
Testing

slides compiled from

Alex Aiken’s,

Neelam Gupta’s,

Tao Xie’s.

CS590F Software Reliability

Why Testing

Researchers investigate many approaches to
improving software quality

But the world tests

> 50% of the cost of software development is testing

Testing is consistently a hot research topic

CS590F Software Reliability

CS590F Software Reliability

Note

Fundamentally, seems to be not as deep
• Over so many years, simple ideas still deliver the best

performance

Recent trends
• Testing + XXX
• DAIKON, CUTE

Messages conveyed
• Two messages and one conclusion.

Difficuties
• Beat simple ideas (sometimes hard)
• Acquire a large test suite

CS590F Software Reliability

Outline

Testing practice
• Goals: Understand current state of practice

Boring
But necessary for good science

• Need to understand where we are, before we try to go
somewhere else

Testing Research

Some textbook concepts

CS590F Software Reliability

Testing Practice

CS590F Software Reliability

Outline

Manual testing

Automated testing

Regression testing

Nightly build

Code coverage

Bug trends

CS590F Software Reliability

Manual Testing

Test cases are lists of instructions
• “test scripts”

Someone manually executes the script
• Do each action, step-by-step

Click on “login”
Enter username and password
Click “OK”
…

• And manually records results

Low-tech, simple to implement

CS590F Software Reliability

Manual Testing

Manual testing is very widespread
• Probably not dominant, but very, very common

Why? Because
• Some tests can’t be automated

Usability testing
• Some tests shouldn’t be automated

Not worth the cost

CS590F Software Reliability

Manual Testing

Those are the best reasons

There are also not-so-good reasons
• Not-so-good because innovation could remove them
• Testers aren’t skilled enough to handle automation
• Automation tools are too hard to use
• The cost of automating a test is 10X doing a manual test

CS590F Software Reliability

Topics

Manual testing

Automated testing

Regression testing

Nightly build

Code coverage

Bug trends

CS590F Software Reliability

Automated Testing

Idea:
• Record manual test
• Play back on demand

This doesn’t work as well as expected
• E.g., Some tests can’t/shouldn’t be automated

CS590F Software Reliability

Fragility

Test recording is usually very fragile
• Breaks if environment changes anything
• E.g., location, background color of textbox

More generally, automation tools cannot generalize a test
• They literally record exactly what happened
• If anything changes, the test breaks

A hidden strength of manual testing
• Because people are doing the tests, ability to adapt tests to slightly

modified situations is built-in

CS590F Software Reliability

Breaking Tests

When code evolves, tests break
• E.g., change the name of a dialog box
• Any test that depends on the name of that box breaks

Maintaining tests is a lot of work
• Broken tests must be fixed; this is expensive
• Cost is proportional to the number of tests
• Implies that more tests is not necessarily better

CS590F Software Reliability

Improved Automated Testing

Recorded tests are too low level
• E.g., every test contains the name of the dialog box

Need to abstract tests
• Replace dialog box string by variable name X
• Variable name X is maintained in one place

So that when the dialog box name changes, only X needs to be updated and all
the tests work again

CS590F Software Reliability

Data Driven Testing (for Web Applications)

Build a database of event tuples

< Document, Component, Action, Input, Result >

E.g.,
< LoginPage, Password, InputText, $password, “OK”>

A test is a series of such events chained together

Complete system will have many relations
• As complicated as any large database

CS590F Software Reliability

Discussion

Testers have two jobs
• Clarify the specification
• Find (important) bugs

Only the latter is subject to automation

Helps explain why there is so much manual testing

CS590F Software Reliability

Topics

Manual testing

Automated testing

Regression testing

Nightly build

Code coverage

Bug trends

CS590F Software Reliability

Regression Testing

Idea
• When you find a bug,
• Write a test that exhibits the bug,
• And always run that test when the code changes,
• So that the bug doesn’t reappear

Without regression testing, it is surprising how often
old bugs reoccur

CS590F Software Reliability

Regression Testing (Cont.)

