
A Study of Effectiveness of Dynamic Slicing in Locating Real Faults

Xiangyu Zhang Neelam Gupta Rajiv Gupta

Department of Computer Science

The University of Arizona

Tucson, AZ 85737

Contact email: gupta@cs.arizona.edu

Abstract

Dynamic slicing algorithms have been considered to aid in debugging for many years. However, as far as we know, no

detailed studies on evaluating the benefits of using dynamicslicing for locating real faults present in programs have been

carried out. In this paper we study the effectiveness of fault location using dynamic slicing for a set of real bugs reported

in some widely used software programs. Our results show thatof the 19 faults studied, 12 faults were captured by data

slices, 7 required the use of full slices, and none of them required the use of relevant slices. Moreover, it was observed that

dynamic slicing considerably reduced the subset of programstatements that needed to be examined to locate faulty statements.

Interestingly, we observed that all of the memory bugs in thefaulty versions were captured by data slices. The dynamic slices

that captured faulty code included 0.45% to 63.18% of statements that were executed at least once.

1 Introduction

The concept of program slicing was first introduced by Mark Weiser [21]. He introduced program slicing as a

debugging aid and gave the firststatic slicingalgorithm. The static slice of a reference to a variable at a program

point is the set of program statements thatcan influencethe value of the variable at the given program point under

some execution. Therefore every statement in the program from which there is a chain of static data and/or control

dependences leading to the variable reference belongs to the static slice of the variable reference. Let us consider a

program containing faulty statements. Given a program point at which the value of a variable is output, if the static

slice of this variable reference contains one or more faultystatements then under some executions incorrect results

may be produced at the output statement. By studying the static slice of the output, a programmer may be able to

detect the faulty statements. However, since static slicescan be large due to the use of conservative dependence

analysis, effort required to locate the faulty statement isexpected to be large.

To improve the effectiveness of slicing in program debugging, Korel and Laski proposed the idea ofdynamic

slicing [14]. The dynamic slice of a variable at an execution point includes all those executed statements which

actually effectedthe value of the variable at that point during a specific execution. In other words, a statement

belongs to the dynamic slice of a variable reference at an execution point if there is a chain ofdynamicdata and/or

control dependences from the statement to the variable reference. By studying the dynamic slice of a variable we

are in a better position to determine the actual cause which led to the variable having an erroneous value under

the specific execution being debugged. Since dynamic slicescontain a significantly smaller subset of statements

belonging to corresponding static slices, they are more suitable for debugging. Results of our study of dynamic slices

reported in [26] show that the number of distinct statementsexecuted at least once during a program execution were

2.46 to 56.08 times more than the number of statements in a dynamic slice. However, the above results were based

on computing large number of slices for correct versions of programs. In this paper we will study the effectiveness

of dynamic slices for locating faults in program versions with real bugs.

2

While in the above discussion we have considered dynamic slices that are computed by considering both data and

control dependences, previous works have considered threevariants of dynamic slices. Different dynamic slicing

algorithms use different notions of what they consider asinfluencingthe value of a variable for a given program

execution. These three variants include:

• Data slicing. Statements that directly or indirectly influence the computation of faulty output value through

chains ofdynamic data dependencesare included in data slices [25].

• Full slicing. Statements that directly or indirectly influence the computation of faulty output value through

chains ofdynamic data and/or control dependencesare included in full slices [14].

• Relevant slicing.While relevant slices also consider data and control dependences, in addition, they include

predicates that actually did not affect the output but couldhave affected it had they been evaluated differently,

direct data dependences of these predicates, and chains of dynamic data and control dependences of these

direct data dependences [3, 9].

While dynamic slicing has long been considered useful for debugging [1, 14, 2], experimental studies evaluating

the effectiveness of slicing have not been carried out. The main goal of this paper is to experimentally evaluate the

three dynamic slicing algorithms. The effectiveness of a given slicing algorithm in fault location is determined by

two factors:How often is the faulty statement present in the slice?andHow big is the slice, i.e. how many statements

are included in the slice?We present a comparative evaluation of data and full dynamicslicing algorithms with

respect to these two criteria. The following relationship holds among the various slices: Static Slice⊇ Relevant

Slice⊇ Full Slice⊇ Data Slice. For the class of errors being considered, although, the faulty statement that causes

an erroneous output to be produced is guaranteed to be present in the static slice and the relevant slice of the

erroneous output, it may or may not be captured by the data slice and full slice.

We carried out experiments with a set ofreal faulty program versions of some widely used programs. The key

results of our experimental study are as follows:

3

• Applicability. Our results show that dynamic slicing was found to be applicable in all faults studied. For 15

faults, the dynamic slice considered was the backward dynamic slice of an erroneous output. For 4 faults the

program did not produce any output. In these cases we were able to capture the faults in the forward dynamic

slice of the minimal failure inducing input [10]. In our study dynamic slicing we found that 12 faults were

captured by data slices and 7 faults required the use of full slices. Interestingly, we observed that all of the

memory bugsin the faulty versions which cause programs to crash due to segmentation fault were captured

by thedata slices.

• Effectiveness.It was observed that dynamic slicing considerably reduced the subset of program statements

that needed to be examined to locate faulty statements. The dynamic slices that captured faulty code included

0.45% to 63.18% of statements that were executed at least once. These statements represented only a fraction

of the total code (0.04% to 8.52%) in the programs.

• Relevant Slicing.Although in general faulty code may not be captured by full slices and use of relevant slicing

may be required, we observed that for this set of real bugs we did not require the use of relevant slicing.

• Exploring Slices.Having computed the fault candidate set in form of a dynamic slice, this is next presented to

the programmer who must examine it to locate faulty statements. We found that if the programmer examines

statements starting from the statement that computed the erroneous value going backwards in the order of

their appearance, 1.35% to 78.12% of the statements in the dynamic slices was examined before the faulty

statements were located.

