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Abstract
Significant time is spent by companies trying to reproduce and fix
bugs. BugNet and FDR are recent architecture proposals that pro-
vide architecture support for deterministic replay debugging. They
focus on continuously recording information about the program’s
execution, which can be communicated back to the developer. Us-
ing that information, the developer can deterministically replay the
program’s execution to reproduce and fix the bugs.

In this paper, we propose using Strata to efficiently capture
the shared memory dependencies. A stratum creates a time layer
across all the logs for the running threads, which separates all the
memory operations executed before and after the stratum. A strata
log allows us to determine all the shared memory dependencies
during replay and thereby supports deterministic replay debugging
for multi-threaded programs.
Categories and Subject Descriptors C. Computer Systems Orga-
nization [C.1 Processor Architectures]: C.1.4 Parallel Architectures
General Terms Design, Measurement, Performance, Reliability
Keywords Strata, Replay, Debugging, Logging, Shared Memory
Dependencies

1. Introduction
Hardware techniques have been proposed to continuously record
the program’s execution with very little overhead (around 1%) [13,
6] to assist developers by supporting Deterministic Replay Debug-
ging (DRD). Deterministic Replay Debugging enables a program-
mer to replay the exact same sequence of instructions that led up
to the crash, and therefore it is an effective technique to understand
the source of the bug. The hardware techniques can support deter-
ministic replay of the last second of execution preceding the crash,
which was found to be sufficient to debug the root cause of the
bug [6]. Since the overhead of these hardware techniques are low
enough, they are transparent and hence they can always be left on
during production runs.

One of those techniques is called the Flight Data Recorder
(FDR) [13]. FDR creates checkpoints based on SafeyNet [11] to
support full system deterministic replay. Another approach is called
BugNet [6]. BugNet logs the load values executed by the applica-
tion and supports deterministic replay of the application code and
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shared libraries, as opposed to the full system replay supported by
FDR.

For debugging multi-threaded programs, the techniques de-
scribed above need an efficient mechanism to record the shared
memory dependencies between the threads. To accomplish this,
FDR [13] logs the shared memory dependencies in a Memory Race
Log, which is maintained for each processor node. FDR determines
the shared memory dependencies for a thread by monitoring its co-
herence messages. In order to reduce the size of the memory race
logs, FDR implemented the Netzer optimization in hardware [7].
BugNet [6] assumed the same method for recording the shared
memory dependencies in its memory race logs. We refer to the
logging method used by FDR and BugNet as the point-to-point
logging approach, because to capture a dependency, they log the
instruction counts of both the dependent operations.

In this paper, we propose capturing the shared memory depen-
dencies using Strata. A stratum is logged when a shared memory
dependency needs to be captured. It consists of the memory counts
of all the threads at the time when it is logged. A stratum separates
all the memory operations that were executed in all the threads be-
fore the time when it is recorded, from those that will be executed
after it is recorded. Since the stratum is recorded just before the ex-
ecution of the dependent memory operation, the stratum separates
that memory operation from the earlier memory operation in which
it is dependent on.

The benefits of using strata are (1) it enables us to design a hard-
ware solution for logging shared memory dependencies in both
snoop-based and directory based systems, whereas the previous
point-to-point logging solution only supported directory based sys-
tems, (2) the strata logging approach does not require us to log the
shared memory write-after-read (WAR) dependencies, which can
be determined during replay, (3) a single stratum can capture many
different dependencies and as a result the strata logging approach
reduces the number of memory dependencies logged even more
than the prior Netzer optimization for point-to-point logging solu-
tion, and (4) the hardware required to create the strata log is smaller
than what is required for implementing the point-to-point logging
solution.

2. Prior Work
In this section we summarize the prior techniques proposed to
capture shared memory dependencies.

One of the first hardware support for deterministic replay for
a program executing in a multi-processor system was proposed by
Bacon and Goldstein [1]. Their design was for a bus based system.
They observed that dependencies between the threads executing in
a multi-processor system can be captured by monitoring the coher-
ence messages on the bus. However, they recorded all the coherence
traffic on the bus, which can result in a large log size. Also, their
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Figure 1. Netzer Transitive Optimization.

system cannot handle non-determinism due to the system interac-
tions.

The amount of information that needs to be logged to record the
memory access ordering can be reduced by applying the Netzer’s
transitive optimization [7]. FDR [13] proposed a design to imple-
ment the Netzer transitive optimization in a directory based system
assuming sequential consistency. FDR adopts the SafetyNet [11]
checkpoint mechanism to retrieve a consistent full system state cor-
responding to a prior instance in time. Additionally, it records all
the inputs coming into the system (I/O, interrupts, DMA transfers)
to enable replaying. With this recorded information, starting from
the retrieved full system state, the original program execution can
be replayed.

BugNet [6] focused on supporting deterministic replay of the
user code and the shared level libraries by recording the output of
load instructions. Thus, it can support application level debugging.
It can handle all forms of non-determinism due to system interac-
tions and shared memory updates. To capture the shared memory
dependencies, it implemented FDR’s point-to-point logging.

ReEnact provides an approach for rolling back and replaying
the execution using thread level speculation support [9]. Its main
goal is to dynamically detect data races and it does not support de-
terministic replay of non-deterministic I/O interactions. CORD [8]
also captures some, but not all, of the RAW dependencies in a snoop
based system in order to detect data races.

In the software based InstantReplay [3] system, accesses to the
shared objects are forced to go through a procedure, which logs
information about the shared access to the object in a log. In-
stantReplay is suitable for systems where the objects are shared
at a coarser level (through monitors and message queues). How-
ever, performance degradation when the program uses fine-grained
shared memory accesses can be severe. To support replay of multi-
threaded programs on a uni-processor system, DejaVu [2] proposed
recording just the scheduler decisions.

3. Baseline: The Point to Point Approach to Log
Shared Memory Dependences

To replay and debug multi-threaded applications we need to record
the memory dependencies that exist across all the threads. To ac-
complish this, the prior techniques used the point-to-point logging
approach proposed by Flight Data Recorder(FDR) [13]. In this sec-
tion, we discuss FDR’s algorithm and its hardware design to cap-
ture the shared memory dependencies.

3.1 Point-to-Point Logging and Netzer Optimization

FDR captures all forms of shared memory dependencies: read-
after-write (RAW), write-after-write (WAW), and write-after-read
(WAR) dependencies. These dependencies are logged in Memory
Race Logs. Logging every dependency seen during execution is
impractical as it would lead to unmanageable memory race log
sizes.

In order to reduce the log sizes, FDR implemented the Netzer
optimization [7] in hardware. FDR’s hardware design assumed a
directory based system that implemented a sequentially consistent
memory model. We briefly explain the Netzer algorithm using a
simple example.

The Netzer algorithm works by exploiting the transitive prop-
erty in a system that assumes sequential consistency. A simple ex-
ample for two threads, T1 and T2, is shown in Figure 1, where each
thread executes a write and a read. The subscripts represent the ad-
dress locations.

FDR records the dependency Wb→Rb in a memory race log.
The dependency between the two threads is recorded using the
two instruction counts of the dependent threads, which is a form
of time-stamp used in FDR. This is sufficient because all that
we need to know while replaying is that T1 should have been
executed at least until the memory operation Wb, before T2 can
execute its memory operation Rb. Later, when we observe the
second dependency Ra→Wa between T1 and T2, it does not have
to be recorded because it is transitively implied by the previously
recorded dependency.

