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A Scary Outline

Type-based analysis

Data-flow analysis

Abstract interpretation

Theorem proving

…
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The Real Outline

The essence of static program analysis

The categorization of static program analysis

Type-based analysis basics

Data-flow analysis basics
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The Essence of Static Analysis 

Examine the program text (no execution)

Build a model of the program state
• An abstract of the run-time state

Reason over the possible behaviors.
• E.g. “run” the program over the abstract state
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The Essence of Static Analysis 
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Categorization

Flow sensitivity

Context sensitivity.
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Flow Sensitivity

Flow sensitive analyses
• The order of statements matters
• Need a control flow graph

Flow insensitive analyses
• The order of statements doesn’t matter
• Analysis is the same regardless of statement order
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Example Flow Insensitive Analysis

What variables does a program modify?

{ }
1 2 1 2

( : )
( ; ) ( ) ( )

G x e x
G s s G s G s

= =
= ∪

• Note G(s1;s2) = G(s2;s1) 
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The Advantage

Flow-sensitive analyses require a model of program 
state at each program point

• E.g., liveness analysis, reaching definitions, …

Flow-insensitive analyses require only a single 
global state

• E.g., for G, the set of all variables modified
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Notes on Flow Sensitivity

Flow insensitive analyses seem weak, but:

Flow sensitive analyses are hard to scale to very 
large programs

• Additional cost: state size X # of program points

Beyond 1000’s of lines of code, only flow insensitive 
analyses have been shown to scale (by Alex Aiken)
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Context-Sensitive Analysis

What about analyzing across procedure 
boundaries?

Def f(x){…}
Def g(y){…f(a)…}
Def h(z){…f(b)…}

• Goal: Specialize analysis of f to take 
advantage of
• f is called with a by g
• f is called with b by h
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Flow Insensitive: Type-Based Analysis
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Outline

A language
• Lambda calculus

Types
• Type checking
• Type inference

Applications to software reliability
• Representation analysis

Alias analysis and memory leak analysis.
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The Typed Lambda Calculus

Lambda calculus
• types are assigned to bound variables.

Add integers, addition, if-then-else

Note: Not every expression generated by this grammar is a properly 
typed term.

| : . | | | |if   e x x e e e i e e e e eλ τ= +
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Types

Function types

Integers

Type variables
• Stand for definite, but unknown, types

| |intτ α τ τ= →
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Function Types

Intuitively, a type τ1 → τ2 stands for the set of functions that map arguments 
of type τ1 to results of  type τ2.

Placeholder for any other structured datatype
• Lists
• Trees
• Arrays
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Types are Trees

Types are terms

Any term can be represented by a tree
• The parse tree of the term
• Tree representation is important in algorithms

(α → int) → α → int

α int intα

→

→ →
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Examples

We write e:t for the statement “e has type t.”

: . :
: . : . :
: . : . : . ( ):( ) ( )
: . : . : .( ) ( ):( ) ( )

x x
x y x
f g x gf x
f g x f x g x

λ α α α
λ αλ β α β α
λ α βλ β γλ α α β β γ α γ
λ α β γλ α βλ α α β γ α β α γ

→
→ →

→ → → → → → →
→ → → → → → → → →
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Examples

We write e:t for the statement “e has type t.”
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: . : . : .( ) ( ):( ) ( )

x x
x y x
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f g x f x g x
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Type Environments

To determine whether the types in an expression are correct we 
perform type checking.

But we need types for free variables, too!

A type environment is a function from variables to types.  The syntax 
of environments is:

The meaning is:

if 
( , : )( )

( ) if 
x y

A x y
A y x y

τ
τ

=
=

≠

| , :A A x τ= ∅
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Type Checking Rules

Type checking is done by structural induction.
• One inference rule for each form
• Assumptions contain types of free variables
• A term is well-typed if ∅ | e: τ
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Example

: , : :
:  : . :

 : . : . :

x y x
x y x

x y x

α β α
α λ β β α

λ α λ β α β α
→

∅ → →

d

d

d???
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Example

: , : :
:  : . :

 : . : . :

x y x
x y x

x y x

α β α
α λ β β α

λ α λ β α β α
→

∅ → →

d

d

d
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Example

: , : :
:  : . :

 : . : . :

x y x
x y x

x y x

α β α
α λ β β α

λ α λ β α β α
→

∅ → →

d

d

d
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Example

: , : :
:  : . :

 : . : . :

x y x
x y x

x y x

α β α
α λ β β α

λ α λ β α β α
→

∅ → →

d

d

d
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Not Straightforward

: , : :
:  : . :

 : . : . :

x y x
x y x

x y x

α β α
α λ β β α

λ α λ β α β α
→

∅ → →

d

d

d
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Type Checking Algorithm

There is a simple algorithm for type checking 

Observe that there is only one possible “shape” of 
the type derivation

• only one inference rule applies to each form.