The rest of the paper is organized as follows. In section 2 we give describe data and full dynamic slicing. In

section 3 we give the overview of our slicing tool which can beeasily adapted to compute different types of slices.

Section 4 presents the results of our experiments. Related work is presented in section 5 and the conclusions are

given in section 6.

4

2 Dynamic Slicing Algorithms

In this section we illustrate the strengths and weaknesses of two dynamic slicing algorithms considered in this

paper using examples. We also briefly describe the dynamic information that must be captured in order to compute

the dynamic slices.

2.1 Data Slicing

Let us consider the execution of the program on an input that reveals the fault by producing an erroneous output

value. Further let us assume that the presence of the faulty statement does not alter the execution control flow, i.e.

the set of statements executed for this input are the same whether or not the fault is present. Under these conditions,

the erroneous output must have been produced by a fault in theform of a computational error in one of statements

whose computed value is related to the output value through achain of dynamic data dependences. The data slice of

the erroneous output value includes all statements that arevisited by starting from the output value and then taking

the transitive closure over dynamic data dependences. Thus, in the above situation, the faulty statement will be

present in the data slice of the erroneous output. Because a dynamic data slice can be small and easy to understand,

the faulty statement is easier to locate by examining the data slice.

The example in Figure 1 illustrates data slicing. The program on the left hand side of the figure is a faulty version

of the program in which statement 13 contains an error (as indicated in the figure,z = x− y + 1 should be replaced

by z = x − y). For a test input the correct and erroneous output values are shown in the figure. As we can see,

this error does not alter the control flow up to the point the program generates an erroneous output value. The

computation of the data slice of the erroneous output value of z yields the set of statements{5, 6, 13, 14}. Apart

from the read and output statements, we have statement13 in this data slice which is the faulty statement.

The computation of a data slice requires the identification of dynamic data dependencesat runtime. In presence

of arrays and pointers we must maintain relevant information to detect dynamic data dependences. An execution of

a statement at runtime is uniquely identified by the identityof statement and the execution instance of that statement

(because a statement may be executed multiple times at runtime). A dynamic data dependence exists from an

5

1. read (a);
2. read (n);
3. i=0;
4. while (i<n) {
5. read (x);
6. read (y);
7. a=a/x;
8. b=x;
9. if (a>1)
10. b=a-4;
11. if (b>0)
12. z=x+y;

else
13. z=x-y+1;
14.output (z);
15.i=i+1;

}

(Faulty Statement)

13. z = x − y + 1

should be13. z = x − y

Input: a = 2; n = 1; x = −1; y = 1;

Erroneous output:z = −1;

Correct output:z = −2;

Data Slice = {5, 6, 13, 14}

Figure 1. Example of Data Slice.

execution instance of a statement that defines a value and an execution instance of a statement that later uses that

value. For each address, we must remember the execution instance of the statement that last wrote to that address.

Later when the value is used by an execution instance of a statement, we can establish the dynamic data dependence

between the relevant execution instances of two statements.

2.2 Full Slicing

Let us consider another example in which the faulty statement is not captured by the data slice but it is captured by

the full slice. Figure 2 shows a faulty program where there isa mistake in statement 10 as shown. When this faulty

program is executed on the given input, incorrect output value is produced at statement 14. The program outputs

the value4 at 14 while the correct output value is0. The faulty statement10 is not in set{5, 6, 12, 14} which is

the data slice ofz at 14. This is because the fault does not affect value ofz at 14 through a chain of dynamic

data dependences. Instead fault in statement10 affects the outcome of predicate at11 changing the direction of

the branch and thus causing statement12 to be executed instead of statement13. The value ofz thus computed is

6

altered. The data slice ofz at 14 contains statement12 which is executed by mistake but it does not contain the

faulty statement10.

1. read (a);
2. read (n);
3. i=0;
4. while (i<n) {
5. read (x);
6. read (y);
7. a=a/x;
8. b=x;
9. if (a>1)
10. b=a-3;
11. if (b>0)
12. z=x+y;

else
13. z=x-y;
14.output (z);
15.i=i+1;

}

(Faulty Statement)

10. b = a − 3

should be→ 10. b = a − 4

Input: a = 8; n = 1; x = 2; y = 2;

Erroneous output:z = 4;

Correct output:z = 0;

Full Slice = {1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14}

10 6∈ Data Slice = {5, 6, 12, 14}

Figure 2. Example of Full Slice vs. Data Slice.

Full slices correctly handle the above situation by considering control dependences. A statements is true (false)

control dependent upon a predicatep if and only if p’s true (false) outcome determines whethers will be executed.

Full slices are computed by taking the transitive closure over both dynamic data and control dependence edges

starting from the output value. In the above example, when both types of dependences are considered, statement

10 is included in the full slice. This is because statement12 is control dependent upon predicate11 which is data

dependent upon statement10.

To compute full slices, in addition to detecting dynamic data dependences, we must also detectdynamic control

dependences. While a statement can be statically control dependent uponmultiple predicates, at runtime, each

execution instance of a statement is dynamically control dependent upon a single predicate. The predicate on which

the execution of a statement is control dependent is found asfollows. First let us assume that there are no recursive

procedures. Given an execution of a statements, prior to its execution, the most recently executed predicate p

7

on whichs is statically control dependent is found. The execution ofs is dynamically control dependent upon

this execution ofp. Timestamps can be associated with execution instances of statements in order to evaluate the

above condition. A second condition is needed in presence ofrecursion. For a given execution of statements to be

dynamically control dependent upon an execution of a predicatep, the execution instances of both must correspond

to the same function invocation.