Regression testing ensures forward progress
• We never go back to old bugs

Regression testing can be manual or automatic
• Ideally, run regressions after every change
• To detect problems as quickly as possible

But, regression testing is expensive
• Limits how often it can be run in practice
• Reducing cost is a long-standing research problem

CS590F Software Reliability

Nightly Build

Build and test the system regularly
• Every night

Why? Because it is easier to fix problems earlier than later
• Easier to find the cause after one change than after 1,000 changes
• Avoids new code from building on the buggy code

Test is usually subset of full regression test
• “smoke test”
• Just make sure there is nothing horribly wrong

CS590F Software Reliability

A Problem

So far we have:
Measure changes regularly (nightly build)
Make monotonic progress (regression)

How do we know when we are done?
• Could keep going forever

But, testing can only find bugs, not prove their
absence

• We need a proxy for the absence of bugs

CS590F Software Reliability

Topics

Manual testing

Automated testing

Regression testing

Nightly build

Code coverage

Bug trends

CS590F Software Reliability

Code Coverage

Idea
• Code that has never been executed likely has bugs

This leads to the notion of code coverage
• Divide a program into units (e.g., statements)
• Define the coverage of a test suite to be

of statements executed by suite
of statements

CS590F Software Reliability

Code Coverage (Cont.)

Code coverage has proven value
• It’s a real metric, though far from perfect

But 100% coverage does not mean no bugs
• E.g., a bug visible after loop executes 1,025 times

And 100% coverage is almost never achieved
• Infeasible paths
• Ships happen with < 60% coverage
• High coverage may not even be desirable

May be better to devote more time to tricky parts with good coverage

CS590F Software Reliability

Using Code Coverage

Code coverage helps identify weak test suites

Code coverage can’t complain about missing code
• But coverage can hint at missing cases

Areas of poor coverage ⇒ areas where not enough thought has been
given to specification

CS590F Software Reliability

More on Coverage

Statement coverage

Edge coverage

Path coverage

Def-use coverage

CS590F Software Reliability

Topics

Manual testing

Automated testing

Regression testing

Nightly build

Code coverage

Bug trends

CS590F Software Reliability

Bug Trends

Idea: Measure rate at which new bugs are found

Rational: When this flattens out it means
1. The cost/bug found is increasing dramatically
2. There aren’t many bugs left to find

CS590F Software Reliability

The Big Picture

Standard practice
• Measure progress often (nightly builds)
• Make forward progress (regression testing)
• Stopping condition (coverage, bug trends)

CS590F Software Reliability

Testing Research

CS590F Software Reliability

Outline

Overview of testing research
• Definitions, goals

Three topics
• Random testing
• Efficient regression testing
• Mutation analysis

CS590F Software Reliability

Overview

Testing research has a long history
• At least to the 1960’s

Much work is focused on metrics
• Assigning numbers to programs
• Assigning numbers to test suites
• Heavily influenced by industry practice

More recent work focuses on deeper analysis
• Semantic analysis, in the sense we understand it

CS590F Software Reliability

What is a Good Test?

Attempt 1:

If program P implements function F on domain D, then
a test set T ⊆ D is reliable if

(∀ t ∈ T. P(t) = F(t)) ⇒ ∀ t ∈ D. P(t) = F(t)

Says that a good test set is one that implies the
program meets its specification

CS590F Software Reliability

Good News/Bad News

Good News
• There are interesting examples of reliable test sets
• Example: A function that sorts N numbers using comparisons sorts

correctly iff it sorts all inputs consisting of 0,1 correctly
• This is a finite reliable test set

Bad News
• There is no effective method for generating finite reliable test sets

CS590F Software Reliability

An Aside

It’s clear that reliable test sets must be impossible to
compute in general

But most programs are not diagonalizing Turing
machines . . .