?  : ?
?  : . : ?

: . : . : ?

x
y x

x y x
λ β

λ α λ β∅

d
d

d
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Algorithm (Cont.)

Walk the proof tree from the root to the leaves, generating the correct 
environments.

Assumptions are simply gathered from lambda abstractions.

: , : : ?
:  : . : ?

: . : . : ?

x y x
x y x

x y x

α β
α λ β
λ α λ β∅

d

d

d



CS590F Software Reliability

Algorithm (Cont.)

In a walk from the leaves to the root, calculate the type of each 
expression.

The types are completely determined by the type environment and the 
types of subexpressions.

: , : :
:  : . :

 : . : . :

x y x
x y x

x y x

α β α
α λ β β α

λ α λ β α β α
→

∅ → →

d

d

d
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A Bigger Example

: , : :
:  : . : :  :

 : . : . : ( )  : . :
 ( : . : . ) : . : ( )

x y x
x y x z z

x y x z z
x y x z z

α α β α α
α α λ β β α α α α

λ α α λ β α α β α α λ α α α
λ α α λ β λ α α α β α α

→ →
→ → →

∅ → → → → → ∅ →
∅ → → → → →

d

d d
d d

d
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What Do Types Mean?

Thm. If A d e:τ and e →∗
β d, then A d d:τ

• Evaluation preserves types.

This is the basis of a claim that there can be no 
runtime type errors 

• functions applied to data of the wrong type
Adding to a function
Using an integer as a function



CS590F Software Reliability

Type Inference

The type erasure of e is e with all type information 
removed (i.e., the untyped term).

Is an untyped term the erasure of some simply typed 
term? And what are the types?

This is a type inference problem. We must infer, 
rather than check, the types.
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Type Inference

recast the type rules in an equivalent form

typing in the new rules reduces to a constraint 
satisfaction problem

the constraint problem is solvable via term 
unification.
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New Rules

Sidestep the problems by introducing explicit unknowns and constraints

1 1

2 2

1 2

1 2

1 1

1 1 2 2

2 2 3 3

1 2 1 2 3

1 2 1 2 3 2

:
 :

( ) , :  :
 :  . :   :

 :
 :  :
 :  :

int int         
 i : int  : int  if   :

x x

x x

A e
A e

A x A x e
A x A x e A e e

A e
A e A e
A e A e

A A e e A e e e

τ
τ

τ τ βα α τ
α λ α τ β

τ
τ τ
τ τ

τ τ τ τ τ
τ

= →=
→

= = = =
+

d 

d 

d 

d d d 

d 

d d 

d d 

d d d 
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New Rules

Type assumption for variable x is a fresh variable αx

1 1

2 2

1 2

1 2

1 1

1 1 2 2

2 2 3 3

1 2 1 2 3

1 2 1 2 3 2

:
 :

( ) , :  :
 :  . :   :

 :
 :  :
 :  :

int int         
 i : int  : int  if   :

x x

x x

A e
A e

A x A x e
A x A x e A e e

A e
A e A e
A e A e

A A e e A e e e

τ
τ

τ τ βα α τ
α λ α τ β

τ
τ τ
τ τ

τ τ τ τ τ
τ

= →=
→

= = = =
+

d 

d 

d 

d d d 

d 

d d 

d d 

d d d 
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New Rules

Hypotheses are all arbitrary
• Can always complete a derivation, pending constraint resolution

1 1

2 2

1 2

1 2

1 1

1 1 2 2

2 2 3 3

1 2 1 2 3

1 2 1 2 3 2

:
 :

( ) , :  :
 :  . :   :

 :
 :  :
 :  :

int int         
 i : int  : int  if   :

x x

x x

A e
A e

A x A x e
A x A x e A e e

A e
A e A e
A e A e

A A e e A e e e

τ
τ

τ τ βα α τ
α λ α τ β

τ
τ τ
τ τ

τ τ τ τ τ
τ

= →=
→

= = = =
+

d 

d 

d 

d d d 

d 

d d 

d d 

d d d 
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New Rules

Equality conditions represented as side constraints

1 1

2 2

1 2

1 2

1 1

1 1 2 2

2 2 3 3

1 2 1 2 3

1 2 1 2 3 2

:
 :

( ) , :  :
 :  . :   :

 :
 :  :
 :  :

int int         
 i : int  : int  if   :

x x

x x

A e
A e

A x A x e
A x A x e A e e

A e
A e A e
A e A e

A A e e A e e e

τ
τ

τ τ βα α τ
α λ α τ β

τ
τ τ
τ τ

τ τ τ τ τ
τ

= →=
→

= = = =
+

d 

d 

d 

d d d 

d 

d d 

d d 

d d d 
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Solutions of Constraints

The new rules generate a system of type equations.

