
Program Slicing

Xiangyu Zhang



CS590F Software Reliability

What is a slice? 

S: …. = f (v)
Slice of v at S  is  the set of 
statements  involved in 
computing v’s value at S.

[Mark Weiser, 1982] 
• Data dependence
• Control dependence

Void main ( ) {
int I=0;
int sum=0;
while (I<N) {

sum=add(sum,I);
I=add(I,1);

}
printf (“sum=%d\n”,sum);
printf(“I=%d\n”,I); 



CS590F Software Reliability

Why Slicing

Debugging

Testing

Differencing

Program understanding

Software maintenance

Complexity measurement / Functional Cohesion

Program integration

Reverse engineering

Software Quality Assurance

Old!



CS590F Software Reliability

What Now

Security
• Malware detection;
• Software piracy
• …

Software Transactional Memory
Architecture

• Value speculation

Program optimization
• PRE

Data Lineage
More to come

A program implement multiple semantic
functions. All are not relevant!



CS590F Software Reliability

Outline

Slicing ABC

Dynamic slicing
• Efficiency
• Effectiveness
• Challenges



CS590F Software Reliability

Slicing Classification

Static vs. Dynamic

Backward vs. Forward

Executable vs. Non-Executable

More



CS590F Software Reliability

How to do slicing? 

Static analysis
• Input insensitive
• May analysis

Dependence Graph

Characteristics
• Very fast
• Very imprecise

b=0

a=2

1 <=i <=N

if ((i++)%2= =1)

a=a+1 b=a*2

z=a+b

print(z)

T F

T

F



CS590F Software Reliability

Why is a static slice imprecise?

S1:a=… S2:b=…

L1:…=*p

• Use of Pointers – static alias analysis is very imprecise

• Use of function pointers – hard to know which function 
is called, conservative expectation results in imprecision

S1:x=… S2:x=…

L1:…=x

• All possible program paths



CS590F Software Reliability

Dynamic Slicing 

Korel and Laski, 1988

Dynamic slicing makes use of all information about a 
particular execution of a program and computes the slice 
based on an execution history (trace)

• Trace consists control flow trace and memory reference trace

A dynamic slice query is a triple                      
• <Var, Input , Execution Point>

Smaller, more precise, more helpful to the user



CS590F Software Reliability

Dynamic Slicing Example -background

1: b=0
2: a=2
3: for i= 1 to N do
4:  if ((i++)%2==1) then
5:      a = a+1

else
6:      b = a*2

endif
done

7: z = a+b
8: print(z)

For input N=2,
11:   b=0                                    [b=0]

21:   a=2

31:   for i = 1 to N do                 [i=1]

41:   if ( (i++) %2 == 1) then            [i=1]

51:   a=a+1                                 [a=3]

32:   for i=1 to N do                   [i=2]

42:   if ( i%2 == 1) then             [i=2]

61:   b=a*2                                 [b=6]

71:   z=a+b                                 [z=9]

81:   print(z)                               [z=9]



CS590F Software Reliability

Issues about Dynamic Slicing

Precision – perfect

Running history – very big ( GB )

Algorithm to compute dynamic slice            - slow and 
very high space requirement.



CS590F Software Reliability

Backward vs. Forward

1 main( )
2 {
3   int i, sum;
4   sum = 0;
5   i = 1;
6   while(i <= 10)
7          {
8 sum = sum + 1;
9 ++ i;
10 }
11 Cout<< sum;
12 Cout<< i;
13 }

An Example Program & its forward slice w.r.t. <3, sum>



CS590F Software Reliability

Executable vs. Non-Executable



CS590F Software Reliability

Comments

Want to know more?
• Frank Tip’s survey paper (1995)

Static slicing is very useful for static analysis
• Code transformation, program understanding, etc.
• Points-to analysis is the key challenge
• Not as useful in reliability as dynamic slicing

We will focus on dynamic slicing
• Precise

good for reliability.
• Solution space is much larger.
• There exist hybrid techniques.



