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Recall from class
● Automated tests that are “played on demand”

– Avoiding interaction
● introduce fewer errors
● cheaper

● Difficulties
– Fragility

● Interface evolution
● Code evolution

– Deciding correctness
– Developing test suite



  

Focus
● Automate unit testing

● Automate test generation itself
– Generate test inputs that examine desired features

● search for bugs
● avoid code fragility
● Integrate into nightly builds

● Automatically detect failures
– or extensible to allow failure detection



  

Execution Model
● Execution is viewed as Computation Tree

– Nodes are predicates
– Edges are straight line code
– HALT or ABORT lie in the leaves

● Each path from root is an equivalence class
– Goal in error finding to to derive a representative
– Better path coverage increases chances of 

discovery



  

Familiar Example

2 * Y + X == 0

Read X, Y
Z = 2*Y - X

false

X - Z > 0

true Y = 2false

true



  

Approach A: Random Testing
● Though successful, cannot reach tightly 

constrained code
– Random distribution cannot hit discrete points with 

even 232 options

Consider:

if ( x == 42 )
abort();



  

Approach B: Symbolic Execution
● Symbolic execution executes programs abstractly

– Program is function on abstract input variables
– Collect general constraints along execution paths
– Attempt to solve in terms of input variables

● Scales poorly
● Limited by conservative static analysis
test_me(int x){

if( (x%10)*4!=17 ){
ERROR;

} else {
ERROR;

}
}

int obscure(int x, int y) {
if ( x==hash(y) )

error();
return 0;

}
Falls to over or under 
approximation



  

CUTE and SMART
● CUTE and SMART: 2 tools using similar 

approaches
– Both developed from DART

● Force exploration of all possible execution 
paths on valid input
– potentially complete feasible path coverage
– Combine static and dynamic analysis

● Randomized testing supporting symbolic execution



  

General Approach
● Perform DFS for errors on computation tree

– every path from root to (leaf | infinity)

● Solve constraints over tree iteratively to drive 
execution along all possible paths
– Upon reaching difficult constraints, use the concrete 

values from execution to enable pushing past them
int obscure(int x, int y) {

if ( x==hash(y) )
abort();

return 0;
}



  

More Refined

1) Generate randomized inputs for entry method, stored 
in input map

2) Collect symbolic constraints or a best guess along 
execution path while executing

3) Negate last constraint and solve to generate new 
path, marking when done.

4) Return to step 2

Original DART had verification flavor
● Never stopped testing until all paths executed (infinite?)
● Ran forever if theory violation led to unexpected paths



  

CUTE
● CUTE: A Concolic Unit Testing Environment for C
● Concolic: Concrete and Symbolic
● More pragmatic

– Bounded DFS - full completeness not realistic
– Analyzes pointer graphs and constraints
– Includes efficiency heuristics
– Theory prediction violation only restarts analysis

[Example: Sen FSE'05 Slides 9-35]



  

CUTE
● Reconsider yet again:

● Expression of hash(y) is irrelevant.
– Could be a library or instrumented function; it 

doesn't matter

int obscure(int x, int y) {
if ( x==hash(y) )

abort();
return 0;

}



  

CUTE
● Tool available by request, also for Java
● Implementation:

– Translate into simplified representation (CIL)
– Instrument source

● Maintain symbolic memory map over function calls 
and operations

– Compile
– Run cute, which executes instrumented program



  

Constraint Optimizations
Even using optimized linear solvers is costly

● Fast unsatisfiability (60-95% fewer checks)
– Negation of previous path constraint → unreachable

● Common subconstraints (64-90% fewer constr.)

● Incremental solving (1/8 constr. set)
– Only constraints related to last on path need be used 

in calculation of new input map.
● Constraint set to solve reduced considerably



  

Constraint Solving
● The set of constraints to solve is either

– Numerical
● Solved by lp_solve

– Pointer graph
● Use equivalence graph from disequalities
● Ensure no edge when equality added
● Ensure unequivalence when disequality added

● Locality of reference in computation tree ensures 
minimal modification to pointer graph between rounds



  

Data Structure Testing
● Often, programs require valid pointer graphs to 

function properly
– e.g. doubly linked lists

● Can provide API to enable proper construction 
of data structures.

● Can utilize data structure invariant checker 
when producing structures
– constraints from invariant checker adjunct to path 

constraints in input derivation.



  

Limitations
● Obviously faces effects of path explosion
● Approximation in pointer theory requires direct 

predicates to push through constraints

● Bounded DFS clearly lacks completeness over 
looping. Loop intensive programs become 
intractable.

● Library functions with side effects are clearly 
analyzable, but relatively glossed over.

a[i] = 0;
a[j] = 1;
if (a[i] == 1)

abort()



  

Evaluations
● Used in combination with Valgrind to analyze 

itself.
– memory leaks discovered in its own source code
– exhibits orthogonality as a driver to other analyses

● Analysis of SGLIB - Open Source Data Structure
– Use of structure invariant checker
– 2000 lines of C
– Discovered 2 bugs



  

Evaluations

● Branch coverage and run time on live code act as 
metrics, as is common.

● Examples from live code provide validity
● An interesting metric used by CUTE is the # of 

iterations of the framework.



  

SMART

Compositional Dynamic Test Generation
● Again, the verification flavor of DART is present
● While dynamic testing is powerful, it faces tractability 

setbacks for large scale programs.
● Repeated analysis of code within the computation tree 

is unnecessary in a specific theory.