3 Our Slicing Tool

We have developed a dynamic slicing tool which was used to conduct the experiments described in the next

section. Our tool executesgcc compiler generated binaries for Intel x86 and computes dynamic slices based upon

forward computation algorithms described in the precedingsection. Even though our tool works on binary level,

the slices can be mapped back to source code level using the debugging information generated bygcc.

Diablo* Valgrind

Slicing

Instrumenter

roBDD

binary

Slicing

Runtime

CD, PD

events slices

basic block (bb)

Instrumented bb

Outputs

inputs

Figure 3. Slicing Infrastructure.

Figure 3 shows the main components of the tool. Thestatic analysiscomponent of our tool computes static

control dependence (CD) and potential dependence (PD) information required during full and relevant slice com-

putations from the binary. The static analysis was implemented using theDiablo [29] retargetable link-time binary

rewriting framework as this framework already has the capability of constructing the control flow graph from x86

binary.

Thedynamic profilingcomponent of our system which is based upon theValgrindmemory debugger and profiler

[30] accepts the samegcc generated binary, instruments it by calling theslicing instrumenter, and executes the

instrumented code with the support of theslicing runtime. The slicing instrumenter and slicing runtime were

developed by us to enable collection of dynamic informationand computation of dynamic slices. Valgrind’s kernel

8

is a dynamic instrumenter which takes the binary and before executing any new (never instrumented) basic blocks

it calls the instrumentation function, which is provided bythe slicing instrumenter. The instrumentation function

instruments the provided basic block and returns the new basic block to the Valgrind kernel. The kernel executes

the instrumented basic block instead of the original one. The instrumented basic block is copied to a new code

space and thus it can be reused without calling the instrumenter again. The instrumentation is dynamic in the sense

that the user can enforce the expiration of any instrumentedbasic block such that the original basic block has to

be instrumented again (i.e., instrumentation can be turnedon and off as desired). Thus, we can easily turn off/on

the slicing instrumentation for sake of time performance orfor certain code, e.g. library code. The slicing runtime

essentially consists of a set of call back functions for certain events (e.g., entering functions, accessing memory,

binary operations, predicates etc.). The CD and PD information computed by the static analysis component is

represented based on the virtual addresses which can be understood by Valgrind.

Now let us briefly discuss the algorithms used for computing dynamic slices. Two types of methods for computing

backward dynamic slices have been proposed:backward computationmethods [1, 25]; andforward computation

methods [7, 24]. In backward computation methods the program dependences that are exercised during a program

execution are captured and saved in the form of a dynamic dependence graph. Dynamic slices are constructed

upon user’s requests by backward traversal of the dynamic dependence graph. Although this approach allows

computation ofall dynamic slices of all variables at all execution points, a problem with this method is its space

cost. Inforward computationmethods [7, 24] latest backward dynamic slices of all program variables are computed

and maintained as sets of statements as the program executes. Advantage of this approach is that the space cost is no

longer proportional to the length of execution but rather proportional to the number of variables times the number

of statements in the program. Therefore we decided to use forward computation method in this work.

As mentioned above, the forward computation algorithms maintain the latest dynamic slice for each variable/location.

These dynamic slices are stored inreduced ordered Binary Decision Diagram(roBDD) [17] component of our sys-

tem. Earlier work [24] identifies three characteristics of dynamic slices: same dynamic slices tend toreappearfrom

9

time to time during execution, different slices tend toshare statements, andclusters of statementslocated near each

other in the program often appear in a dynamic slice. These characteristics resulted in the observation that roBDD

representation of sparse sets was suitable for storing dynamic slices as it was both space and time efficient. The

roBDD benefits us in the following respects. Each unique slice is presented by unique integer number in roBDD,

which implies that if and only if two slices are identical, they are represented by the same integer number. The

whole set of statements in the slice can be recovered from roBDD using that number. This is critical to our de-

sign because now for each variable (memory location) we onlyneed to store one integer. Use of roBDD achieves

space efficiency because roBDD is capable of removing duplicate, overlapping, and clustered sets which are exactly

the characteristics of slices. Using roBDD also provides time efficiency because roBDD implementations of set

operations are very efficient. More details about why and howwe use roBDD can be found in [24].

We also implemented a simple debugging interface which provides limited capabilities including setting break-

points, continuing execution, stopping after certain steps of execution, slicing on a register, slicing on a memory

location, and slicing on the latest instance of a predicate.

4 Experimental Evaluation

In this section we present results of experiments that we conducted. For these experiments we collected faulty

versions of commonly used programs. Unlike our previous study [23] of dynamic slicing algorithms that used faulty

versions of programs created by injecting faults in them, this study uses real programs with real bugs that were re-

ported by users of these programs. We carried out two main experiments. The first experiment involves a study of

the data and full slices of these programs. This experiment enabled the comparison of data and full dynamic slicing

in terms of their applicability (i.e., their ability to capture faults) and effectiveness (i.e., their sizes). The second

experiment shows how the computed dynamic slices may be explored by the programmer to locate faults.

The faulty versions of the programs along with the descriptions of the faults are given in Table 1. The source

from which the faulty version was obtained is also given. As we can see, these programs are widely used. In

10

addition we would like to note that the first nine faults (i.e., faults in programsgrep 2.5 throughmake 3.80)

cause the programs to produce wrong outputs while the last ten faults (i.e., faults in programsgzip-1.2.4

throughmc-4.5.55) contain memory bugs lead to a segmentation error. Memory bugs essentially cause memory

corruption problems and when a corrupted memory location isaccessed, the program crashes with a segmentation

fault error message.

Table 1. Faults Used in the Study.