Intuitively, a solution of these equations gives a 
derivation.

A solution is a substitution Vars → Types
such that the equations are satisfied.



CS590F Software Reliability

Example

A solution is

int

α β γ
α γ β
β

= →
= →
=

int int, int, intα β γ= → = =
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Solving Type Equations

Term equations are a unification problem.
• Solvable in near-linear time using a union-find based 

algorithm.

No solutions α = T[α] are permitted 
• The occurs check.
• The check is omitted if we allow infinite types.            
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Unification

Four rules.

If no inconsistency or occurs check violation found, system has a 
solution.

• int = x → y

{ } { }
{ } { }
{ }

1 2 3 1 3 24 4

{ }
[ / ]

,
int int

S S
S S
S S
S S

α α
α τ τ α α τ
τ τ τ τ τ τ τ τ

∪ = ⇒
∪ = ⇒ ∪ ≅
∪ → = → ⇒ ∪ = =
∪ = ⇒
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Syntax

We distinguish solved equations α { τ

Each rule manipulates only unsolved equations. 

{ } { }
{ } { }
{ }

1 2 3 1 3 24 4

{ }
[ / ]

,
int int

S S
S S
S S
S S

α α
α τ τ α α τ
τ τ τ τ τ τ τ τ

∪ = ⇒
∪ = ⇒ ∪ ≅
∪ → = → ⇒ ∪ = =
∪ = ⇒
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Rules 1 and 4

Rules 1 and 4 eliminate trivial constraints.

Rule 1 is applied in preference to rule 2 
• the only such possible conflict

{ } { }
{ } { }
{ }

1 2 3 1 3 24 4

{ }
[ / ]

,
int int

S S
S S
S S
S S

α α
α τ τ α α τ
τ τ τ τ τ τ τ τ

∪ = ⇒
∪ = ⇒ ∪ ≅
∪ → = → ⇒ ∪ = =
∪ = ⇒
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Rule 2

Rule 2 eliminates a variable from all equations but one (which is 
marked as solved).

• Note the variable is eliminated from all unsolved as well as solved 
equations

{ } { }
{ } { }
{ }

1 2 3 1 3 24 4

{ }
[ / ]

,
int int

S S
S S
S S
S S

α α
α τ τ α α τ
τ τ τ τ τ τ τ τ

∪ = ⇒
∪ = ⇒ ∪ ≅
∪ → = → ⇒ ∪ = =
∪ = ⇒
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Rule 3

Rule 3 applies structural equality to non-trivial terms.

Note rule 4 is a degenerate case of rule 3 for a type constructor of 
arity zero.

{ } { }
{ } { }
{ }

1 2 3 1 3 24 4

{ }
[ / ]

,
int int

S S
S S
S S
S S

α α
α τ τ α α τ
τ τ τ τ τ τ τ τ

∪ = ⇒
∪ = ⇒ ∪ ≅
∪ → = → ⇒ ∪ = =
∪ = ⇒
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Correctness

Each rule preserves the set of solutions.
• Rules 1 and 4 eliminate trivial constraints.
• Rule 2 substitutes equals for equals.
• Rule 3 is the definition of equality on function types.

{ } { }
{ } { }
{ }

1 2 3 1 3 24 4

{ }
[ / ]

,
int int

S S
S S
S S
S S

α α
α τ τ α α τ
τ τ τ τ τ τ τ τ

∪ = ⇒
∪ = ⇒ ∪ ≅
∪ → = → ⇒ ∪ = =
∪ = ⇒
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Termination

Rules 1 and 4 reduce the number of equations.

Rule 2 reduces the number of variables in unsolved equations.

Rule 3 decreases the height of terms.

{ } { }
{ } { }
{ }

1 2 3 1 3 24 4

{ }
[ / ]

,
int int

S S
S S
S S
S S

α α
α τ τ α α τ
τ τ τ τ τ τ τ τ

∪ = ⇒
∪ = ⇒ ∪ ≅
∪ → = → ⇒ ∪ = =
∪ = ⇒
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Termination (Cont.)

Rules 1, 3, and 4 always terminate
• because terms must eventually be reduced to height 0.