CS590F Software Reliability

Outline

Slicing ABC

Dynamic slicing
• Efficiency
• Effectiveness
• Challenges



CS590F Software Reliability

Efficiency

How are dynamic slices computed? 
• Execution traces

control flow trace -- dynamic control dependences
memory reference trace -- dynamic data dependences

• Construct a dynamic dependence graph
• Traverse dynamic dependence graph to compute slices



CS590F Software Reliability

How to Detect Dynamic Dependence

Dynamic Data Dependence
• Shadow space (SS)

Addr Abstract State

Virtual Space Shadow Space

[r2]

s1x: ST r1, [r2] SS(r2)=s1x

s1x

s2y: LD [r1], r2

[r1]

s2y SS(r1)=s1x

Dynamic control dependence is more tricky!



CS590F Software Reliability

Dynamic Dependence Graph Sizes

1,568
1,296
1,442
1,816
1,535
1,954
1,745
1,534
1,707

140
67

108
123
118
220
124
131
138

300.twolf
256.bzip2
255.vortex
197.parser
181.mcf
134.perl
130.li
126.gcc
099.go

Dynamic Dependence 
Graph Size(MB)

Statements 
Executed (Millions)Program

• On average, given an execution of 130M instructions, the 
constructed dependence graph requires 1.5GB space. 



CS590F Software Reliability

Conventional Approaches

[Agrawal &Horgan, 1990] presented     three 
algorithms to trade-off the cost with precision. 

Static Analysis Precise dynamic 
analysis

Algo.I Algo.II Algo.III

Cost:       low high

Precision:   low high



CS590F Software Reliability

Algorithm One 

This algorithm uses a static dependence graph in 
which all executed nodes are marked dynamically
so that during slicing when the graph is traversed, 
nodes that are not marked are avoided as they 
cannot be a part of  the dynamic slice.

Limited dynamic information - fast, imprecise (but more 
precise than static slicing)



CS590F Software Reliability

81

71

51

41

31

11

21

Algorithm I Example

1: b=0

2: a=2

3: 1 <=i <=N

4: if ((i++)%2= =1)

5:  a=a+1 6:  b=a*2

7: z=a+b

8: print(z)

T F

T

F

For input N=1, the trace is:

32



CS590F Software Reliability

Algorithm I Example

1:  b=0

2: a=2

3: 1 <=i <=N

4: if ((i++)%2= =1)

5:  a=a+1 6:  b=a*2

7: z=a+b

8: print(z)

DS={1,2,5,7,8}

Precise!



CS590F Software Reliability

Imprecision introduced by Algorithm I

4

9
7

Input N=2:
for  (a=1; a<N; a++) {
…
if (a % 2== 1) {

b=1;
}
if (a % 3 ==1) {

b= 2* b;
} else {

c=2*b+1;
}

}

1
2
3
4
5
6
7
8
9Killed definition counted as reaching!

Aliasing!



CS590F Software Reliability

Algorithm II

A dependence edge is introduced from a load to a 
store if during execution, at least once, the value 
stored by the store is indeed read by the load (mark 
dependence edge)

No static analysis is needed.



CS590F Software Reliability

11

21

51

71

81

31

41

Algorithm II Example 

1:  b=0

2: a=2

3: 1 <=i <=N

4: if ((i++)%2= =1)

5:  a=a+1 6:  b=a*2

7: z=a+b

8: print(z)

T F

T

F

For input N=1, the trace is:



CS590F Software Reliability

Algorithm II – Compare to Algorithm I

More precise

x=…

…=x…=x

Algo. I
x=…

…=x
…=x

Algo. II



CS590F Software Reliability

Imprecision introduced by Algorithm II

A statically distinct load/store may be executed several times 
during program execution. Different instances of a load may be 
dependent on different store instructions or different instances
of a store instructions.