Program Bug Description Source

grep 2.5 using -i -o together produces wrong output http://savannah.gnu.org

grep 2.5.1 (a) using -F -w together produces wrong output http://savannah.gnu.org
(b) using -o -n together produces wrong output http://comments.gmane.org/

gmane.comp.gnu.grep.bugs/
(c) ”echo dor̂e — grep dor̂e” finds no match http://comments.gmane.org/

gmane.comp.gnu.grep.bugs/

flex 2.5.31 (a) some variable is not defined with option -l, http://soureforge.net
which fails the compilation of xfree86
(b) string ”]]” is not allowed in user’s code http://soureforge.net
(c) the generated code contains extra #endif http://soureforge.net

make 3.80 (a) backslashes in dependency names are not removedhttp://savannah.gnu.org
(b) fail to recognize the updated file status while http://savannah.gnu.org
there are multiple target in the pattern rule

gzip-1.2.4 1024 byte long filename overflows into global variableAccMon [27]
ncompress-4.2.4 1024 byte long filename corrupts stack return addressAccMon [27]

polymorph-0.4.0 2048 byte long filename corrupts stack return addressAccMon [27]

tar-1.13.25 wrong loop bounds lead to heap object overflow AccMon [27]

bc-1.06 misuse of bounds variable corrupts heap objects AccMon [27]

tidy-34132 memory corruption problem AccMon [27]

mutt-1.4.2.1i heap buffer bound miscalculation http://www.securiteam.com/

pine-4.44 (a) missing end quote corrupts stack http://www.xatrix.com/
(b) special characters corrupt heap buffer http://www.securityfocus.com/

mc-4.5.55 uninitialized string corrupts stack http://www.securityfocus.com/

11

4.1 Data Slices vs. Full Slices

Applicability and Effectiveness of Data and Full Dynamic Slicing. Our first experimented involved computing

the dynamic data slices and dynamic full slices for the failed runs that exercise the faults. Before we compute

dynamic slices we must identify a value in the failed run on which to perform dynamic data/full slicing. We

encountered three kinds of situations in these faults whichwere handled as follows:

• For programs that produced an incorrect output value, backward dynamic slicing was performed starting at

the first incorrect output value produced during the failed run.

• For the programs that crashed, the value which when referenced caused the crash served as the basis for

computing the backward dynamic slice.

• For the four faults ingrep, it was not possible to perform backward dynamic slicing. When these four faults

were exercised the program did not crash but rather it produced incorrect output. However, this incorrect

output essentially wasno output. Since no output was produced, we did not have a value on whichto base

backward slicing computation. To handle these situations we found the minimal failure inducing input [10]

which is the part of the input that triggered the failure. Thefaulty code was then captured in theforward

dynamic slice of the failure inducing input.

The results of dynamic slicing are shown in Table 2. The column In indicates whether the faulty code was

captured by the data slice (DS), in this case it is also captured by the full slice, or whether it is only captured by

the full slice (FS). As we can see, out of the 19 faults considered, 12 faults were captured by dynamic data slices,

and the remaining 7 faults were captured only by dynamic fullslices. We would like to mention that in case of

faults inpine andmc, where the faults are captured by the dynamic data slices, wewere unable to compute the

sizes of the full dynamic slices. Forpine, the version ofdiablo used in our system was not able to handle the

compiled binary because it is very large (over thirty megabytes) and thus control dependence analysis could not be

performed. Formc, we ran out of shadow space used byvalgrind for computing full slices. However, we were

12

Table 2. Data Slices and Full Slices.

Program LOC Exec (LOC%) DS (Exec%) FS (Exec%) In Min (LOC%)

grep 2.5 8581 1157 (13.48%) 67 (5.79%) 731 (63.18%) FS 731 (8.52%)

grep 2.5.1 (a) 8587 509 (5.93%) 15 (2.95%) 32 (6.29%) FS 32 (0.37%)

grep 2.5.1 (b) 8587 1123 (13.08%) 90 (8.02%) 599 (53.34%) FS 599 (6.98%)

grep 2.5.1 (c) 8587 1338 (15.58%) 6 (0.45%) 12 (0.90%) DS 6 (0.07%)

flex 2.5.31 (a) 26754 1871 (6.99%) 159 (8.59%) 695 (37.15%) FS 695 (2.60%)
flex 2.5.31 (b) 26754 2198 (8.22%) 89 (4.05%) 272 (12.37%) FS 272 (1.07%)

flex 2.5.31 (c) 26754 2053 (7.67%) 24 (1.17%) 50 (2.44%) DS 24 (0.09%)

make 3.80 (a) 29978 2277 (7.60%) 388 (17.04%) 981 (43.08%) FS 981 (3.27%)

make 3.80 (b) 29978 2740 (9.14%) 588 (21.46%) 1290 (47.08%) FS 1290 (4.30%)

gzip-1.2.4 8164 118 (1.45%) 14 (11.86%) 34 (28.81%) DS 14 (0.17%)

ncompress-4.2.4 1923 59 (3.07%) 13 (22.03%) 18 (30.51%) DS 13 (0.68%)

polymorph-0.4.0 716 45 (6.29%) 17 (37.78%) 21 (46.67%) DS 17 (2.38%)
tar-1.13.25 25854 445 (1.72%) 44 (9.89%) 105 (23.60%) DS 44 (0.17%)

bc-1.06 8288 636 (7.67%) 76 (11.95%) 204 (32.07%) DS 76 (0.92%)

tidy-34132 31132 1519 (4.88%) 148 (9.74%) 554 (36.47%) DS 148 (0.48%)

mutt-1.4.2.1 71774 2551 (3.55%) 242 (9.49%) 1052 (41.24%) DS 242 (0.34%)

pine-4.44 (a) 253832 3930 (1.55%) 102 (2.60%) - DS 102 (0.04%)

pine-4.44 (b) 253832 8956 (3.53%) 605 (6.76%) - DS 605 (0.24%)

mc-4.5.55 66944 3154 (4.71%) 48 (1.52%) - DS 48 (0.07%)

able to compute dynamic data slices for these programs. Sinces faults were captured by the dynamic data slices, the

relevant results for these programs are being reported.