We call the logging approach used in FDR as the point-to-point
logging approach, because each dependency is logged by explic-
itly logging the instruction counts of the two dependent memory
operations executed in two different threads.

3.2 Hardware support for Point-to-Point Logging

In order to capture all the shared memory dependencies between
the threads, we should first be able to detect them when the pro-
gram is executing. FDR [13] records shared memory dependencies
between the processor nodes (and not the threads). We believe that
this is sufficient information, because we can map the recorded de-
pendencies between processor nodes back to the threads during re-
play. This requires that we know which thread was executing on a
processor node at a given time. This is required in BugNet, as it can
replay only user level code, and hence cannot reproduce the thread
scheduling orchestrated by the operating system.

Intra-node dependencies (dependencies within the same pro-
cessor node) need not be logged as they are trivially revealed by
the program order. To detect dependencies between the proces-
sor nodes, FDR uses an observation that, those dependencies are
revealed by the coherence messages. There can be a cross-node
shared memory dependency (dependency between two different
processor nodes), when a processor node encounters a read/write
cache miss. If there are processor nodes in the system that have
a read/write permission, then the appropriate dependency (RAW or
WAW or WAR) with those processor nodes can be detected. If none
of the processor nodes in the system have read/write permission for
the memory block (that is, the block is not cached anywhere), then
the directory entry has information about the last writer to the mem-
ory block. If the last writer is different from the processor node
that generated the read/write miss, then a cross-node dependency
is detected. In the MESI directory protocol, when a clean block is
evicted, the directory is not informed (silent eviction). Therefore,
the directory entry continues to contain information about the read-
ers in the system (sharers) till there is a write in any of the processor
nodes. Thus, the cross-node WAR dependencies can be detected for
a processor node that read a block and evicted it.

However, for systems based on snoopy protocol there is no di-
rectory to hold the last writer information and the list of readers for
the blocks that have been evicted from the cache. Hence, additional
support is required in snoop-based systems, and this is not solved in
the prior proposals [13, 6]. In Section 5, we describe how our strata
logging approach can be easily implemented for snoop-based sys-
tems.



For directory based system, there is still a corner case which
was not addressed in the prior FDR and BugNet proposals [13, 6];
one that is related to paging. If a physical page is swapped out,
then future accesses to that page will not find correct shared mem-
ory dependencies as the directory loses the information about the
processor nodes that last accessed the paged out memory blocks.
This is not a problem in our strata logging approach, which will be
explained in detail in Section 4.3.

3.2.1 Hardware support for Implementing Netzer Algorithm

Going back to our example, assume that FDR [13], by observing
the cache coherence messages, detects the dependency Wb→Rb
between the two processors P1 and P2 executing the threads T1
and T2 respectively (the threads are shown in Figure 1). This
dependency is recorded in the Memory Race Log in the processor
node P2 in which T2 is running. The dependency is recorded using
the instruction counts corresponding to the memory operations Rb
and Wb.

When the second dependency between the processors P1 and
P2 is detected due to the dependency Ra→Wa, FDR needs to deter-
mine, if the dependency can be transitively implied by the previous
log entry or if has to be logged again in the P2’s memory race log.
In order to do so, P2 needs to know that the instruction count of
the previous write access to the location “a” in the processor P1 is
less than the instruction count that was last recorded in P2 for the
processor P1 .

Thus, to implement the Netzer optimization for point-to-point
logging approach, the time-stamp information (instruction count)
has to be kept track of along with each cache block. The instruction
count of a cache block tells the logging mechanism when the block
was last accessed by the processor node. To keep track of this
information, about 6.25% [13] of L1 and L2 cache area is required,
which translates to about 128KB area overhead for a 2MB L2
cache. Further, the memory race log is buffered locally in a 32KB
Memory Race Log Buffer in each processor node as described
in FDR [13]. The hardware implementation of the strata logging
approach is less complex, and also the strata log size is 5.8x smaller
without compression and 12x with compression than that of the
memory race log.

4. Using Strata to Determine Shared Memory
Dependencies

In this section, we discuss an algorithm to capture the shared
memory dependencies across the threads of an application. The
hardware implementation of the algorithm described here will be
presented later in Sections 5 and 6.

4.1 Capturing Shared Memory Dependencies using Strata

We assume a sequentially consistent memory model. In a sequen-
tially consistent memory model there exists a total order between
the memory operations executed across all the threads. All the
threads’ memory operations should be consistent with that total or-
der, which means a thread’s read must get the value of the most
recent write in the total order. The total order must also respect a
thread’s program order.

Our goal is to record sufficient information during program
execution, which will allow us to reproduce the total order observed
during program execution while replaying.

To capture a dependency between two shared memory opera-
tions, in the point-to-point logging approach that we discussed in
the Section 3, the memory count of the two dependent memory op-
erations is logged. Instead, we propose using a logging primitive
called a stratum. A stratum consists of the execution states in terms
of the memory counts of all the running threads at the time when

it is recorded. A memory count for a processor node is the number
of memory operations executed since the logging began. To cap-
ture a shared memory dependency, we record a stratum just before
executing the succeeding memory operation. If two memory opera-
tions are dependent on each other, we refer to the memory operation
that occurred earlier in time as the preceding memory operation or
simply predecessor. The one that occurred later in time is referred
to as the successor. The recorded stratum separates all the memory
operations across all the threads, executed before the time when
the stratum was recorded from those that were executed after it was
recorded. Since the stratum is recorded just before the succeeding
memory operation is executed, it separates the predecessor and the
successor in time.

Figure 2 shows the memory operations executed in three
threads. The subscripts for the reads and writes are used to identify
the memory operation. The fields inside the braces, show the ad-
dress and the output value for a memory operation. The strata are
represented as horizontal lines. For instance, strata S1 separates
the successor W2 from the predecessor W1.

One advantage of using the strata to capture the shared memory
dependencies is that we can apply an effective dynamic transitive
optimization to reduce the size of the strata log. Also, the hard-
ware required to implement the transitive optimization for strata is
significantly less than what is required for implementing a similar
optimization for the point-to-point logging approach.

We further reduce the strata log size by not logging information
for WAR dependencies. This is based on our following observa-
tion: To reproduce the total order during replay it is sufficient to
record strata just to capture the cross-thread RAW and WAW de-
pendencies. We show how the cross-thread WAR dependencies can
be ordered through offline analysis during replay, although minor
hardware additions can be added to also log stratum for WARs. We
also do not have to record strata to capture the intra-thread RAW
and WAW dependencies, because those are trivially revealed by a
thread’s program order. Therefore, the discussion in this section fo-
cuses on capturing only the cross-thread (inter-thread) RAW and
WAW dependencies using strata.

4.2 Optimizing Strata Log Size

We call the log containing the strata the Strata Log (SL). We
use the example shown in the Figure 2 to explain how a strata
log is created. We do not have to record anything for the intra-
thread dependencies. In the example, W1→R1 is an intra-thread
RAW dependency, which is revealed during replay by thread T1’s
program order.

In a naive implementation, the SL has a stratum recorded for
every cross-thread RAW and WAW dependency. However, the of-
fline analysis algorithm only requires that, for each observed cross-
thread RAW or WAW dependency, there is at-least one stratum in
the strata log that separates the predecessor and the successor. This
means that one stratum can be used to separate more than one cross-
thread RAW or WAW dependency.