Eventually rule 2 is applied, reducing the  number of variables.

{ } { }
{ } { }
{ }

1 2 3 1 3 24 4

{ }
[ / ]

,
int int

S S
S S
S S
S S

α α
α τ τ α α τ
τ τ τ τ τ τ τ τ

∪ = ⇒
∪ = ⇒ ∪ ≅
∪ → = → ⇒ ∪ = =
∪ = ⇒
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A Nitpick

We really need one more operation.

τ = α should be flipped to α = τ if τ is not a variable.
• Needed to ensure rule 2 applies whenever possible.
• We just assume equations are maintained in this “normal 

form”. 
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Solutions

The final system is a solution.
• There is one equation α { τ for each variable.
• This is a substitution with all the solutions of the original 

system

Must also perform occurs check to guarantee there 
are no recursive constraints.



CS590F Software Reliability

Example

, , int
int , int, int

int int , int, int
int, int , int, int

int int, int, int int, int
int, int int, int

α β γ α γ β β
α γ α γ β

γ γ α γ β
γ γ α γ β

γ α β
γ α β

= → = → =
= → = → ≅

→ = → ≅ → ≅
= = ≅ → ≅
= ≅ ≅ → ≅

≅ ≅ → ≅

rewrites
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γ γ α γ β

γ α β
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Example

, , int
int , int, int

int int , int, int
int, int , int, int

int int, int, int int, int
int, int int, int

α β γ α γ β β
α γ α γ β

γ γ α γ β
γ γ α γ β

γ α β
γ α β

= → = → =
= → = → ≅

→ = → ≅ → ≅
= = ≅ → ≅
= ≅ ≅ → ≅

≅ ≅ → ≅

rewrites
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An Example of Failure

, ( ), int
int , (int int), int

(int int) int , int, int
int, int int , int, int

int int int, int int, int int, int

α β γ α γ β β β
α γ α γ β

γ γ α γ β
γ γ α γ β

γ α β

= → = → → =
= → = → → ≅

→ → = → ≅ → ≅
= → = ≅ → ≅

→ = ≅ → ≅ → ≅
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Notes

The algorithm produces the most general unifier of 
the equations.

• All solutions are preserved.

Less general solutions are all substitution instances 
of the most general solution.

There exists more efficient algorithm, amortized time 
complexity is close to linear
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Application – Treating Program Property 
as A Type

INT, BOOL, and STRING are types, and
• “ALLOCATED” and “FREED” can also be treated as types.

For example,  p=q
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Uses

Find bugs
• Every equivalence class with a malloc should have a free

Alias analysis

Implemented for C in a tool Lackwit
• O’Callahan & Jackson
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Where is Type Inference Strong?

Handles data structures smoothly

Works in infinite domains
• Set of types is unlimited

No forwards/backwards distinction

Type polymorphism good fit for context sensitivity
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Where is Type Inference Weak?

No flow sensitivity
• Equality-based analysis only gets equivalence classes

Context-sensitive analyses don’t always scale
• Type polymorphism can lead to exponential blowup in 

constraints
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Flow Sensitive: Data Flow Analysis



CS590F Software Reliability

An example DFA: reaching definitions

For each use of a variable, determine what 
assignments could have set the value being read 
from the variable

Information useful for:
• performing constant and copy prop
• detecting references to undefined variables
• presenting “def/use chains” to the programmer
• building other representations, like the program dependence 

graph

Let’s try this out on an example
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x := ...

x := ...
y := ...
y := ...
p := ...
if (...) {

... x ...
x := ...
... y ...

}
else {

... x ...
x := ...
*p := ...

}
... x ...
... y ...
y := ...

y := ...

y := ...

p := ...

... x ...

x := ...

... y ...

... x ...

x := ...

*p := ...

... x ...

... x ...

y := ...

if (...)

Example CFG



CS590F Software Reliability

1: x := ...

2: y := ...

3: y := ...

4: p := ...

... x ...

5: x := ...

... y ...

... x ...

6: x := ...

7: *p := ...

... x ...

... y ...

8: y := ...

x := ...

y := ...

y := ...

p := ...

... x ...

x := ...

... y ...

... x ...

x := ...

*p := ...

... x ...

... x ...

y := ...

if (...)

Visual sugar
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1: x := ...

2: y := ...

3: y := ...

4: p := ...

... x ...

5: x := ...

... y ...

... x ...

6: x := ...

7: *p := ...

... x ...

... y ...