Now let us see how dynamic slicing reduces the amount of code the programmer has to examine to locate faulty

code. In Table 2,LOC is the lines of code in each program,Execrepresents the lines of code that are actually

executed during the failed run (i.e., the remaining lines ofcode are not executed during the failed run) – the number

in parenthesis is the value ofExecexpressed as a percentage ofLOC. DSandFSgive the lines of code that are not

only executed but also belong to the dynamic data slices and full slices respectively – the numbers in parenthesis

are the values ofDS andFS expressed as a percentage ofExec. Finally, Min is the number of lines of code in

the smallest ofExec, DS, andFS that actually captures the faulty code – the number in parenthesis is the value of

Min expressed as a percentage ofLOC. In other words,Min is the fault candidate set that must be examined by the

13

programmer to locate faulty code. From the data in Table 2 we can make several observations.

By analyzing the above data we observe the following. First we notice that the lines of code inExecis a small

percentage ranging from 1.45% to 15.58% of the total lines ofcodeLOC in the program. SinceExecis a small

percentage ofLOC, even this rudimentary dynamic information is quite effective in reducing the size of the fault

candidate set presented to the programmer for examination.Second, we observe that the sizes of dynamic data and

full slices are significantly smaller thanExec. The sizes ofDSrange from 0.45% to 37.78% of the sizes ofExecand

the sizes ofFSrange from 0.90% to 63.18% of the sizes ofExec. We also observe that sizes of dynamic data slices

are significantly smaller than sizes of dynamic full slices in most of the cases. Finally, theMin column we present

the size of the fault candidate set that is of significance forthe programmer. We observe that the lines of code in

Min is a very small percentage ranging from 0.04% to 8.52% ofLOC the total lines of code in the program. Thus

we conclude that dynamic information offers significant reductions in the size of the fault candidate set.

Memory Bugs. One key issue is when to use dynamic data slices and when to usefull dynamic slices. We observe

that for all faults that are memory bugs dynamic data slices captured the faulty code. It is easy to identify that the

program has been effected by a memory bug when it crashes witha segmentation fault error. In such situations the

user can use dynamic data slicing instead of full dynamic slicing. Through further analysis that we next describe, we

determined the reason due to which dynamic data slices are soeffective for programs with memory bugs that cause

program to crash with a segmentation fault. In other words, even though data slicing is not effective in capturing

faulty statement in general, it is very effective for memoryrelated bugs. Since the data slices can be significantly

smaller than the full slices (e.g.,tar, bc, etc.) and therefore using data slices for memory related bugs it quite

advantageous.

The reason why data slices are so effective for memory bugs isthat the program crash is caused due to the

presence of anunexpected dynamic data dependencebetween the point at which memory is corrupted and the

later point at which the corrupted value is used. In fact the memory corruption typically corrupts a pointer and its

use causes a crash because it dereferences the pointer. Dynamic data slice captures all appropriate dynamic data

14

aaa a 000

...aaaaa…

...aaaaa…

...aaaaa...

char ifname[1024]

...aaaaa...

Memory Layout

Heap

BSS segment

Data segment

Failure-inducing input

0x8093214

(char*) env

Overflow

0x8092400

strcpy.c

 36 strcpy (char * __restrict to, const char * __restrict from)

 . . .

 40 for (; (*to=*from) !=0; ++from; ++to);

 41 return(save);

 . . .

gzip.c:

 152 #define MAX_PATH_LEN 1024

 . . .

 193 char * env;

 198 CHAR ifname[MAX_PATH_LEN];

 836 local int get_istat(iname,sbuf)

 . . .

 844 strcpy(ifname, iname);

 845 errno=0;

 1341 local void do_exit(exitcode)

 . . .

 1344 if (env!=NULL) free (env), env=NULL;

Figure 4. gzip Buffer Overflow Bug.

dependences including the unexpected dynamic data dependence and therefore it is able to capture faulty code. To

illustrate the above, let us consider the case ofgzip which contains a buffer overflow problem. In Figure 4, on the

left hand side we show the relevant code segment for the problem. The problem happens in thestrcpy statement

at line 844. Variableifname is a global array defined at line 198. The size of the array is defined as 1024. Before

thestrcpy statement at line 844, there is no check on the length of the string iname. If the length of string

iname is longer than 1024, then the buffer overflows. If the length of stringiname is larger than 3604, the value

of env is changed due to buffer overflow. This is because according to the memory layout shown in Figure 4, the

difference betweenenv andifname is 3604 bytes. Later when at line 1344free(env)is executed, the program

crashes due to presence of an illegal memory address inenv. When dynamic data slice is computed for this illegal

address, the faulty statement instrcpy is captured in the dynamic data slice.