In the example shown in Figure 2, the stratum S1 is logged
when the WAW dependency W1→W2 is observed during program
execution. The recorded stratum allows us to determine that the
write W1 has to be executed before the write W2 during replay.
Similarly, the stratum S2 is logged to capture the W2→R2 depen-
dency.

However, when the RAW dependency W2→R4 is observed,
we do not have to log a stratum. The reason is that, the stratum
S2 is sufficient to determine that W2 preceded R4 in time. For
the same reason, we do not have to log a stratum for the RAW
dependency W3→R3. Note, S1 or S2 is sufficient to capture the
RAW dependency W3→R3. Also note that the memory operations,
W3 and R3, involved in the RAW dependency are accessing a
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Figure 2. Recording Strata Log. The strata that are logged are
shown as solid horizontal lines. The strata that are not logged by
applying the transitive optimization are shown with dotted rectan-
gular boxes. The RAW dependencies are shown as solid arrows and
the WAW dependency is shown as a dotted arrow.

memory location different from the one that triggered the creation
of the strata S1 and S2.

For the RAW W4→R5 dependency, we have to log a stratum
S3, because none of the earlier strata separate W4 and R5 in
time. Thus, a stratum for a cross-thread WAW or RAW dependency
is logged only if the preceding operation in the dependency gets
executed after the last recorded stratum.

4.3 Advantages of Strata

We now describe the advantages of using a stratum to log cross-
thread RAW and WAW dependencies.

4.3.1 Efficient Transitive Optimization

A stratum consists of the current memory counts of all the threads.
In the point-to-point logging approach used in FDR [13], to record
a dependency, the memory count for the time when the preceding
memory operation was executed is logged along with the memory
count of the succeeding memory operation. Logging the memory
count for the predecessor is less “strict” than logging the current
memory counts of all the threads. Therefore, a single stratum can
potentially capture many RAW and WAW dependencies. Thus,
the transitive optimization used to reduce the SL size is more
efficient than the Netzer transitive optimization used for point-to-
point logging [13, 6].

4.3.2 No WAR Logging

Capturing shared memory dependencies using strata allows us to
ignore WAR dependencies while logging and determine them of-
fline. Not capturing WAR, reduces the strata log size and the hard-
ware support required for recording them using strata.

4.3.3 Efficient Hardware Implementation

The amount of hardware required to implement the transitive opti-
mization to reduce the strata log size is significantly less than what
is required to implement the Netzer optimization in FDR [13].

4.3.4 Supports Snoop Based Systems

In a directory system, when a dirty block is evicted, which proces-
sor or thread last accessed the block could be maintained in the di-
rectory. However, in a snoop based system that information is lost,
which is a problem for the point-to-point logging approach used
in the prior works [13, 6]. This problem can be solved if we use
the strata for logging RAW and WAW dependencies, because we
do not require precise information about the predecessors. We just
need to detect if there is a RAW or WAW dependency due to the
evicted cache blocks. We detect that by keeping track of the set of
evicted blocks in a bloom filter (a bit vector indexed by the hash of
an address). The hardware implementation for a snoop based sys-
tem will be described in detail in Section 5.

4.3.5 Handles Paging

In Section 3, we pointed out a corner case in dealing with OS pag-
ing in the middle of recording a program’s execution using the
point-to-point solution. When a page is swapped out, all the infor-
mation about who accessed what block and when it was accessed is
lost, as it can be found neither in the private caches of the processor
nodes nor in the directory.

To address this problem, we log one additional stratum when
a page is re-mapped. The recorded stratum separates the memory
operations executed before and after the paging activity, which is
sufficient for the offline analysis to determine the dependencies.
Since the paging activity is less frequent, when compared to the
frequency at which we create strata during normal execution, addi-
tional strata logged due to paging constitute a small portion of the
strata log.

4.4 Off-line Analysis to Determine a Total Order

During replay, assume for now that we know all the memory op-
erations executed in each thread along with their addresses in the
program order. We postpone the discussion on how to get this in-
formation during replay for the BugNet and the FDR approaches to
Sections 4.4.1 and 4.4.2 respectively.

Given the above information, using the strata log, we can infer
the total order between the memory operations observed during
logging. We use the example shown in Figure 2 to explain our
algorithm. Figure 2 shows the memory operations along with their
addresses and output values, but for our offline analysis we do not
require information about the output values.

We define a strata region to consist of all the memory operations
executed across all of the threads between two strata. Figure 2 has
three strata regions: S0−S1, S1−S2 and S2−S3. There is a total
ordering between the strata regions because the strata are ordered
by time. Therefore, if we order the memory operations executed
in each strata region in isolation, and then order all the memory
operations across strata, we will get a total order for all the memory
operations. We first discuss how to order the memory operations
executed within a strata region.

The memory operations executed in a thread are ordered by the
program order. For the example shown in Figure 2, we know that
W4 was executed after R4. Hence, we have to determine only the
cross-thread dependencies. However, within a strata region, there
cannot be any cross-thread RAW or WAW dependency. This is true
because the strata log is created in such a way that there is at-least
one stratum that separates the memory operations involved in a
cross-thread RAW or WAW.

The above property simplifies our job to finding the cross-thread
WAR dependencies within a strata region. Since we are assured that
there is no cross-thread RAW dependency within a strata region,
if we find a read and a write in two different threads, such that
the addresses for both the operations are the same, then we are
guaranteed that the write has to be executed after the read during



replay (WAR dependency). For example, in Figure 2, both R2 and
W4 access the same memory location and they are within the same
strata region S2−S3. If R2 was executed after W4 during logging,
a stratum would have been logged between the two operations.
Since there is no stratum separating the two, we know that the
dependency between those two operations is a WAR dependency,
R2→W4.

Once we have identified all the cross-thread WAR dependencies
for a strata region, we can determine a valid total order for the
memory operations of a strata region. While determining the total
order, we make sure that the program order is preserved in addition
to the inferred WAR dependencies. For example, a valid total order
for the memory operations of the strata region S2 − S3 is the
following: R2→R3→R4→W4. For the strata regions S0 − S1 and
S1 − S2 there are no cross-thread WAR dependencies. Hence, for
those regions we just need to make sure that the program order
is preserved. A valid total order for the strata region S0 − S1 is
W1→R1→W3.

Now that we have determined a total order for the memory
operations of each strata region, we can order all the memory
operations using the recorded total order for the strata regions.
For example, we know that S0 − S1 happened before S1 − S2,
S1 − S2 happened before S2 − S3 and so on. Therefore, the
memory operations of the strata region S0 − S1 should precede
the memory operations of the strata region S1 − S2 in the total
order. We can therefore determine a total order for all the memory
operations within these three strata regions. In our example, a valid
total order is W1→R1→W3→W2 →R2→R3→R4→W4. However,
we obtained this total order based on the assumption that we have
knowledge of all the memory operations and the addresses that
they accessed. The next two sections explain how to obtain this
information during replay using the checkpoint logs of BugNet [6]
and FDR [13].

4.4.1 Load-based Checkpoint

The BugNet’s First Load Log (FLL) [6] is created for each thread.
It captures the values of the load instructions executed in a thread,
which is sufficient to deterministically replay that thread. It is
sufficient even in the presence of shared memory updates, because
a load accessing an address written by another thread will notice
that the address’ value has changed, and will log that value in the
its FLL.