S1:x=… S2:x=…

L1:…=x
< 1 , 1 > < 2, 1 >

• Algo. 2 uses unlabeled edges. Therefore,  upon inclusion 
of the load  in the slice it will always include both the 
stores.



CS590F Software Reliability

Algorithm III

First preprocess the execution trace and introduces labeled 
dependence edges in the dependence graph. During slicing 
the instance labels are used to traverse only relevant edges.



CS590F Software Reliability

Dynamic Dependence Graph Sizes (revisit)

1,568
1,296
1,442
1,816
1,535
1,954
1,745
1,534
1,707

140
67

108
123
118
220
124
131
138

300.twolf
256.bzip2
255.vortex
197.parser
181.mcf
134.perl
130.li
126.gcc
099.go

Dynamic Dependence 
Graph Size(MB)

Statements 
Executed (Millions)Program

• On average, given an execution of 130M instructions, the 
constructed dependence graph requires 1.5GB space. 



CS590F Software Reliability

Dynamic Dep. Graph Representation

3:  while ( i<N) do 

1:  sum=0
2:  i=1

4:  i=i+1
5:  sum=sum+i

6:  print (sum)

1:  sum=0
2:  i=1
3:  while ( i<N) do 
4:  i=i+1
5:  sum=sum+i
3:  while ( i<N) do 
4:  i=i+1
5:  sum=sum+i
3:  while ( i<N) do 
6:  print (sum)

N=2:



CS590F Software Reliability

Dynamic Dep. Graph Representation

3:  while ( i<N) do 

1:  sum=0
2:  i=1

4:  i=i+1
5:  sum=sum+i

6:  print (sum)

1:  sum=0
2:  i=1
3:  while ( i<N) do 
4:  i=i+1
5:  sum=sum+i
3:  while ( i<N) do 
4:  i=i+1
5:  sum=sum+i
3:  while ( i<N) do 
6:  print (sum)

N=2:Timestamps

0

1

2

3

4

5
6

0

1

2

3

4

5
6

(4,6)

(2,2)
(4,4)

• A dynamic dep. edge is represented as by an 
edge annotated with a pair of  timestamps     
<definition timestamp, use timestamp>



CS590F Software Reliability

Infer: Local Dependence Labels: 
Full Elimination

X =

Y= X

X =

Y= X

(10,10)
(20,20)
(30,30)

X =

Y= X

10,20,30

=Y

21

(20,21)
...

(...,20)
...



CS590F Software Reliability

Transform: Local Dependence Labels:  
Elimination In Presence of Aliasing

X =

*P =

Y= X

X =

*P =

Y= X

(10,10)

(20,20) X =

*P =

Y= X

10,20

=Y

11,21

(20,21) 
...



CS590F Software Reliability

Transform: Local Dependence Labels:  
Elimination In Presence of Aliasing

X =

*P =

Y= X

X =

*P =

Y= X

(10,10)

(20,20) X =

*P =

Y= X
10,20

X =

*P =

Y= X
2010

11,21

(10,11) 
(20,21)

=Y

11,21

=Y

(20,21) (10,11) 



CS590F Software Reliability

1

2

3

4 5

6

7 8

9

10

1

2

3

4

5

6

7

2

1

10

3
4
6
7
9

3
5
6
7
9

3
4
6
8
9

3
5
6
8
9

1

2

3

2

1

10

3
4
6
7
9

1

2

3

3
4 5

6
7 8

9

Transform: Coalescing Multiple Nodes into  
One



CS590F Software Reliability

Group: Labels Across Non-Local
Dependence Edges

X =

Y =

= Y

= X

X =

Y =

X =

Y =

= Y

= X

X =

Y =

(10,21)

(10,21)

(20,11)

(20,11)

X =

Y =

= Y

= X

X =

Y =

(20,11)

(10,21)