Relevant Slicing. It has been observed [3, 9] that in some situations faulty statements are not captured by full

slices. Consider the following faulty version of a program.Let us consider the situation in which statementy = 0;

is erroneous and it causes the predicatey > 0 to evaluate to false instead of being true. False evaluationof the

predicate causes the execution of the assignment tox inside the if-statement to be bypassed leading to incorrect

15

value ofx to be output. Since the statement inside the if-statement isnot executed there is not dependence between

the output statement and the faulty statementy = 0;. In other words, the dynamic full slice does not capture the

faulty statement.

x = 1;

y = 0;

if y > 0 then

x = 2;

endif

output(x);

In general, the basic reason is that some statements which should have been executed did not get executed due to

the fault. To handle the above situation a new form of dependence needs to be introduced between certain predicate

outcomes and uses. Given a useu, let us define apotentially dependssetPD(u) such that the set contains members

of the form that specify predicates and their outcomes (i.e., pT or pF). If pT (pF) is present inPD(u), it means

that if prior to the execution ofu predicatep was executed, and its outcome wasT (F), then while no definition

corresponding tou was encountered, it could have been encountered ifp had evaluated toF (T). For the above

example this means that(y > 0)F ∈ PD(output(x)) because when the outcome of predicatey > 0 is F , no

definition ofx is encountered after execution ofy > 0 while if y > 0 had evaluated toT the definitionx = 2 would

have been encountered. The potentially depends property isa static property ofu which is precomputed and later

used at runtime to compute relevant slices.

In an earlier study [23] we reported that when faults are present in predicate statements, full slices are sometimes

inadequate and therefore one must use dynamic relevant slices. In this earlier study faults were artificially injected

in predicates and studied. In contrast, the results reported in this paper are based upon some real bugs reported by

users. We observed that for these real bugs relevant slicingwas not needed even though some of these bugs did

influence the outcomes of predicates during the failed run. To understand why relevant slices were needed in the

16

earlier study but not in this new study we further studied thenature of bugs in the programs. In the earlier study

based upon Siemens suite we noticed that many bugs were injected by changing the predicates and even shortening

the predicates by eliminating part of the condition. As a result the situation of the type illustrated earlier where

code that should have been executed is bypassed arose requiring the need for relevant slicing. On the other hand,

when we studied the incorrect evaluations of predicates in real bugs we noticed a very different behavior. In most

of the cases incorrect evaluation of predicates was presentin programs with buffer overflow bugs. Here incorrect

evaluation of a look predicate caused the loop body to be executed too many times leading to buffer overflow and

memory corruption which caused the program to crash. In other words, the incorrect evaluation of predicates did

not cause execution of code to be bypassed and hence the need for using relevant slicing did not arise.

4.2 Exploring Dynamic Slices

A dynamic slice provides a fault candidate set that the programmer must examine to identify the faulty statement.

Therefore smaller the set of statements that the user has to examine the better it is. Even though dynamic slices

produce fault candidate sets that are small in comparison tothe set of executed statements, it can still be quite a lot

of work to examine all of the statements in these slices. Therefore we considered a strategy in which the statements

in the dynamic slice areorderedand the programmer examines the statements in that order. Once the faulty code

is encountered by the programmer, the fault is located and the programmer need not examine rest of the dynamic

slice. In other words, the programmer need not always explore the entire dynamic slice. The strategy we used orders

the statements according to thedependence distancebetween them and the statement at which error was observed.

More precisely, the dependence distance of a statement in the dynamic slice is the length of the minimum length

chain of dependences starting from the statement and endingat the statement at which error was observed.

The results of this experiment are discussed next. In Table 3the columnSlice Typeindicates the kind of slice

that was explored in this experiment. As we can see, we explored the dynamic data slices (DS) for programs

with memory bugs and dynamic full slices (FS) for other programs. Based upon the observations of the preceding

sections this choice is most appropriate. The columnSlice Size(SS) gives the size of the dynamic slice being

17

Table 3. Exploring Dynamic Slices.

Program Slice Slice Size Explored SS EDD

Type (SS) (ESS)

grep 2.5 FS 731 86 (11.76%) 9
grep 2.5.1 (a) FS 32 25 (78.12%) 8

grep 2.5.1 (b) FS 599 157 (26.21%) 11

grep 2.5.1 (c) FS 12 6 (50.00%) 3

flex 2.5.31 (a) FS 695 13 (1.87%) 5

flex 2.5.31 (b) FS 272 109 (40.07%) 31

flex 2.5.31 (c) FS 50 3 (6.00%) 2
make 3.80 (a) FS 981 187 (19.06%) 21

make 3.80 (b) FS 1290 53 (4.11%) 19

gzip-1.2.4 DS 14 2 (14.28%) 2

ncompress-4.2.4 DS 13 1 (7.69%) 1

polymorph-0.4.0 DS 17 4 (23.53%) 3

tar-1.13.25 DS 44 5 (11.36%) 4

bc-1.06 DS 76 4 (5.26%) 3
tidy-34132 DS 148 2 (1.35%) 2

mutt-1.4.2.1 DS 242 17 (7.02%) 4

pine-4.44 (a) DS 102 3 (2.94%) 3

pine-4.44 (b) DS 605 38 (6.28%) 18

mc-4.5.55 DS 48 2 (4.17%) 2

explored andExplored Slice Sizegives the size of portion of the slice that was explored before the faulty code was

encountered. The size ofESS as a percentage ofSS is also given in parenthesis. As we can see, the lines of code

in the dynamic slice that were explored as a percentage of thetotal lines of code in the dynamic slice ranges from

1.35% to 78.12%. In seven out of eleven cases this number is insingle digits. Thus, using our proposed strategy, in

practice, a programmer has to examine far fewer statements.Finally the maximum dependence distance up to which

the dynamic slice was explored (EDD) is given. As we can see this dependence distance was found tobe small for

programs where dynamic full slices were used and for programs with memory bugs this distance was mostly one.