By deterministically replaying each thread individually, we cre-
ate a replay trace for each thread. In the replay trace of a thread,
we have information about all the memory operations executed by
that thread in the program order along with the addresses that they
accessed. Using this information, and the offline analysis described
earlier, we can derive a total order between all the memory opera-
tions.

4.4.2 Copy-On-Write Checkpoint

FDR [13] uses a copy-on-write checkpoint scheme along with a
redo log to deterministically replay the full system. In a copy-on-
write checkpoint scheme, whenever a memory location is updated,
the old value residing in the memory location is logged. In addition,
the final state of all the memory locations is logged at the end
of a checkpoint. Using the final state, and the log of memory
updates, one can determine the memory values at the beginning
of a checkpoint. With this information, one can start replaying.
However, during replay, we also have to reproduce all the system
interactions and the shared memory dependencies. To reproduce
the system interactions (like interrupts, system calls and DMA
transfers) FDR explicitly logs such information in what we call a
redo log.

In order to deterministically replay using the FDR checkpoint
logs, we need information about the shared memory dependencies.
The strata log that we described earlier can be used for this purpose.
We can deterministically replay the full system using the FDR’s
copy-on-write logs and the strata log as follows.

We start the replay from the first strata region in the checkpoint
and then proceed to replay the following strata regions in order.
However, it is not straightforward to replay from the start to the
end of a strata region without the knowledge of potential WAR
dependencies that may exist within the strata region. We solve
this problem by performing a search through the possible memory
orderings for a strata region.

We first begin the replay for a strata region without assuming
any WAR dependency and the only order we preserve is the pro-
gram order. During the search, we may observe a read and a write
executed in two threads with the same address. We know for sure
that this is a WAR dependency and not a RAW dependency, be-
cause during logging, we create strata in such a way that there are
no RAW or WAW dependencies within a strata region. However, in
our replay experiment, while searching for a correct memory order-
ing for the strata region, we might have executed the write before
the read. If so, we take note of the WAR dependency and start re-
playing again from the start. In the subsequent replay experiments
to find a correct memory ordering, we enforce the WAR depen-
dences that were found in the earlier replay experiments.

During replay, we are guaranteed to not wander down a control
path that is different from the recorded program execution. For
that to happen, some load would have to have read an incorrect
value written by another thread during the replay. However, that
would be a cross-thread RAW dependency, which is not valid,
since there cannot be any RAW dependencies within a strata region.
During replay, if we find a RAW dependency, then this means that
this is really a WAR dependency, and we take note of this newly
found dependency and restart replay from the beginning of the
strata region. In that replay and the subsequent replays, we will not
allow the write to execute till the dependent predecessor read in the
other thread has executed. For example, consider the strata region
S2−S3 in Figure 2. During our replay search for a correct memory
order, it is possible that the write W4 is executed before the read
R2. After noting this WAR dependency, in our subsequent replays,
if we reach W4 before executing R2, we will stall the thread T1
till R2 in thread T3 has executed.

We continue the above process till we are able to replay up to the
next stratum without encountering a RAW dependency. This gives
us a final memory ordering for the strata region, and that is used for
deterministic replay debugging. This ordering lists instructions in
the same order as observed during program execution.

4.5 Correlating Strata Logs to BugNet/FDR Checkpoint
Logs for Replay Debugging

Each processor node keeps track of the memory count, which is
the number of memory operations that it has executed. This is the
running count of memory operations executed on that processor,
since logging began. We assume a 32-bit counter for the results
in this paper. When a new checkpoint is created in FDR [13]
or BugNet [6], the current memory count value is stored in the
new checkpoint header. In the case of BugNet, a per thread first
load log (FLL) is created as part of the new checkpoint. We store
in the checkpoint header of the FFL the memory count of the
processor that the log is being generated on. In the case of FDR,
a global checkpoint is created. The checkpoint header of the global
checkpoint contains the memory count of all the processor nodes.
By logging the memory counts in the checkpoint headers, we know
exactly where the checkpoint logs fit into the time line of the strata
logs.



The strata are logged based on the memory count values tracked
in each processor node. Thus, it is easier to map the strata logs
to the checkpoints that they correspond to. However, to reduce
the strata log size we examine a compression technique that logs
the difference between memory counts in 16-bit values. Instead of
logging the 32-bit memory count value, we just log the difference
between the memory count for the processor in the immediately
preceding stratum and the current memory count for that processor.
Even when we log just the stride values, it is still possible to
correlate the strata logs with the checkpoint logs of FDR and
BugNet, because at the beginning of the strata log we log the
full memory count values of all the processor nodes. If we start
a new strata log, the new strata log is also created with the current
memory count of all the processors in the log’s header. This allows
us to correctly map the strata log entries with the FDR and BugNet
checkpoint log headers.

With the above information we can replay the program’s exe-
cution for deterministic replay debugging using the BugNet/FDR
checkpoint logs in combination with the strata logs, as long as we
have a little more information about system events. For BugNet [6],
the only other piece of information needed for deterministic replay
is the order of thread context switching. To address this, BugNet
has a context switch log to record the time of the context switch
using the memory count of the processor, as well which thread is
context switched in and which thread is context switched out for
the processor. For FDR [13], it does not need a context switch log,
since it can deterministically replay the operating system thread
scheduling, but it does need the redo log, which provides the abil-
ity to replay all of the inputs to the system.

Since these systems provide deterministic replay, and we now
have a total order for the memory operations, they can be used to
single step through multi-threaded execution for debugging. This
allows the developer to observe the interaction between the threads
through the shared memory reads and writes, which is useful to
track down bugs due to data races.

4.6 Processor Effects on the Logging

We now discuss how to handle logging at the block level, prefetch-
ing, and how out-of-order execution affects the strata logs.

4.6.1 Capturing Dependencies at the Cache Block Level

We detect the shared memory dependencies at the granularity of
cache blocks. This is because, we detect dependencies by observing
the cache coherence messages, which operate at the granularity
of the cache blocks. As a result, we might detect a false shared
memory dependency (due to two processors accessing different
words in the same cache block), and log a stratum for it.

However, the above is not an issue for our offline analysis. When
a false dependency is detected, in the worst case, one additional
stratum is logged. This is not issue, because the additional stratum
just specifies a much stricter (but still a valid) ordering between
memory operations.

4.6.2 Prefetching and Out-of-Order Execution

A hardware prefetcher or a software prefetch instruction can bring
a memory block into the cache which might not be eventually used
(read or written) by the processor. This might result in unnecessary
strata being logged. However, additional strata do not compromise
correctness.

Non-blocking caches and out-of-order execution in modern pro-
cessors can send or receive a coherence request/reply for a cache
block out-of-order (out of program order). In systems implement-
ing aggressive speculation, a cache block may be accessed even
before its coherence is done. However, even in these systems, if
the processor supports sequential consistency (which is what we

assume and model), then it makes sure that the cache access and
the coherence activity appears to be in the commit order of the in-
structions (program order). Therefore, our strata logs and coher-
ence messages associated with the strata logs are consistent with
the program commit order.