It ought to be possible to characterize finite reliable
test sets for certain classes of programs

CS590F Software Reliability

Adequacy

Reliability is not useful if we don’t have a full reliable
test set

• Then it is possible that the program passes every test, but is
not the program we want

A different definition

If program P implements function F on domain D, then
a test set T ⊆ D is adequate if

(∀progs Q. Q(D) ≠ F(D)) ⇒ ∃ t ∈ T. Q(t) ≠ F(t)

CS590F Software Reliability

Adequacy

Adequacy just says that the test suite must make
every incorrect program fail

This seems to be what we really want

CS590F Software Reliability

Outline

Overview of testing research
• Definitions, goals

Three topics
• Random testing
• Efficient regression testing
• Mutation analysis

CS590F Software Reliability

Random Testing

About ¼ of Unix utilities crash when fed random
input strings

• Up to 100,000 characters

What does this say about testing?

What does this say about Unix?

CS590F Software Reliability

What it Says About Testing

Randomization is a highly effective technique
• And we use very little of it in software

“A random walk through the state space”

To say anything rigorous, must be able to
characterize the distribution of inputs

• Easy for string utilities
• Harder for systems with more arcane input

E.g., parsers for context-free grammars

CS590F Software Reliability

What it Says About Unix

What sort of bugs did they find?
• Buffer overruns
• Format string errors
• Wild pointers/array out of bounds
• Signed/unsigned characters
• Failure to handle return codes
• Race conditions

Nearly all of these are problems with C!
• Would disappear in Java
• Exceptions are races & return codes

CS590F Software Reliability

A Nice Bug

csh !0%8f

! is the history lookup operator
• No command beginning with 0%8f

csh passes an error “0%8f: Not found” to an error
printing routine

Which prints it with printf()

CS590F Software Reliability

Outline

Overview of testing research
• Definitions, goals

Three topics
• Random testing
• Efficient regression testing
• Mutation analysis

CS590F Software Reliability

Efficient Regression Testing

Problem: Regression testing is expensive

Observation: Changes don’t affect every test
• And tests that couldn’t change need not be run

Idea: Use a conservative static analysis to prune
test suite

CS590F Software Reliability

The Algorithm

Two pieces:
1. Run the tests and record for each basic block which tests

reach that block

2. After modifications, do a DFS of the new control flow
graph. Wherever it differs from the original control flow
graph, run all tests that reach that point

CS590F Software Reliability

Example

t1

t1

t1

t1

t2

t2

t2

t3

t3

t3

t3

Label each node
of the control
flow graph with
the set of tests
that reach it.

CS590F Software Reliability

Example (Cont.)

t1

t1

t1

t1

t2

t2

t2

t3

t3

t3

t3

When a
statement is
modified, rerun
just the tests
reaching that
statement

CS590F Software Reliability

Experience

This works
• And it works better on larger programs
• # of test cases to rerun reduced by > 90%

Total cost less than cost of running all tests
• Total cost = cost of tests run + cost of tool

Impact analysis

CS590F Software Reliability

Outline

Overview of testing research
• Definitions, goals

Three topics
• Random testing
• Efficient regression testing
• Mutation analysis

CS590F Software Reliability

Adequacy (Review)

If program P implements function F on domain D, then
a test set T ⊆ D is adequate if

(∀progs Q. Q(D) ≠ F(D)) ⇒ ∃ t ∈ T. Q(t) ≠ F(t)

But we can’t afford to quantify over all programs . . .

CS590F Software Reliability

From Infinite to Finite

We need to cut down the size of the problem
• Check adequacy wrt a smaller set of programs

Idea: Just check a finite number of (systematic)
variations on the program

• E.g., replace x > 0 by x < 0
• Replace I by I+1, I-1

This is mutation analysis

CS590F Software Reliability

Mutation Analysis

Modify (mutate) each statement in the program in
finitely many different ways

Each modification is one mutant

Check for adequacy wrt the set of mutants
• Find a set of test cases that distinguishes the program from

the mutants

If program P implements function F on domain D, then
a test set T ⊆ D is adequate if

(∀mutants Q. Q(D) ≠ F(D)) ⇒ ∃ t ∈ T. Q(t) ≠ F(t)

CS590F Software Reliability

What Justifies This?

