Automated Testing:
CUTE & SMART

Nick Sumner
with material from:
Patrice Godefroid

Koushik Sen

Recall from class

* Automated tests that are “played on demand”

- Avoiding interaction

e introduce fewer errors
* cheaper

* Difficulties
- Fragility

e Interface evolution
* Code evolution

- Deciding correctness
- Developing test suite

Focus

* Automate unit testing

* Automate test generation itself

- Generate test inputs that examine desired features

* search for bugs
* avoid code fragility
* Integrate into nightly builds

* Automatically detect failures
- or extensible to allow failure detection

Execution Model

* Execution is viewed as Computation Tree

- Nodes are predicates
- Edges are straight line code
- HALT or ABORT lie in the leaves

 Each path from root is an equivalence class

- Goal in error finding to to derive a representative

- Better path coverage increases chances of
discovery

Familiar Example

Read X, Y
vZ = 2*Y - X
27Y + X ==
X-2>0

VNA

Approach A: Random Testing

* Though successful, cannot reach tightly
constrained code

- Random distribution cannot hit discrete points with
even 232 options

Consider:

1f (x == 42)
abort () ;

Approach B: Symbolic Execution

* Symbolic execution executes programs abstractly

- Program is function on abstract input variables
- Collect general constraints along execution paths
- Attempt to solve in terms of input variables

* Scales poorly
* Limited by conservative static analysis

int obscure(int x, int y) {
if (x==hash(y))
error () ;

test me (int x) {
1if((x%10)*4'=17) {

ERROR; :
} else { return 0;
ERROR; }
} Falls to over or under

approximation

CUTE and SMART

e CUTE and SMART: 2 tools using similar
approaches

- Both developed from DART

* Force exploration of all possible execution
paths on valid input

- potentially complete feasible path coverage
- Combine static and dynamic analysis
* Randomized testing supporting symbolic execution

General Approach

 Perform DFS for errors on computation tree

- every path from root to (leaf | infinity)

* Solve constraints over tree iteratively to drive
execution along all possible paths

- Upon reaching difficult constraints, use the concrete
values from execution to enable pushing past them

int obscure(int x, int y) {
if (x==hash(y))
abort () ;
return O;

}

More Refined

1) Generate randomized inputs for entry method, stored
in Input map

2) Collect symbolic constraints or a best guess along
execution path while executing

3) Negate last constraint and solve to generate new
path, marking when done.

4) Return to step 2

Original DART had verification flavor
* Never stopped testing until all paths executed (infinite?)
* Ran forever if theory violation led to unexpected paths

CUTE

e CUTE: A Concolic Unit Testing Environment for C

* Concolic: Concrete and Symbolic

* More pragmatic
- Bounded DFS - full completeness not realistic
- Analyzes pointer graphs and constraints

- Includes efficiency heuristics
- Theory prediction violation only restarts analysis

[Example: Sen FSE'05 Slides 9-35]

CUTE

* Reconsider yet again:

int obscure(int x, int y) {
if (x==hash(y))
abort () ;
return O;

* Expression of nash(y) IS irrelevant.

- Could be a library or instrumented function; it
doesn't matter

CUTE

* Tool available by request, also for Java
* Implementation:

- Translate into simplified representation (CIL)

- Instrument source

* Maintain symbolic memory map over function calls
and operations

- Compile
- Run cute, which executes instrumented program

Constraint Optimizations
Even using optimized linear solvers is costly

* Fast unsatisfiability (60-95% fewer checks)
- Negation of previous path constraint — unreachable

e Common subconstraints (64-90% fewer constr.)

* [ncremental solving (1/8 constr. set)

- Only constraints related to last on path need be used
In calculation of new input map.