4.7 Future Work

We just showed how to determine the cross-thread WAR depen-
dencies with the help of offline analysis and the strata log. It could
be possible to determine even the WAW dependencies in the same
way. Assume we only log strata for RAW dependencies. If we do
not log any stratum to capture the WAW dependencies, then a strata
region can contain a WAW dependency. Therefore, we would have
to order the writes involved in a cross-thread WAW dependency
during offline analysis. This analysis is more complicated, since
when we see a WAW dependency within a strata region we can-
not deterministically order the two writes, unless we know exactly
what the strata region’s live-out value for that address is and we
know what the value of the two writes are.

In Section 4.4.1 we explained how using BugNet’s [6] First
Load Log for a thread one can deterministically replay that thread.
Thus, we can know not only the memory operations and their
addresses, but also their values. Figure 2 shows the values of the
memory operations in the second field. It is possible to obtain all
these values if we are replaying using the BugNet’s FLL. Therefore,
it is possible to determine the live-in of each strata region using
these logs, as well as the live-out. Using this information for a
strata region, we can determine the last writer to an address in the
strata region, and can then deduce the write-after-write’s off-line.
However, this offline algorithm is much more complicated and the
total order that we find during offline analysis may not be exactly
the same as what was observed during logging. We plan to explore
this logging optimization and its implications in the future.

5. Hardware Implementation for Snoop-based
Systems

In this section, we discuss how we support creating Strata Logs
(SLs) for snoop-based systems. As we discussed in Section 3,
the previous Point-to-Point approaches [6, 13] cannot be easily
implemented in a snoop-based system.

5.1 Detecting Cross-Node RAW and WAW for Cached Blocks

To explain our approach, let us assume for now that the caches
are of infinite size. This means, once a processor node accesses a
memory block, it stays in its private cache till another processor
writes to it. If another processor writes to the block, then it gets
invalidated. Therefore, a memory block once fetched into some
processor’s cache resides in at least one of the processors’ caches
throughout the lifetime.

Our goal is to detect cross-node RAW and WAW dependencies.
We achieve this by monitoring the coherence messages. Whenever
a processor node encounters a read or a write miss for a memory
block, it places a request on the bus. If any other processor node
has a dirty copy of the memory block, which means the processor
wrote to the block, then there exists a RAW or a WAW dependency.
Therefore, when the owner of the block replies on the bus, the reply
is piggybacked with a log stratum bit, whose value is set. The log
stratum bit instructs other processor nodes in the system to log a
stratum. Each processor node, logs their current memory count in
their strata log. Our design ensures that the memory count logged
for the processor that generated the read or write miss, corresponds
to the memory operation executed prior to the read or write. This
ensures that the stratum separates that read or write from all the
prior memory operations.



Note that the memory count for each processor representing the
stratum is logged into each processor’s own strata log. Therefore,
we need to be able to construct a global strata log from the indi-
vidual per processor strata logs. However, we create the strata logs
in all the processor nodes at the same time. They are initialized
with the full 32-bit memory count values of the respective proces-
sor nodes at the time of creation. Thus, the strata logs across all
the processor nodes always stay synchronized. That is, the first en-
try in a processor’s strata log corresponds to the first entry in every
other processor’s strata log, and it is the same case for the rest of
the entries in the strata logs as well.

5.2 Detecting Cross-Thread RAW and WAW for Evicted
Blocks

The previous section assumed infinite caches. Let us remove this
assumption. With finite size caches, there exists an issue for the
snoop-based protocol when a dirty block is evicted from the cache.
When a memory block is evicted out of the cache, information
about the last writer to that block is lost.

We solve this problem for snoop-based systems using a separate
bloom filter [10] in each processor node. Our bloom filter is a
bit vector indexed by a hash of the memory address. Since we
are interested in detecting only the cross-node RAW and WAW
dependencies, we must keep track of the fact that there was a writer
to this memory block. Hence, whenever a dirty block is written
back (evicted) to main memory over the bus, all the other processor
nodes snoop the bus, and set the bit in their private bloom filters by
indexing them using the hash of the physical address of the memory
block that is being written back.

If a processor node encounters a read or write miss for a mem-
ory block, it checks its private bloom filter to see if, in the past,
some other processor node had written to that memory block. If
the bit for the block is set in the bloom filter of the processor that
encountered the read miss, then we know that there may be a po-
tential cross-node RAW or WAW dependency. Hence, a stratum
has to be logged. To log the stratum, we piggyback the coherence
request message (generated by the processor that encountered the
read/write miss) with the log stratum bit set to true. All the proces-
sors snooping the bus will see a set stratum bit. This forces each
processor node to log its current memory count in its strata log.
Whenever a new stratum is logged, all the processors clear all of
the bits in their bloom filters. We can clear all of the bloom filters,
because the recorded stratum separates all the reads and writes that
follow the stratum from those writes that were executed in the past.
Essentially, by clearing the bloom filters we are implementing the
transitive optimization for the writes to the uncached blocks.

The bloom filter essentially predicts whether an uncached block
was written after the last recorded stratum. The bloom filter guaran-
tees that there are no false negatives. That is, we will not miss any
RAW or WAW dependency due to aliasing in the hash indexed bit
vector. However, there could be false positives, which means that
we may end up logging a few more strata than we need to. For our
results, we use a bloom filter of size 128 bytes (1024 entries, one
bit per entry) per processor-node, which resulted in less than 1% of
additional strata for most programs we examined.

5.3 Implementing Transitive Optimization for Cached Blocks

When we detect a cross-node RAW or WAW dependency, we do
not have to log a stratum if the write operation involved in the
dependency was executed before the last recorded stratum. Earlier,
we explained how this optimization is implemented for uncached
blocks by just clearing the bloom filter bits when a stratum is
logged. If the dirty block is cached in one of the processor nodes,
then we need a way to know if the write to that block occurred
before or after the last recorded stratum.

Unlike the Netzer transitive optimization used in the previous
Point-to-Point proposals [13, 6], which required storing the instruc-
tion count with each cache block, in our approach all we do is asso-
ciate a single bit with each cache block. We call this bit the depen-
dence bit. The dependence bit for a cache block indicates whether
the cache block was written before or after the last recorded stra-
tum. The dependence bit for a cache block is set whenever there is
a write to the cache block and is reset whenever a stratum is logged.

When we have a read or write miss, and a dirty block is found in
another processor’s cache, then this means that there is a RAW or
WAR dependency, but we log a stratum only if the dependence bit
is set for that cache block. Also, while evicting a dirty cache block,
the bloom filters of the processor nodes are updated only if the
dependence bit for the evicted cache block is set. If the dependence
bit was not set for the dirty block, we do not need to keep track of it
in the bloom filter nor log a stratum. This is because a stratum has
already been logged since the last time the block was modified.

Whenever we log a stratum, in addition to clearing the bloom
filters for all the processor nodes, we also clear all the dependence
bits in all the caches. This is valid, because all the writes that were
executed before logging the stratum are separated from the memory
operations that are going to be executed after recording the stratum.

5.4 Recording Stratum for WAR

We need to capture just the RAW and WAW dependencies like we
described in Section 4.4. However, in our experimental evaluation
to be discussed in Section 7, we studied the size of the strata log
required to capture all the shared memory dependencies, including
the WAR dependencies. We briefly discuss here, the additional
hardware required to capture the WAR dependencies.