The “competent programmer assumption”
The program is close to right to begin with

It makes the infinite finite
We will inevitably do this anyway; at least here it is clear what

we are doing

This already generalizes existing metrics
If it is not the end of the road, at least it is a step forward

CS590F Software Reliability

The Plan

Generate mutants of program P

Generate tests
• By some process

For each test t
• For each mutant M

If M(t) ≠ P(t) mark M as killed

If the tests kill all mutants, the tests are adequate

CS590F Software Reliability

The Problem

This is dreadfully slow

Lots of mutants

Lots of tests

Running each mutant on each test is expensive

But early efforts more or less did exactly this

CS590F Software Reliability

Simplifications

To make progress, we can either
• Strengthen our algorithms
• Weaken our problem

To weaken the problem
• Selective mutation

Don’t try all of the mutants
• Weak mutation

Check only that mutant produces different state after mutation, not
different final output
50% cheaper

CS590F Software Reliability

Better Algorithms

Observation: Mutants are nearly the same as the
original program

Idea: Compile one program that incorporates and
checks all of the mutations simultaneously

• A so-called meta-mutant

CS590F Software Reliability

Metamutant with Weak Mutation

Constructing a metamutant for weak mutation is
straightforward

A statement has a set of mutated statements
• With any updates done to fresh variables

X := Y << 1 X1 := Y << 2 X2 := Y >> 1
• After statement, check to see if values differ

X == X_1 X == X_2

CS590F Software Reliability

Comments

A metamutant for weak mutation should be quite
practical

• Constant factor slowdown over original program

Not clear how to build a metamutant for stronger
mutation models

CS590F Software Reliability

Generating Tests

Mutation analysis seeks to generate adequate test sets automatically

Must determine inputs such that
• Mutated statement is reached
• Mutated statement produces a result different from original

s, s’

CS590F Software Reliability

Automatic Test Generation

This is not easy to do

Approaches
• Backward approach

Work backwards from statement to inputs
Take short paths through loops

Generate symbolic constraints on inputs that must be satisfied
Solve for inputs

CS590F Software Reliability

Automatic Test Generation (Cont.)

Work forwards from inputs
• Symbolic execution (Tao)
• Concrete execution (CUTE)
• Arithmetic rep. based (gupta)

CS590F Software Reliability

Comments on Test Generation

Apparently works well for
• Small programs
• Without pointers
• For certain classes of mutants

So not very clear how well it works in general
• Note: Solutions for pointers are proposed

CS590F Software Reliability

A Problem

What if a mutant is equivalent to the original?

Then no test will kill it

In practice, this is a real problem
• Not easily solved

Try to prove program equivalence automatically
Often requires manual intervention

• Undermines the metric

How about more complicated mutants?

CS590F Software Reliability

Opinions

Mutation analysis is a good idea
• For all the reasons cited before
• Also technically interesting
• And there is probably more to do . . .

How important is automatic test generation?
• Still must manually look at output of tests

This is a big chunk of the work, anyway
• Weaken the problem

Directed ATG is a quite interesting direction to go.
• Automatic tests likely to be weird

Both good and bad

CS590F Software Reliability

Opinions

Testing research community trying to learn
• From programming languages community

Slicing, dataflow analysis, etc.
• From theorem proving community

Verification conditions, model checking

CS590F Software Reliability

Some Textbook Concepts

About different levels of testing
• System test, Model Test, Unit test, Integration Test

Black box vs. White box
• Functional vs. structural

CS590F Software Reliability

Given F(x1,x2) with constraints

Boundary Value analysis focuses on the boundary of the input space
to identify test cases.

Use input variable value at min, just above min, a nominal value, just
above max, and at max.

dxc
bxa

≤≤
≤≤

2
1

d

x1
a

c

x2

b

Boundary Value Test

CS590F Software Reliability

Next Lecture

Program Slicing