8: y := ...
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Safety

Safety:
• can have more bindings than the “true” answer, but can’t 

miss any
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Reaching definitions generalized

Computed information at a program point is a set of 
var → stmt bindings

• eg:  { x → s1, x → s2, y → s3 }

How do we get the previous info we wanted?
• if a var x is used in a stmt whose incoming info is in, then: { s

| (x → s) ∈ in }

This is a common pattern
• generalize the problem to define what information should be 

computed at each program point
• use the computed information at the program points to get 

the original info we wanted
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1: x := ...

2: y := ...

3: y := ...

4: p := ...

... x ...

5: x := ...

... y ...

... x ...

6: x := ...

7: *p := ...

... x ...

... y ...

8: y := ...
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Constraints for reaching definitions

out = in – { x → s’ | x ∈ must-point-to(p)  ∧
s’ ∈ stmts }

∪ { x → s | x ∈ may-point-to(p) }

s: x := ...

in

out

s: *p := ...

in

out

out = in – { x → s’ | s’ ∈ stmts } ∪ { x → s }
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Constraints for reaching definitions

s: if (...)

in

out[0] out[1] more generally: ∀ i . out [ i ] = in

out [ 0 ] = in ∧
out [ 0 ] = in

merge   

out

in[0] in[1]

more generally: out = U i in [ i ]

out = in [ 0 ]  ∪ in [ 1 ] 
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Flow functions

The constraint for a statement kind s often have the 
form: out = Fs(in)

Fs is called a flow function
• other names for it: dataflow function, transfer function

Given information in before statement s, Fs(in) 
returns information after statement s



CS590F Software Reliability

The Problem of Loops

If there is no loop, the topological order can be 
adopted to evaluate transfer functions of statements. 

What if loops?
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1: x := ...

2: y := ...

3: y := ...

4: p := ...

... x ...

5: x := ...

... y ...

... x ...

6: x := ...

7: *p := ...

... x ...

... y ...

8: y := ...
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Solution: iterate!

Initialize all sets to the empty

Store all nodes onto a worklist

while worklist is not empty:
• remove node n from worklist
• apply flow function for node n
• update the appropriate set, and add nodes whose inputs 

have changed back onto worklist
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Termination

How do we know the algorithm terminates?

Because
• operations are monotonic
• the domain is finite
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Monotonicity

Operation f is monotonic if

X ` Y => f(x) ` f(y)

We require that all operations be monotonic
• Easy to check for the set operations 
• Easy to check for all transfer functions; recall:

out = in – { x → s’ | s’ ∈ stmts } ∪ { x → s }
s: x := ...

in

out
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Termination again

To see the algorithm terminates
• All variables start empty
• Variables and rhs’s only increase with each update 
• Sets can only grow to a max finite size

Together, these imply termination
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What Else In DFA

May vs. must

Backward vs. Forward

Lattice
• Mere goal: help prove the termination of the analysis
• To show the domain is finite (has finite height)
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Where is Dataflow Analysis Useful?

Best for flow-sensitive, context-insensitive, 
distributive problems on small pieces of code

• E.g., the examples we’ve seen and many others

Extremely efficient algorithms are known
• Use different representation than control-flow graph, but not 

fundamentally different
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Where is Dataflow Analysis Weak?

Lots of places
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Data Structures

Not good at analyzing data structures

Works well for atomic values
• Labels, constants, variable names

Not easily extended to arrays, lists, trees, etc.
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The Heap

Good at analyzing flow of values in local variables

No notion of the heap in traditional dataflow 
applications

• Aliasing
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Context Sensitivity

Standard dataflow techniques for handling context 
sensitivity don’t scale well
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Flow Sensitivity (Beyond Procedures)

Flow sensitive analyses are standard for analyzing 
single procedures

Not used (or not aware of uses) for whole programs
• Too expensive
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The Call Graph

Dataflow analysis requires a call graph
• Or something close

Inadequate for higher-order programs
• First class functions
• Object-oriented languages with dynamic dispatch

Call-graph hinders algorithmic efficiency
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Coming Back: The Essence of Static 
Analysis 

Examine the program text (no execution)

Build a model of the program state
• An abstract of the run-time state

Reason over the possible behaviors.
• E.g. “run” the program over the abstract state

The property an analysis needs to promise is that it 
TERMINATES

• Slogan of most researchers:

Finite Lattices + Monotonic Functions = 
Program Analysis 
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Tips on Designing Analysis

Program analysis is a formalization of INTUITIVE 
insights.

• Type inference
• Reaching definition
• …

Steps
• Look at the code (segment), gain insights;
• More systematic: manually “runs” through the code with your 

abstraction.
• Works? Good, lets do formalization.
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Next Lecture

Dynamic Program Analysis