● Analyze each function or module separately and reuse 
the analysis as possible.
– Systematic Modular Automated Random Testing



  

SMART Summaries
● A summary is a disjunction of logical constraints 

in a particular constraint theory.
● Individual terms are conjunctions of

1.Preconditions on function inputs for the term's 
summary to apply

2.Postconditions of effect constraints on the output of 
a function under the preconditions.

● Only preconditions expressible within the 
predetermined theory T are admitted



  

SMART
● Just as with the computation 

tree, equivalence classes have 
been defined
– Classes over call flow graph 

based on preconditions
– Equivalence is sound only if all 

constraints along path are within 
theory T.

● When constraints lie outside of 
T, summaries are 
inaccurate/incomplete, leading 
to incomplete analysis

1 int g(int x) {
2 int y;
3 if (x < 0)

return 0;
4 y = hash(x);
5 if (y == 100)

return 10;
6 if (x > 10)

return 1;
7 return 2;
8 }

(x >= 0 ^ x <= 10 ^ ret = 2)



  

Computing Summaries
● Upon function f's termination, preconditions are 

easily observed as the path constraints within f.
● Postconditions are the constraints of any 

externalized value (or false for termination)
● Every time f is analyzed (on new preconditions) 

a term is added to its summary

● Top down or bottom up attack:
– Bottom up may not generate needed and may 

generate unneeded terms
– Top down best. Memoize symbolic procedures.



  

Correctness
● SMART is, within a quantified theory T, 

equivalent to DART.
– Terminates on known full coverage
– Terminates on sound bug
– Nonterminating otherwise

● This is explicitly within T, which Godefroid says 
is seldom consistent.
– Exchange does have benefits...



  

Complexity
● Suppose  a bound b on path branches within ∃

any given function.
– No function is analyzed more than b times. If there 

are N functions, SMART search is O(N).
● DART search, as mentioned before, has path 

explosion
– Potential complexity is actually O(2N).

● SMART overhead from summary propositions?
– Not time intense, as precondition matching can be 

fast



  

Example
● 2N program paths
● SMART does 4 runs

– 2 for summary:
Φ = (x>0 ∧ ret=1)  (x=<0 ∨ ∧ ret=0)

● 2 to execute both branches 
of (*),by solving the 
constraint

[(s[0]>0 ∧ ret0=1)
∨ (s[0]=<0 ∧ ret0=0)]

int is_positive(int x) {
if (x>0)

return 1;
return 0;

}
#define N 100
void top(int s[N]) {//N inputs

int i,cnt=0;
for (i=0;i<N;i++)

cnt=cnt+is_positive(s[i]);
if (cnt == 3) error(); //(*)
return;

}
∧ [(s[1]>0 ∧ ret1=1) ∨ (s[1]=<0 ∧ ret1=0)]
∧ ... ∧ [(s[N-1]>0 ∧ retN-1=1) ∨ (s[N-1]=<0
∧ retN-1=0)] ∧ (ret0+ret1+…+retN-1 = 3)



  

Clarification
● Memoized constraints from the summaries are 

adjunct to the path constraints 
– Similar to the data structure invariant constraints
– Cannot be negated by the path forcing process.
– Different explicit path traversal than DART / CUTE



  

Case Study
● Implementation of SMART created, though not 

obviously available.
● Comparison made between DART and SMART 

on limited subset of oSIP code.



  

Metrics
● Only real metric present is comparison to DART 

in Number of Runs vs. Input Size
– Memo storage could devour significant enough 

space to slow the process considerably.
– While the asymptotic behavior in terms of test runs 

is, as expected, significantly different, the unlisted 
factors are interesting enough to not ignore.

– Still, no real trials of noteworthy size have been 
been performed with Concolic test units.



  

Interesting Results
● Interleaving opposing methodologies can yield 

more benefit than either alone.
– Degree of integration seems to increase over time.

● Never forget:
– reduction of subproblems to equivalence classes
– cache or choose single representative



  

Trade Offs
● Consider the message summary approach used 

in SMART.
– Is the message summary efficiency gain worth 

being restricted to a feasible theory in analysis?
● no more piggybacking of Valgrind, etc.

● Is the limitation of automated testing only to unit 
tests reasonable for the coverage provided by 
CUTE?



  

Possibilities
● What are the possible advantages or 

disadvantages of loop invariant analysis within 
CUTE?

● A lattice on pre and post conditions in SMART 
is given. What sorts of heuristics would be 
beneficial to the goal of increasing the 
precision, and therefore completeness?
– e.g. Checking that postconditions validate



  

Thank You

Godefroid. “Compositional Dynamic Test Generation” Proceedings of POPL'2007 
(34th Annual ACM Symposium on Principles of Programming Languages), pages 
47-54, Nice, January 2007.

Godefroid. “Compositional Dynamic Test Generation,” POPL'2007 Talks

Patrice Godefroid, Nils Klarlund, Koushik Sen: DART: directed automated random 
testing. PLDI 2005: 213-223

Sen. "CUTE: A Concolic Unit Testing Engine for C", ESEC/FSE 2005, Lisbon, 
Portugal, September 8.

KOUSHIK SEN, DARKO MARINOV, and GUL  AGHA, "CUTE: A Concolic Unit 
Testing Engine for C." in 5th joint meeting of the European Software Engineering 
Conference and ACM SIGSOFT Symposium on the Foundations of Software 
Engineering (ESEC/FSE'05), pp. 263-272, Lisbon, Portugal, September 2005.