First, we need to be able to detect the WAR dependencies. This
is straight-forward as long as the blocks are cached. However, if a
block read by a processor is evicted, we need to keep track of it
similar to how we tracked the dirty block evictions. This requires
a broadcast on the bus even when a clean cache block is evicted,
which is not normally required in a MESI protocol. Each processor
node snoops the broadcast message to set the corresponding bit
in the private read bloom filter. Note that this bloom filter is an
addition to the write bloom filter already used for tracking the
evicted dirty blocks. Also, we need an additional dependence bit
that tells us whether the block was read by the processor before or
after the last recorded stratum.

Because of this additional hardware complexity, our primary so-
lution focuses on recording strata for only RAW and WAW, and de-
termining RAW using offline analysis as described in Section 4.4.

5.5 Hardware Comparison to Point-To-Point Logging

The additional logic added to our architecture are the bloom filter
per processor, and one dependence bit per cache block in the private
caches of each processor. In our scheme, we do not have to tag
each memory block with the instruction count like in the prior
works [13, 6] to record the shared memory dependencies. We
therefore avoid the additional 6.25% area overhead in the L1 and
L2 caches used in the prior techniques.

6. Hardware Implementation for Directory Based
Systems

In this section, we discuss how we can capture the shared memory
dependencies using the Strata Log for directory based systems.
Figure 3 shows the changes required in a directory based system
to record the strata log. It shows one processor node in the multi-
processor system. It also shows the directory controller where we
record the strata log. For our simulations we use an 8 KB hardware
buffer to buffer the writing of the stratum to the strata log in main
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Figure 3. Strata logging support in a directory based system.

memory. We also store a memory count vector in the directory as
well as dependence bits in the directory and per processor cache,
which we will now describe in this section.

6.1 Capturing RAW/WAW using the Strata Log

To explain our approach, let us assume a system with a centralized
directory, and that the directory knows for each block if it has been
written since the last stratum was logged. We will remove these
assumptions later in this section. Since the processor nodes are not
connected by a common bus like in the snoop-based systems, it is
not efficient to create the strata logs in the processor nodes. We
instead chose to create the strata log in the directory controller.

When a cross-node RAW or WAW dependency is observed at
the directory, a stratum has to be logged by the directory controller.
To log a stratum, the directory controller needs to know the current
execution states (memory counts) of all the processor nodes. One
way to achieve this is by polling all the processor nodes for their
current memory counts. However, this incurs a heavy communica-
tion cost. To avoid this communication cost, we instead propose
to have each directory controller keep track of a vector of mem-
ory counts (MVector), one for each processor node in the system.
Each count represents the last time the processor accessed the di-
rectory. A stratum is logged using these memory counts. The vec-
tor of memory counts is updated as follows. Every time a proces-
sor node performs a read or a write request to the directory due to
a cache miss, it piggybacks its current memory count along with
the coherence request. Also, when a dirty block is written back to
memory, the current memory count is also piggybacked in the write
update coherence message. We update the MVector for the proces-
sor each time the memory count is piggybacked on a coherence
message.

In this scheme, some of the memory counts in the vector can be
stale (not up-to-date) when a stratum is logged, relative to the cur-
rent memory counts on all of the processors. This is fine, since the
memory counts that the directory sees can be used to log a stratum
across all of the processors, which is valid in terms of capturing
the shared memory dependencies. Consider the example shown in
Figure 4. The example shows four processor nodes. The read and
write operations are shown along with their addresses. The RAW
and WAW dependencies are also shown using arrows. In the figure,
assume that the stratum S0 has been logged due to some previous
dependency. The processor nodes P3 and P4 update their memory
counts in the directory controller when they encounter read misses
(due to R1 and R2) for the address C. Later, when P1 sends a
write miss request for W2, a WAW dependency is detected with
P2, which currently has a dirty copy of the memory block (writ-
ten by W1). A stratum is logged to capture this W1→W2 WAW

dependency. The directory controller logs the stratum S1 using the
memory counts in its MVector. Note that the memory counts for the
processor nodes involved in the dependency are always up-to-date
when the stratum for the dependency is logged. In our example, the
memory counts of P1 and P2 are up-to-date when the stratum S1

is logged. Since the stratum will separate the dependent operations
in time, the memory count logged for the processor node P1 is one
less than the memory count corresponding to the write operation
W2.

After logging the stratum S1, the processor node P2 encounters
a write miss for W5 and updates the memory count in the MVector.
Later, the RAW dependency W3→R4 is observed between P4

and P3, when P3 encounters a read miss for R4. The directory
controller logs the stratum S2 to capture this RAW dependency.
Note that the memory counts are up-to-date for P3 and P4 while
logging the stratum S2. However, it is not the same case for P1

and P2. In fact, for P1, the memory count logged in S2 is same
as the memory count that was updated when P1 sent a coherence
request for the write W2.

In spite of using stale memory counts while logging the strata,
the following two properties that are essential for our offline analy-
sis are still preserved: (1) There exists at least one stratum between
the memory operations involved in a cross-node RAW or WAW de-
pendency. Thus, a strata region cannot have any cross-node RAW
or WAW dependencies. (2) The strata regions are non-overlapping,
because the value of a memory count in the MVector either in-
creases or stays the same. These properties allows us to consider
one strata region at a time during offline analysis, and determine a
total order for the memory operations executed with a strata region.

6.2 Determining RAW and WAW Dependencies in the
Directory

Similar to our snoop-based implementation, we use a dependence
bit per cache block to determine if a dependency needs to be
logged. We also have a dependence bit for each directory entry in
the directory cache. The dependence bit in the processor’s cache
is set whenever the processor writes to the cache block. In the
directory systems, the dependence bit in the directory cache is set
whenever a dirty block is written back to the memory and that dirty
cache block has its dependence bit set.

While servicing a processor’s read or write miss request for a
cache block, a potential RAW or WAW can exist if some processor
node in the system has exclusive access to the cache block. In
that case, the directory controller sends a data fetch request to
the processor node that has exclusive access. The processor node
with exclusive access to the cache block, piggybacks the value
of that block’s dependence bit on the coherence reply message to
the directory. We detect a RAW or WAW dependency only if the
dependence bit information received through the coherence reply
is set to true (that is, the owner had written to the cache block).

In case when the block in not cached in any of the processor
node, while servicing a processor’s read or write miss request
for a cache block, we detect a RAW or WAW dependency if the
dependence bit is set for the directory entry of the cache block. If
the bit is set, we log a stratum to separate the dependency. If the
directory cache cannot keep track of every block in memory, and
we get a miss in the directory cache for the memory block, then
we conservatively log a stratum on a directory cache miss. Thus,
the dependence bits in the private caches of the processor nodes
and in the directory cache allows us to detect the RAW and WAW
dependencies and log a stratum appropriately to capture them.

When a directory logs a stratum, the dependence bits for all the
entries in that directory can be cleared. This is because, any write
that had set a dependence bit in the directory entry earlier is ordered
by the stratum that the directory is currently logging. To reduce the
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amount of logging as much as possible, we would also like to clear
the dependence bits in the processor caches, whenever a stratum is
logged. We would only be able to do that for all of the processors,
if the stratum contained the current memory counts for all the
processor nodes. However, this would require additional coherence
messages between the directory and every other processor node in
the system. Therefore, we chose to reset the dependence bits only
for the two processor nodes that are involved in the RAW/WAW
dependency that triggered the creation of the stratum. This is valid
because the new stratum contains the up-to-date memory counts
for those two dependent processor nodes. Hence, all the writes
executed in those two processors before logging the stratum are
ordered by the recorded stratum.