11,21

10

20



CS590F Software Reliability

Space: Compacted Graph Sizes

13.40

3.89

4.49

3.84

11.09

6.18

1.07

5.53

4.87

7.69

6.21

Explicit 
Dependences 
(%)AfterBefore

7.72

25.68

22.26

26.03

9.02

16.19

93.40

18.09

20.54

13.01

25.2

210

51

65

70

170

52

21

97

75

131

94

1,568

1,296

1,442

1,816

1,535

835

1,954

1,745

1,534

1,707

1,543

300.twolf

256.bzip2

255.vortex

197.parser

181.mcf

164.gzip

134.perl

130.li

126.gcc

099.go

Average

Before / 

After 

Graph Size (MB)
Program



CS590F Software Reliability

Breakdowns of Different Optimizations

Infer
Transform

Group
Others

Explicit



CS590F Software Reliability

Efficiency: Summary

For an execution of 130M instructions:
• space requirement: reduced from 1.5GB to 94MB (I further 

reduced the size by a factor of 5 by designing a generic 
compression technique [MICRO’05]).

• time requirement: reduced from >10 Mins to  <30 seconds.



CS590F Software Reliability

Generic Compression

Traversable in compressed form
• Sequitur
• Context-based

Using value predictors;( M. Burtsher and M. Jeeradit, PACT2003)

Bidirectional!!
• Queries may require going either direction
• The system should be able to answer multiple 

queries



CS590F Software Reliability

Compression using value predictors

Value predictors
• Last n values;
• FCM (finite context method).

Example, FCM-3

X Y Z A
X Y Z A

1
Compressed 

Uncompressed Left Context lookup table 



CS590F Software Reliability

Compression using value predictors

Value predictors
• Last n values;
• FCM (finite context method).

Example, FCM-3

X Y Z
X Y Z A

B

B
Compressed 

Uncompressed 

Length(Compressed) = n/32 + n*(1- predict rate)

Left Context lookup table 

Only forward traversable;

X Y Z AX Y Z B



CS590F Software Reliability

Bidirection idea:

Enable bidirectional traversal - idea

Compressed 

Previous predictor compression:



CS590F Software Reliability

Enable bidirectional traversal

Forward compressed, backward traversed (uncompressed) 
FCM

• Traditional FCM is forward compressed, forward traversed

A

Left Context lookup table 

X Y Z AX Y Z A

Right Context lookup table 

X Y Z

Compressed 

Uncompressed 

X Y ZY Z A1

Bidirectional FCM

Right Context lookup table Left Context lookup table 

X Y Z

Uncompressed 
current context



CS590F Software Reliability

Bidirectional FCM - example

X Y Z1 1

A X Y ZA X Y Z

Right Context lookup table 

A X Y Z 1

Left Context lookup table 

A X Y 1 1



CS590F Software Reliability

Outline

Slicing ABC

Dynamic slicing
• Dynamic slicing practices
• Efficiency
• Effectiveness
• Challenges



CS590F Software Reliability

The Real Bugs

Nine logical bugs
• Four unix utility programs

grep 2.5, grep 2.5.1, flex 2.5.31,  make 3.80.

Six memory bugs [AccMon project (UIUC)]
• Six unix utility programs

gzip, ncompress, polymorph, tar, bc, tidy.



CS590F Software Reliability

Classic Dynamic Slicing in Debugging

554 (36.5%)

204 (32.1%)

105 (23.6%)

21 (46.7%)

18 (30.5%)

34 (28.8%)

1290 (47.1%)

981 (43.1%)

NA

NA

NA

NA

50 (2.4%)

272 (12.4%)

695 (37.2%)

BS     (%EXEC)

445 (1.7%)25854tar 1.13.25
636 (7.7%)8288bc 1.06

118 (1.5%)8164gzip-1.2.4
59 (3.1%)1923ncompress-4.2.4
45 (6.3%)716polymorph-0.4.0

2740 (9.1%)29978make 3.80(b)

1157 (13.5%)8581grep 2.5
509 (5.9%)8587grep 2.5.1(a)