18

4.3 Cost of Dynamic Slicing

The cost of dynamic slicing consists of two main components:the space cost which is the memory needed to

store the dynamic dependence graph (DDG) required for computing the dynamic slices; and the execution time cost

which includes the time to collect the runtime information and build the dynamic dynamic dependence graph and

the time to perform dynamic slicing. The above costs for the faults studied are given in Table 4. The size of the

dynamic dependence graph is given in columnDDG Size. The size of the graph depends upon the length of the

failing program run. As we can see the size varies from 173 KB to nearly 209 MB. The time spent on building the

dynamic dependence graph, given by columnDDG Time, ranges from 0.4 seconds to 284.1 seconds. As we can see,

the time is typically proportional to the length of the run, i.e. the size of the DDG. The slicing times are given in

columnSlicing Timeand they range from 0.01 to 6.71 seconds.

Table 4. Dynamic Dependence Graph Size and Execution Times.

Program DDG Size Slicing Time DDG Time
(KB) (seconds) (seconds)

grep 2.5 760 0.04 35.5

grep 2.5.1(a) 794 0.04 29.2

grep 2.5.1(b) 333 0.02 4.4

grep 2.5.1(c) 968 0.06 20.1

flex-3.51(a) 196131 4.39 135.5
flex-3.5.31(b) 202441 3.14 138.9

flex-3.5.31(c) 199170 6.71 130.2

make 3.80(a) 17409 0.24 28.0

make 3.80(b) 15801 1.74 34.6

gzip-1.2.4 164 0.01 1.2

ncompress 211 0.03 1.1

polymorph 173 0.03 0.4
tar 420 0.01 10.9

bc 1404 0.15 6.7

tidy 92872 0.53 17.5

mutt-1.4.2.1 74358 4.34 284.1

pine-4.44 (a) 44108 6.16 63.5

pine-4.44 (b) 70266 4.33 68.4
mc-4.5.55 208849 0.6 120.7

19

5 Related Work

Dynamic slicing was introduced as an aid to debugging by Korel and Laski in 1988 [14]. Although the idea seems

very promising, it has not been used in practice. There is a practical reason for this. The problem of the high cost

of computing dynamic slices had not been addressed till recently. In recent work [26, 24], we developed practical

implementations of dynamic slicing for both backward computation [26] and forward computation [24] algorithms

have been developed. We demonstrated that dynamic slices ofprogram runs that were 67 million to 140 million

instructions in length, on an average, took 1.92 seconds to 36.25 seconds to compute [26].

Dynamic slicing has been studied as an aid to debugging by many researchers [2, 13, 15, 4, 18]. Agrawal et

al. [4] proposed subtracting a single correct execution trace from a single failed execution trace. In [18], Pan and

Spafford presented a family of heuristics for fault localization using dynamic slicing. Compared to these previous

works, we are the first one to compare the effectiveness of dynamic slicing algorithms in fault location.

General studies of dynamic slice sizes have been conducted.For example in our work in [26] showed that the

number of distinct statements executed at least once duringa program execution were 2.46 to 56.08 times more than

the number of statements in the dynamic slice. However, these results are based upon computing dynamic slices of

randomly selected values computed by correct versions of programs. In another study [23] we computed dynamic

slices based upon failed runs of faulty versions of programs. These faults had been injected into the programs. In

contrast the study presented in this paper consider a set of real faults reported by users of widely used programs.

Some of the observations of this study based upon real faultsare different from those of the previous study of

injected faults. The differences and the explanation for these differences are as follows:

• First, in our current study, for the faults ingrep, no output was produced and hence instead of backward

dynamic slices we had to make use of forward dynamic slices. Similar situation did not arise for the Siemens

suite programs used in the earlier study [23].

• Second, in the earlier study the need for using relevant slicing arose while in our current study data and full

dynamic slices were able to capture all faults. As explainedearlier, in our current study that contains many

20

memory bugs, most of the situations where predicates evaluated incorrectly, the incorrect evaluation did not

cause bypassing of the code but rather execution of the code that should have been bypassed. Therefore,

relevant slicing was not needed.

We would also like to point out that, while examining the statements in a dynamic slice, the relevance of de-

pendence distance from the erroneous output has long been considered useful [5, 6, 16]. Therefore in tools for

visualizing dynamic slices, ways have been explored to communicate to the programmer the dependence distance

information. For example, in [16], Krinke uses different shades of gray to highlight the statements in the dynamic

slice. In particular, the darker the shade, the smaller is the dependence distance. In this paper, through experiments,

we have validated the merit of using dependence distance information while exploring dynamic slices.

A lot of interesting research other than dynamic slicing have been carried on in fault location. Zeller has presented

a series techniques [10, 22, 8] from isolating the critical input to isolating cost-effect chains in both space and time.

The basic idea is to find the specific part of theinput/program statewhich is critical to the program failure by

minimizing the difference between theinput/program stateleading to a passing run and that leading to a failing run.

We believe our technique can be combined with Zeller’s technique in many aspects, for instance, the isolatedcauses

are perfect slicing criteria starting from which dynamic slicing may produce a much smaller fault candidate set than

from the failure point. Renieris and Reiss [20] presented a technique that selects the single passing run that most

resembles to the failing run and reports the difference between these two runs. Jones [12] presented a technique that

uses software visualization to assist fault location. Their technique provides a ranking of each statement according

to its ratio of failing tests to correct tests.

6 Conclusions

The development of dynamic slicing was motivated by the problem of locating the faulty code when an execution

of a program fails. There has been a significant amount of research on developing algorithms for computing different

types of dynamic slices. The contribution of this paper is topresent an experimental evaluation of effectiveness of

21

dynamic slices for the benefit of using them to locate a faultystatement in a program. In particular, this is the first

study based upon real faults reported by users of widely usedprograms. From our experiments we found that data

slices were found to be very effective for memory related faults and for remaining faults full slicing was adequate.

None of the faults required the use of relevant slicing. Finally, we found that even if the slice size is large, the user

may have to examine only a subset of statements in the slice before encountering the faulty statement.