Consider again the example shown in Figure 4. Assume that
after the write W5, the dirty block (with address D) was imme-
diately written back to the memory. This sets the dependence bit
in the directory entry corresponding to the memory block with ad-
dress D. When the stratum S2 is logged, the dependence bits in
the directory are reset. This includes the dependence bit for the
block D. Later, when R5 accesses the same block, a new stratum
is not logged, even though there is a cross-node RAW dependency
(W5→R5), because the stratum S2 already separates W5 and R5.

Now let us explain another example to show how the depen-
dence bits in the caches are used. The processor node P3 executes
the write W4 to the address C and sets the dependence bit in its
cache block. The cache block remains in the dirty state until the
time when processor node P2 executes the read R6. Clearly, there
is a cross-node RAW dependency W4→R6 between P3 and P2.
However, when the stratum S2 was created for the RAW depen-
dency W3→R4, the dependence bits in the private caches of P3

and P4 would have been reset. As a result, the dependency infor-
mation piggybacked along with the coherency reply from P3, to
service the read miss for R6 W4→R6, tells the directory that a new
stratum to capture the RAW dependency W4→R6 is not required.
Thus, a stratum is not logged for the RAW dependency W4→R6.

6.3 Strata for a Distributed Directory

In this section, we relax the assumption of a centralized directory
and show that our approach is applicable for distributed directories
as well. In the case of distributed directories, each directory con-
troller captures the dependencies for the addresses that it services
using a strata log. So we have multiple strata logs, which are com-
bined into one unified strata log during offline analysis. Figure 5
shows an example of two strata logs, collected in a distributed di-
rectory system with two directories. The solid strata are collected
in one directory and the dotted ones are the strata collected for the
other directory.

A strata log collected in a directory serves the purpose of deter-
mining the dependencies between the memory operations accessing
the addresses mapped to that directory. Therefore, we are still guar-
anteed that each cross-node RAW and WAW dependency is sepa-
rated by at least one stratum in one of the strata logs. In Figure 5,
addresses A and A

′ are assumed to be mapped to one directory
(the strata log for this directory is shown using solid lines). The
address B is mapped to the other directory. It can be seen that the
solid strata S1 and S2 separate W1→R1 and W3→W4 dependen-
cies respectively, while the dotted stratum S0 captures the W2→R2
dependency.

However, unlike in a centralized directory, the strata regions in
the strata logs collected in different directories can be overlapping.
The reason for this is that the MVectors used to log the strata across
the directories are not updated in the same way. An entry for a
processor node in the MVector is updated only when that processor
node communicates with that directory to resolve a miss or when it
is writing back a dirty cache block.



Overlapping strata regions are an issue, because in the offline
analysis that we described in Section 4.4, one strata region is
analyzed at a time. To solve this problem, in our offline analysis,
we first combine the multiple strata logs for the different directories
such that there are no overlapping regions in the combined strata
log. When combining the strata logs, we look to see if there are any
two strata that are intersecting. A stratum in each log contains the
memory counts for each processor when the stratum was recorded
in the directory, and from these counts we can easily determine
if two strata are intersecting. If there are two intersecting strata,
we use their memory counts to make non-overlapping equivalent
strata, which are put into the combined strata log. For example, in
Figure 5 the strata S0 and S1 are intersecting. For these two strata,
we create three strata S

′
0, S′

1 and S
′
2 in the combined log in such

a way that none of the new strata intersect, and these new strata
still separate the regions of memory operations that the two strata
were originally created to separate. Figure 6 shows the combined
strata log. It is stricter because the number of strata, between any
two dependent memory operations, is either the same as before
removing the intersections or greater. For example, in Figure 6,
the reads and writes involved in a RAW or a WAW dependency
are still separated by at least one stratum. There are two strata S

′
0

and S
′
1 that separate the cross-node RAW dependency, W1→R1,

whereas in the strata log shown in Figure 5 there is only one stratum
S1 to separate those dependent operations. The RAW dependency
W2→R2 (observed in the second directory) is captured by the
stratum S

′
2.

Once we have the strata log with non-overlapping strata regions,
we can use the offline analysis that we described in Section 4.4 to
determine a total order for all the memory operations.

6.4 Recording All Shared Memory Dependencies

If we wanted to also capture WAR shared memory dependencies
with our strata approach, we need to have read dependence bits
for reading a block in the processor’s caches and in the directory
cache. These additional dependence bits are required to determine
whether there was a read to a memory block after the last recorded
stratum. When there is a write miss, we can detect if there is a WAR
dependency, and using the read dependence bit information we can
decide whether to log a stratum or not.

6.5 Hardware Requirements

The additional hardware states required for creating the strata log
is just one dependence bit per cache block in each processor node
and one dependence bit per directory entry in the directory.

7. Results
To create the logs, in this study, we used Simics [5] to capture
the logs as well as to model the architecture support required
for logging. In Simics, we modeled a four node CMP processor
with 64KB L1 caches and a 2MB L2 cache, and modeled both
directory and snoop protocols. We also built a replayer in Pin [4]
that consumes the logs to provide deterministic replay debugging
of the programs.

To evaluate our shared memory dependency logging improve-
ments, we used data parallel programs from the Splash benchmark
suite [12]. We could only get five of the main benchmarks to com-
pile, and we provide results for all of these, which are barnes,
ocean, radiosity, raytrace and water. We focus on these for
tracking shared memory dependencies, since they represent a work-
load which will stress the shared memory dependency logging. We
ran each program configured with 5 threads on a 4 processor node
system. Each program was run until the total number of memory
operations across all the threads reached 400 million memory op-

erations per program. We found this to roughly execute about 100
million memory operations per thread.

7.1 Logging Performance Overhead

In terms of performance overhead, we found that the logging incurs
only a 1% slowdown due to the extra memory traffic from logging,
which is consistent to the low (few percent) overhead reported
in FDR [13] and BugNet [6]. This is because the logs are non-
cachable writes to memory, so they do not pollute the caches at all,
and they have low priority for the bus access.

7.2 Strata Logging Results

In Figure 7, we present results for the number of log entries to cap-
ture shared memory dependencies. The x-axis represents the pro-
grams and the y-axis represents the number of log entries gener-
ated by the point-to-point (P2P) scheme with Netzer optimization,
our new Strata directory and Strata snoop architectures. Results are
shown in terms of the average number of log entries per 1 million
memory operations. The figure shows five bars. We first concen-
trate on the first, second and fourth bars, representing P2P, Strata
for Directory and Snoop cache coherence protocols. A log entry
for P2P is created for every RAW, WAW and WAR shared memory
dependency. The log entry for our Strata results represent the num-
ber of logged strata, when logging strata for only RAW and WAW.
The results show that Strata has significantly less log entries when
compared to P2P. For our directory approach we require 10.5x less
number of logs than P2P, and for snoop based system the number
of log entries is reduced by a factor of 9.9x.

The reasons for these savings are two-fold. First, Strata only
records RAW and WAW dependencies, therefore saving all log en-
tries related to WAR dependencies. More importantly, our scheme
implements a transitive optimization, which yields significant sav-
ings in reducing the number of stratum to be logged. Strata Snoop
does slightly worse than Strata Directory because of aliasing in the
bloom filters.