1123 (13.1%)8587grep 2.5.1(b)

1519 (4.9 %)31132Tidy

2277 (7.6%)29978make 3.80(a)
1338 (15.6%)8587grep 2.5.1(c)

2053 (7.7%)26754flex 2.5.31(c)
2198 (8.2%)26754flex 2.5.31(b)

1871 (6.99%)26754flex 2.5.31(a)
EXEC (%LOC)LOC Buggy Runs

2.4-47.1% EXEC

Avg 30.9%



CS590F Software Reliability

Looking for Additional Evidence
Buggy Execution

output_x

Classic dynamic slicing algorithms 
investigate bugs through negative 
evidence of the wrong output

Critical Predicate

input0
input_x

input2

output_x

predicate_x

output0

output1

predicate_x

Other types of evidence:
Failure inducing input

Partially correct output

Benefits of More Evidence
Narrow the search for fault
Broaden the applicability



CS590F Software Reliability

Negative: Failure Inducing Input [ASE’05]

strcpy.c
...

40: for (; (*to = * from)!=0; ++from; ++to);
...

gzip.c
...

193:     char *env;
198: CHAR ifname[1024];

...
844: strcpy (ifname, iname);

...
1344: ... free(env), ...

iname[1025]: aaaaaaaaa...aaaaa

(1)

(3)

(2)

The rationale



CS590F Software Reliability

Negative: Failure Inducing Input [ASE’05]

Given a failed run:
• Identify a minimal failure inducing input ([Delta Debugging -

Andreas Zeller])
This input should affect the root cause.

• Compute forward dynamic slice (FS) of the input identified 
above failure inducing 

input

FS



CS590F Software Reliability

Negative: Critical Predicate [ICSE’06]

The rationale



CS590F Software Reliability

Searching Strategies

if (P3) 

if (P2) 

if (P4) 

if (P5) 

......

......

......

......

output()

(1)

(2)

(3)

if (P1) 

......

if (P4) 

if (P2) 

......

output()

if (P1) ......

(1)

(2)

(3)

Execution Trace:

output()

......

if (P4) 

......

if (P4) 

if (P2) 

if (P1) 

Control Flow Distance Ordering

Dependence Distance Ordering



CS590F Software Reliability

Slicing with Critical Predicate

Given a failed run:
• Identify the critical predicate 

The critical predicate should AFFECT / BE AFFECTED BY the root 
cause.

• Compute bidirectional slice (BiS) of the critical predicate

FS(CP)BiS(CP)
++

CP



CS590F Software Reliability

All Negative Evidence Combined

failure inducing 
input

BS
FS

FS(CP)BiS(CP)

++
CP

BS^FS



CS590F Software Reliability

Negative Evidences Combined in Slicing

554

204

105

21

18

34

1290

981

NA

NA

NA

NA

50 

272

695

BS

45 (42.9%)tar 1.13.25
102 (50%)bc 1.06

3 (8.8%)gzip-1.2.4
2 (14.3%)ncompress-4.2.4
3 (14.3%)polymorph-0.4.0

1051 (75.3%)make 3.80(b)

86 (7.4%*EXEC)grep 2.5

25 (4.9%*EXEC)grep 2.5.1(a)
599 (53.3%*EXEC)grep 2.5.1(b)

161 (29.1%)tidy

739 (81.4%)make 3.80(a)
12 (0.9%*EXEC)grep 2.5.1(c)

5 (10%)flex 2.5.31(c)
102 (37.5%)flex 2.5.31(b)

27 (3.9%)flex 2.5.31(a)

BS^FS^BiS
(%BS)

Buggy Runs

Average=36.0% * (BS)



CS590F Software Reliability

Positive Evidence

……

10. A = 1 (Correct: A=3)

…...

20. B = A % 2

……

30. C = A + 2

……

40. Print (B)

41. Print (C)

Correct outputs produced in addition to wrong output.