* Constraint set to solve reduced considerably

Constraint Solving

e The set of constraints to solve Is either

- Numerical
* Solved by Ip_solve
- Pointer graph
* Use equivalence graph from disequalities

* Ensure no edge when equality added
* Ensure unequivalence when disequality added

* |Locality of reference in computation tree ensures
minimal modification to pointer graph between rounds

Data Structure Testing

* Often, programs require valid pointer graphs to
function properly

- e.g. doubly linked lists

* Can provide API to enable proper construction
of data structures.

e Can utilize data structure invariant checker
when producing structures

- constraints from invariant checker adjunct to path
constraints in input derivation.

Limitations
* Obviously faces effects of path explosion

* Approximation in pointer theory requires direct
predicates to push through constraints

a[i] = 0;
al[j] = 1;
if (a[i] == 1)

abort ()

* Bounded DFS clearly lacks completeness over
looping. Loop intensive programs become
intractable.

* Library functions with side effects are clearly
analyzable, but relatively glossed over.

Evaluations

* Used in combination with Valgrind to analyze
itself.

- memory leaks discovered in its own source code
- exhibits orthogonality as a driver to other analyses

* Analysis of SGLIB - Open Source Data Structure

- Use of structure invariant checker
- 2000 lines of C
- Discovered 2 bugs

Evaluations

Name Run time # of # of Branches | % Branch | # of Functions | OPT 1 OPT 2 # of Bugs
in seconds | Iterations Explored Coverage Tested in % & 3in % Found
Array Quick Sort 2 732 43 97.73 2 67.80 49.13 0
Array Heap Sort 4 1764 36 100.00 2 T1.10 46.38 0
Linked List 2 570 100 096.15 12 86.93 88.09 0
Sorted List 2 1020 110 096.49 11 BR.B6 80.85 0
Doubly Linked List 3 1317 224 99.12 17 86.95 79.38 1
Hash Table 1 193 46 85.19 8 07.01 52.94 1
Red Black Tree 2629 | 1,000,000 242 T1.18 17 80.65 64.93 0

Figure 11: Results for testing SGLIB 1.0.1 with bounded depth-first strategy with depth 50

* Branch coverage and run time on live code act as
metrics, as IS common.

 Examples from live code provide validity

* An interesting metric used by CUTE is the # of
iterations of the framework.

SMART

Compositional Dynamic Test Generation

Again, the verification flavor of DART is present

While dynamic testing is powerful, it faces tractability
setbacks for large scale programs.

Repeated analysis of code within the computation tree
IS unnecessary in a specific theory.

Analyze each function or module separately and reuse
the analysis as possible.

- Systematic Modular Automated Random Testing

SMART Summaries

* A summary is a disjunction of logical constraints
In a particular constraint theory.

* [ndividual terms are conjunctions of

1.Preconditions on function inputs for the term's
summary to apply

2.Postconditions of effect constraints on the output of
a function under the preconditions.

* Only preconditions expressible within the
predetermined theory T are admitted

SMART

e Just as with the computation _ |
: 1 int g(int x) {
tree, equivalence classes have % e s
been defined 3 if (x < 0)
return O;
- Classes over call flow graph 4 y = hash(x);
based on preconditions 5 if (y == 100)
return 10;
- Equivalence is sound only if all 6 if (x > 10)
constraints along path are within ; tretu;n 1;
theory T. rEEEEn <
8 }
* \When constraints lie outside of

I =—0OA — A —
T, summaries are (x>=0"x<=10"ret=2)

inaccurate/incomplete, leading
to incomplete analysis

Computing Summaries

* Upon function f's termination, preconditions are
easily observed as the path constraints within f.

* Postconditions are the constraints of any
externalized value (or false for termination)

* Every time fis analyzed (on new preconditions)
a term is added to its summary

* Top down or bottom up attack:

- Bottom up may not generate needed and may
generate unneeded terms

- Top down best. Memoize symbolic procedures.

Correctness

» SMART is, within a quantified theory T,
equivalent to DART.