In Figure 7, the third and fifth bars (All) show the number of
stratum log entries if we create a stratum for logging all shared de-
pendencies (including WAR), as described at the end of the prior
two sections. Adding WAR stratum logging incurs an overhead of
25% additional log entries when compared to logging only RAW
and WAW strata. In addition, it requires the extra hardware ex-
plained in Sections 5 and 6, in order to monitor whether reads oc-
curred after the last logged stratum. From the results, we see that
most of the savings, in terms of the number of log entries come
from our stricter (and more efficient) stratum transitive optimiza-
tion, which results in significantly fewer log entries compared to
P2P, which applies point-to-point Netzer optimization.

Figure 8 shows the log sizes in terms of bytes for every 1 million
memory operations (y-axis) for each approach. The first bar shows
the P2P approach, which store 9 bytes for each shared memory
dependency logged as described in FDR [13]. The second and the
fourth bars show the log sizes for our Strata Directory and Strata
Snoop approaches logging strata for only RAW and WAW. The
third and the fifth bars show the log sizes for logging stratum for
RAW, WAW, and WAR. For every stratum four words are logged,
one word is required for the memory count of each processor. These
are our uncompressed results. When compared to P2P, our shared
memory dependency logs are 6x and 5.6x smaller on average for
the directory and snoop-based systems respectively, when logging
only the RAW and WAW dependencies. If all the dependencies are
logged, the ratios go down to 4.5x and 4.4x for the directory and
snoop-based systems respectively. Figure 8 shows a 25% reduction
in log size for not having to log WAR dependencies with Strata.
The biggest advantage of only logging WAW and RAW stratum
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Figure 8. Log size for Recording Memory Dependencies
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Figure 9. Compressed Log sizes for Recording Memory Dependencies

and figuring out the WAR off-line, is the avoidance of the additional
complexity to log the WAR stratum described in the prior sections.

Figure 9 shows the results for Strata log sizes without and with
compression. We show results for logging only the RAW and WAW
dependencies, since the same trend holds for logging all depen-
dencies as well. Without compression, the Strata approach logs 4
words for each stratum logged, as described before. For the com-
pressed results, instead of logging a full 32-bit memory operation
count for each processor, we log only 16-bits if the memory count
stride (difference between the previous stratum memory count and
the current stratum memory count for a processor) can be expressed
using 16-bits. In addition, we need one bit field for each memory
count entry per processor to distinguish between the two formats.
Therefore, we approximately have two words per log entry after
performing this compression. The first two bars show the results
for the Strata Directory approach without and with compression,
and the last two for the Strata Snoop approach without and with
compression. The results show that with this simple form of com-
pression, our log sizes are 47% smaller than not using the compres-
sion. When using compression, the Strata log sizes are on average
12x times smaller than P2P.

Overall, the results show that the storage overhead of logging
the shared memory dependencies for P2P is 24KB for 1 million
memory operations, and for our approach it is 4.1KB for directory
and 4.4KB for snoop-based protocols for every 1 million memory
operations without compression. With compression, the sizes are
2.2KB and 2.3KB for the directory and snoop-based systems. To
put these log sizes in perspective with the rest of the logging done
for BugNet, for these programs, the First Load Log (FLL) size

required to capture the execution for 1 million memory operations
is 26.6 KB on average without compression. Therefore, the Strata
logs account for about 15% of the total log storage needed to
provide deterministic replay with BugNet for these programs.

Another interesting observation is that the Snoop approach re-
sults in more log entries than the Directory approach. This is espe-
cially visible for the program ocean, as seen in Figure 7. This is
caused by aliasing in the bloom filters, which result in false pos-
itives when detecting dependencies with uncached blocks. We set
the bloom filter when a dirty copy of a block is written back to
memory. However, if another entry aliases to the same bloom fil-
ter entry, then on a miss, we would detect a dependency between
two operations, which in fact are not dependent, and log a stra-
tum. Note that this is not a issue. It just results in redundant strata
log entries, and larger log sizes. To measure the effects of aliasing
in our schemes, we measured how many strata were logged due
to aliasing. For all benchmarks except ocean less than 1% of the
strata were logged due to aliasing. For ocean however, 64% of the
strata logged are due to false positives. This is because of the large
number of dirty block evictions encountered during execution, re-
sulting in heavy use of the bloom filters for the benchmark. Future
work should be able to reduce this by improving the bloom filter
approach used.

7.3 Bandwidth Overhead

We also collected results for the overheads of our approach in terms
of communication bandwidth. For calculating this overhead, we
computed how many extra bytes have to be transmitted on the bus
to allow us to log the shared memory dependencies. We compute



how many bytes are transmitted on the bus due to read and write
misses and the coherence messages associated with it. For the P2P
approach, the overhead comes from the extra instruction count pig-
gybacked on the write update reply message and invalidation reply
message. The overhead is about 10% extra bandwidth. For our Di-
rectory approach, the overhead consists of the memory operation
counts piggybacked on the messages sent to the directory as a re-
sult of the write misses, read misses and write evicts. Also, the
coherence replies from the exclusive owners in response to data
fetch request need to be piggybacked with the dependence bit. The
overhead is about 12% extra bandwidth, slightly over what P2P re-
quires.

In the snoop-based system, the coherence reply and request
messages are piggybacked with one additional bit that instructs the
processor nodes whether to log a stratum or not. In addition, before
paging, an additional message is broadcast on the bus instructing all
the processor nodes to log a stratum. For the programs we exam-
ined, we found that these do not incur any appreciable communi-
cation overhead - both in terms of number of bytes communicated
and in terms of the number of messages communicated.

7.4 Scalability

We finally point out some aspects regarding the scalability of our
approach. Note that the number of entries in a strata log is propor-
tional to the number of processor nodes and not threads. As a result,
logging overhead will scale linearly with the number of processor
nodes in the system. However, for our directory approach, since we
clear the dependence bits of only the dependent processor nodes,
our transitive optimization to reduce the number of strata logged
may not be as efficient when the number of processors increase.
In P2P, as the number of processor nodes increase, the number of
point-to-point dependencies also potentially increase. In our case,
the size of each stratum increases with the number of processors,
but so does the benefit of our transitive optimization since it applies
across all processor nodes and not just the dependent processors.

8. Conclusion
Providing hardware support for improving software quality and
reliability will be increasingly important with future processing
trends. Future processors will be multi-core encouraging software
developers to use multi-threaded programs to extract parallel per-
formance out of them. Our mechanism for shared memory de-
pendency logging allows deterministic replay debugging for these
multi-core systems.

We proposed a new logging mechanism called Strata. A stratum
is logged across all of the processors every time a shared mem-
ory dependency needs to be captured. We log a stratum for every
RAW and WAW dependency, and WAR dependencies are deter-
mined through offline analysis. A stratum provides a strict time
ordering between memory operations that occurred before and af-
ter the stratum across the processors. We found that the strata log
is 5.8x smaller without compression and 12x smaller with com-
pression than the log used in the previous point-to-point logging
approach [13, 6]. Another advantage is that our strata approach
requires less hardware than the point-to-point approach. In addi-
tion, based on the notion of strata, we were able to design a shared
memory dependency logging solution for snoop-based architec-
tures, which the previous proposals did not address.
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