Acknowledgements:

We would like to thank the reviewers for their suggestions that encouraged us to do even more through job of

revising the original submission.

References

[1] H. Agrawal and J. Horgan, “Dynamic Program Slicing,”ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, pages 246-256, 1990.

[2] H. Agrawal, R. DeMillo, and E. Spafford, “Debugging withDynamic Slicing and Backtracking,”Software

Practice and Experience, Vol. 23, No. 6, pages 589-616, 1993.

[3] H. Agrawal, J.R. Horgan, E.W. , and S.A. London, “Incremental Regression Testing”,IEEE Conference on

Software Maintenance, pages 348-357, Montreal, Canada, 1993.

[4] H. Agrawal, J. Horgan, S. London, and W. Wong, “Fault Localization Using Execution Slices and Dataflow

Tests,”6th IEEE International Symposium on Software Reliability Engineering, pages 143-151, 1995.

[5] G. Antoniol, R. Fiutem, G. Lutteri, P. Tonella, S. Zanfei, and E. Merlo, “Program Understanding and Main-

tenance with the CANTO Environment,”International Conference on Software Maintenance, pages 72-, Bari,

Italy, October 1997.

[6] T. Ball and S.G. Eick, “Visualizing Program Slices,”IEEE Symposium on Visual Languages, pages 288-295,

St. Louis, Missouri, October 1994.

22

[7] A. Beszedes, T. Gergely, Z.M. Szabo, J. Csirik, and T. Gyimothy, “Dynamic Slicing Method for Maintenance

of Large C Programs,”5th European Conference on Software Maintenance and Reengineering, pages 105-113,

March 2001.

[8] H. Cleve and Andreas Zeller, “Locating Causes of ProgramFailures”,27th International Conference on Soft-

ware Engineering, pages 342-351, 2005.

[9] T. Gyimothy, A. Beszedes, I. Forgacs, “An Efficient Relevant Slicing Method for Debugging”,7th European

Software Engineering Conference and 7th ACM SIGSOFT International Symposium on Foundations of Software

Engineering, pages 303-321, Toulouse, France, 1999.

[10] R. Hildebrandt and A. Zeller, “Simplifying Failure-inducing Input”, International Symposium on Software

Testing and Analysis, pages 135-145,2000.

[11] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments on the Effectiveness of Dataflow- and

Controlflow-based Test Adequacy Criteria,”16th International Conference on Software Engineering, pages 191-

200, 1994.

[12] J.A. Jones, ”Fault Localization Using Visualization of Test Information”,26th International Conference on

Software Engineering, page 54-56,2004.

[13] M. Kamkar, “Interprocedural Dynamic Slicing with Applications to Debugging and Testing,”PhD Thesis,

Linkoping University, 1993.

[14] B. Korel and J. Laski, “Dynamic Program Slicing,”Information Processing Letters, Vol. 29, No. 3, pages

155-163, 1988.

[15] B. Korel and J. Rilling, “Application of Dynamic Slicing in Program Debugging,”3rd International Workshop

on Automatic Debugging, pages 43-58, Linkoping, Sweden, 1997.

[16] J. Krinke, “Visualization of Program Dependence and Slices,” International Conference on Software Mainte-

nance, pages 168-177, 2004.

23

[17] J. Lin-Nielsen. “BuDDy, A Binary Decision Diagram Package,” Department of Information Technology, Tech-

nical University of Denmark,http://www.itu.dk/research/buddy/.

[18] H. Pan and E. H. Spafford, “Heuristics for Automatic Localization of Software Faults”,Technical Report

SERC-TR-116-P, Purdue University, 1992.

[19] S. Narayanaswamy, G. Pokam, and B. Calder, “BugNet: continuously recording program execution for deter-

ministic replay debugging,”32nd International Symposium on Computer Architecture, pages 284-295, 2005.

[20] M. Renieris and S. Reiss, “Fault Localization with Nearest Neighbor Queries,”IEEE International Conference

on Automated Software Engineering, pages 30-39, 2003.

[21] M. Weiser, “Program Slicing,”IEEE Transactions on Software Engineering, Vol. SE-10, No. 4, pages 352-357,

1982.

[22] A. Zeller, “Isolating Cause-effect Chains from Computer Programs”,10th ACM SIGSOFT Symposium on

Foundations of Software Engineering, pages 1-10, Charleston, South Carolina, 2002.

[23] X. Zhang, H. He, N. Gupta, and R. Gupta, “Experimental Evaluation of using Dynamic Slices for Fault

Location,” SIGSOFT-SIGPLAN Sixth International Symposium on Automated and Analysis-Driven Debugging,

pages 33-42, Moterey, California, September 2005.

[24] X. Zhang, R. Gupta, and Y. Zhang, “Effective Forward Computation of Dynamic Slices Using Reduced Or-

dered Binary Decision Diagrams,”IEEE International Conference on Software Engineering, pages 502-511,

Edinburgh, UK, 2004.

[25] X. Zhang, R. Gupta, and Y. Zhang, “Precise Dynamic Slicing Algorithms,”IEEE/ACM International Confer-

ence on Software Engineering, pages 319-329, Portland, Oregon, May 2003.

[26] X. Zhang and R. Gupta, “Cost Effective Dynamic Program Slicing,” ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, pages 94-106, June 2004.

24

[27] P. Zhou, W. Liu, L. Fei, S. Lu, F. Qin, Y. Zhou, S.P. Midkiff, and J. Torrellas, “AccMon: automatically

detecting memory-related bugs via program counter-based invariants,”37th Annual International Symposium on

Microarchitecture, pages 269-280, 2004.

[28] http://www.cse.unl.edu/∼galileo/sir

[29] http://www.elis.ugent.be/diablo/

[30] http://valgrind.org/

25