- Terminates on known full coverage
- Terminates on sound bug
- Nonterminating otherwise

* This is explicitly within T, which Godefroid says
IS seldom consistent.

- Exchange does have benefits...

Complexity

 Suppose 3 a bound b on path branches within
any given function.

- No function is analyzed more than b times. If there
are N functions, SMART search is O(N).

* DART search, as mentioned before, has path
explosion

- Potential complexity is actually O(2N).

e SMART overhead from summary propositions?

- Not time intense, as precondition matching can be
fast

Example

int is positive (int x) {
if (x>0)
return 1;
return O;

}

#define N 100
void top(int s[N]) {//N inputs
int i,cnt=0;
for (i=0;i<N;i++)
cnt=cnt+is positive(s[i]);
if (ent 3) error(); //(*)
return;

e 2N program paths
e SMART does 4 runs

- 2 for summary:
O = (x>0 A ret=1) v (x=<0 A ret=0)
* 2 to execute both branches
of (*),by solving the
constraint
[(s[0]>0 Oret,=1)
d(s[0]=<0 Oret,=0)]

O[(s[1]>0 Oret,=1) O(s[1]=<0 Oret,=0)]
O... O[(s[N-T]>0 Oret,_,=1) O(s[N-1]=<0
Oret, ,=0)] O(ret,+ret, +...+ret, , = 3)

Clarification

* Memoized constraints from the summaries are
adjunct to the path constraints

- Similar to the data structure invariant constraints
- Cannot be negated by the path forcing process.
- Different explicit path traversal than DART / CUTE

Case Study

* I[mplementation of SMART created, though not
obviously available.

e Comparison made between DART and SMART
on limited subset of 0SIP code.

800
SMART -+
600 —
500 —
Runs
400 —
300 -
200 —
100
0: e A e R e L R I IR
1 2 3 4 5 6 7 8 9 10
Packet size

Figure 4. Experimental comparison between DART and SMART

Metrics

* Only real metric present is comparison to DART
in Number of Runs vs. Input Size

- Memo storage could devour significant enough
space to slow the process considerably.

- While the asymptotic behavior in terms of test runs
IS, as expected, significantly different, the unlisted
factors are interesting enough to not ignore.

- Still, no real trials of noteworthy size have been
been performed with Concolic test units.

Interesting Results

* [nterleaving opposing methodologies can yield
more benefit than either alone.

- Degree of integration seems to increase over time.

* Never forget:

- reduction of subproblems to equivalence classes
- cache or choose single representative

Trade Offs

* Consider the message summary approach used
in SMART.

- Is the message summary efficiency gain worth
being restricted to a feasible theory in analysis?

* N0 more piggybacking of Valgrind, etc.
* |s the limitation of automated testing only to unit

tests reasonable for the coverage provided by
CUTE?

Possibilities

* What are the possible advantages or
disadvantages of loop invariant analysis within
CUTE?

* A lattice on pre and post conditions in SMART
Is given. What sorts of heuristics would be
beneficial to the goal of increasing the
precision, and therefore completeness?

- e.g. Checking that postconditions validate

Thank You

Godefroid. “Compositional Dynamic Test Generation” Proceedings of POPL'2007
(34th Annual ACM Symposium on Principles of Programming Languages), pages
47-54, Nice, January 2007.

Godefroid. “Compositional Dynamic Test Generation,” POPL'2007 Talks

Patrice Godefroid, Nils Klarlund, Koushik Sen: DART: directed automated random
testing. PLDI 2005: 213-223

Sen. "CUTE: A Concolic Unit Testing Engine for C", ESEC/FSE 2005, Lisbon,
Portugal, September 8.

KOUSHIK SEN, DARKO MARINQOV, and GUL AGHA, "CUTE: A Concolic Unit
Testing Engine for C." in 5th joint meeting of the European Software Engineering
Conference and ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE'05), pp. 263-272, Lisbon, Portugal, September 2005.