BS(Owrong) – BS (Ocorrect)   is problematic.

BS(C@41)= {10, 30, 41}

BS(B@40)= {10, 20, 40}

BS(C@41)-BS(B@40)

= {30,41}



CS590F Software Reliability

Confidence Analysis [PLDI’06]

Assign a confidence value to each node, C(n) = 1 means n must 
contain the correct value, C(n) = 0 means there is no evidence of n
having the correct value. Given a threshold t, BS should only contain 
the nodes C(n) < t .

• If a node n can only reach the correct output, C(n) = 1.
• If a node n can  only reach the wrong output, C(n) = 0.
• If a node n can reach both the correct output and the wrong output, the 

CONFIDENCE of the node n is defined as:

nnnn ??????

|)(|log1)( )|(| nAltnC nrange−=

• Alt(n) is a set of possible LHS values at n, assigning any of which 
to n does not change any same correct output.

|Alt(n)| >=1;
C(n)=1 when |Alt(n)| =1.



CS590F Software Reliability

Confidence Analysis: Example

……

10. A = 1 (Correct: A=3)

…...

20. B = A % 2

……

30. C = A + 2

……

40. Print (B)

41. Print (C)

• If  a node n can only reach only the correct output, C(n) = 1.
• If a node n can  only reach the wrong output, C(n) = 0.
• If a node n can reach both the correct output and the wrong output, the 

CONFIDENCE of the node n is defined as:

• Alt(n) is a set of possible LHS values at n, assigning any of which to n
produces the same correct output.

0)41( =C
1)40( =C

0)30( =C

1)20( =C

2log
2

|)(|log1)10( )|(|)|(| ArangeArange
ArangeC =−=

|)(|log1)( )|(| nAltnC nrange−=



CS590F Software Reliability

Computing Alt(n)

S1: T=... 9

S2: X=T+1 10 S3: Y=T%3 0

(X,T)=  
(6,5) 
(9,8) 
(10,9)

(T,...)= 
(1,...)
(3,...)
(5,...)
(8,...) 
(9,...)

(Y,T)=
(0,3) 
(0,9)
(1,1)  
(2,5)  
(2,8)

alt(T@S2)={9} alt(T@S3)={1,3,9}

alt(S1) =alt(T@S2) ^ alt (T@S3) = {9}

alt(S2)={10} 

C(S2)=1-log|alt(S2)|=1
alt(S3)={0,1}

C(S3)=...=1-log32

C(S1)=1-log|alt(S1)|=1



CS590F Software Reliability

Evaluation on injected bugs

3.7%
33.9%
64.4%
59.8%
45.8%
48.2%
31.8%

Pruned Slice  
/ BS

27
121
58
70
60
55
35

Pruned Slice

727
357
90

117
131
114
110

BS

flex

gzip

schedule2

schedule

replace

print_tokens2

print_tokens

Program

• We pruned the slices by removing all the statements with  C(n)=1

Average=41.1%



CS590F Software Reliability

Effectiveness

Analyze
Runtime
BehaviorBS=30.9% *EXEC

BS^FS^BiS = 36% * BS
• For many memory type bugs, slices can be reduced to just a few 

statements.

Pruned Slice = 41.1% * BS
• For some benchmarks, the pruned slices contain only the dependence 

paths leading from the root cause to the wrong output.



CS590F Software Reliability

Comments

False positive
• FS > PS / Chop > DS

False negative
• DS > FS=PS=Chop

Cost
• PS/Chop > FS > DS



CS590F Software Reliability

Challenges

Execution omission errors

For long running programs, multithreading programs

Making slices smaller
• More evidence?

y=10
if (x>0) /*error, should be x<0*/

y=y+1
print(y)

Input x=-1



CS590F Software Reliability

Next

Background (done)

Ideas, papers (start from next lecture)

Will try to schedule a lecture on static tools.
• Probably in late March.


