8] H. Cleve and Andreas Zeller, “Locating Causes of ProgFaitures”,27th International Conference on Soft-

ware Engineeringpages 342-351, 2005.

[9] T. Gyimothy, A. Beszedes, |. Forgacs, “An Efficient Redet Slicing Method for Debugging”th European
Software Engineering Conference and 7th ACM SIGSOFT latemmal Symposium on Foundations of Software

Engineering pages 303-321, Toulouse, France, 1999.

[10] R. Hildebrandt and A. Zeller, “Simplifying Failure-gtucing Input”, International Symposium on Software

Testing and Analysjpages 135-145,2000.

[11] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “EBsiments on the Effectiveness of Dataflow- and
Controlflow-based Test Adequacy CriteridBth International Conference on Software Engineerjppages 191-

200, 1994.

[12] J.A. Jones, "Fault Localization Using VisualizatiohTest Information”,26th International Conference on

Software Engineeringpage 54-56,2004.

[13] M. Kamkar, “Interprocedural Dynamic Slicing with Agpations to Debugging and Testing?hD Thesis

Linkoping University, 1993.

[14] B. Korel and J. Laski, “Dynamic Program Slicindfiformation Processing Letter&/ol. 29, No. 3, pages

155-163, 1988.

[15] B. Korel and J. Rilling, “Application of Dynamic Slicipin Program Debugging3rd International Workshop

on Automatic Debuggingrages 43-58, Linkoping, Sweden, 1997.

[16] J. Krinke, “Visualization of Program Dependence anidé&d,” International Conference on Software Mainte-

nance pages 168-177, 2004.

23

[17] J.Lin-Nielsen. “BuDDy, A Binary Decision Diagram Paadge,” Department of Information Technology, Tech-

nical University of Denmarkhttp://www.itu.dk/research/buddy/.

[18] H. Pan and E. H. Spafford, “Heuristics for Automatic ladization of Software Faults"Technical Report

SERC-TR-116-FPurdue University, 1992.

[19] S. Narayanaswamy, G. Pokam, and B. Calder, “BugNettigoausly recording program execution for deter-

ministic replay debugging32nd International Symposium on Computer Architectpegyes 284-295, 2005.

[20] M. Renieris and S. Reiss, “Fault Localization with NestrNeighbor Queries|EEE International Conference

on Automated Software Engineerjqmages 30-39, 2003.

[21] M. Weiser, “Program Slicing [EEE Transactions on Software Engineerivgl. SE-10, No. 4, pages 352-357,

1982.

[22] A. Zeller, “Isolating Cause-effect Chains from Comg@uPrograms”10th ACM SIGSOFT Symposium on

Foundations of Software Engineeringages 1-10, Charleston, South Carolina, 2002.

[23] X. Zhang, H. He, N. Gupta, and R. Gupta, “Experimentaalgation of using Dynamic Slices for Fault
Location,” SIGSOFT-SIGPLAN Sixth International Symposium on Autednaimnd Analysis-Driven Debugging

pages 33-42, Moterey, California, September 2005.

[24] X. Zhang, R. Gupta, and Y. Zhang, “Effective Forward Guartation of Dynamic Slices Using Reduced Or-
dered Binary Decision DiagramslEEE International Conference on Software Engineeripgges 502-511,

Edinburgh, UK, 2004.

[25] X. Zhang, R. Gupta, and Y. Zhang, “Precise Dynamic &tichlgorithms,”IEEE/ACM International Confer-

ence on Software Engineeringages 319-329, Portland, Oregon, May 2003.

[26] X.Zhang and R. Gupta, “Cost Effective Dynamic Prograiig,” ACM SIGPLAN Conference on Program-

ming Language Design and Implementatipages 94-106, June 2004.

24

[27] P. Zhou, W. Liu, L. Fei, S. Lu, F. Qin, Y. Zhou, S.P. Midkifand J. Torrellas, “AccMon: automatically
detecting memory-related bugs via program counter-basediants,”37th Annual International Symposium on

Microarchitecture pages 269-280, 2004.

[28] http://lwww.cse.unl.edw/galileo/sir

[29] http://lwww.elis.ugent.be/diablo/

[30] http://valgrind.org/

25

