
Static Program Analysis

Xiangyu Zhang

The slides are compiled from
Alex Aiken’s

Michael D. Ernst’s
Sorin Lerner’s

CS590F Software Reliability

A Scary Outline

Type-based analysis

Data-flow analysis

Abstract interpretation

Theorem proving

…

CS590F Software Reliability

The Real Outline

The essence of static program analysis

The categorization of static program analysis

Type-based analysis basics

Data-flow analysis basics

CS590F Software Reliability

The Essence of Static Analysis

Examine the program text (no execution)

Build a model of the program state
• An abstract of the run-time state

Reason over the possible behaviors.
• E.g. “run” the program over the abstract state

CS590F Software Reliability

The Essence of Static Analysis

CS590F Software Reliability

CS590F Software Reliability

CS590F Software Reliability

CS590F Software Reliability

CS590F Software Reliability

CS590F Software Reliability

Categorization

Flow sensitivity

Context sensitivity.

CS590F Software Reliability

Flow Sensitivity

Flow sensitive analyses
• The order of statements matters
• Need a control flow graph

Flow insensitive analyses
• The order of statements doesn’t matter
• Analysis is the same regardless of statement order

CS590F Software Reliability

Example Flow Insensitive Analysis

What variables does a program modify?

{ }
1 2 1 2

(:)
(;) () ()

G x e x
G s s G s G s

= =
= ∪

• Note G(s1;s2) = G(s2;s1)

CS590F Software Reliability

The Advantage

Flow-sensitive analyses require a model of program
state at each program point

• E.g., liveness analysis, reaching definitions, …

Flow-insensitive analyses require only a single
global state

• E.g., for G, the set of all variables modified

CS590F Software Reliability

Notes on Flow Sensitivity

Flow insensitive analyses seem weak, but:

Flow sensitive analyses are hard to scale to very
large programs

• Additional cost: state size X # of program points

Beyond 1000’s of lines of code, only flow insensitive
analyses have been shown to scale (by Alex Aiken)

CS590F Software Reliability

Context-Sensitive Analysis

What about analyzing across procedure
boundaries?

Def f(x){…}
Def g(y){…f(a)…}
Def h(z){…f(b)…}

• Goal: Specialize analysis of f to take
advantage of
• f is called with a by g
• f is called with b by h

CS590F Software Reliability

Flow Insensitive: Type-Based Analysis

CS590F Software Reliability

Outline

A language
• Lambda calculus

Types
• Type checking
• Type inference

Applications to software reliability
• Representation analysis

Alias analysis and memory leak analysis.

CS590F Software Reliability

The Typed Lambda Calculus

Lambda calculus
• types are assigned to bound variables.

Add integers, addition, if-then-else

Note: Not every expression generated by this grammar is a properly
typed term.

| : . | | | |if e x x e e e i e e e e eλ τ= +

CS590F Software Reliability

Types

Function types

Integers

Type variables
• Stand for definite, but unknown, types

| |intτ α τ τ= →

CS590F Software Reliability

Function Types

Intuitively, a type τ1 → τ2 stands for the set of functions that map arguments
of type τ1 to results of type τ2.

Placeholder for any other structured datatype
• Lists
• Trees
• Arrays

CS590F Software Reliability

Types are Trees

Types are terms

Any term can be represented by a tree
• The parse tree of the term
• Tree representation is important in algorithms

(α → int) → α → int

α int intα

→

→ →

CS590F Software Reliability

Examples

We write e:t for the statement “e has type t.”

: . :
: . : . :
: . : . : . ():() ()
: . : . : .() ():() ()

x x
x y x
f g x gf x
f g x f x g x

λ α α α
λ αλ β α β α
λ α βλ β γλ α α β β γ α γ
λ α β γλ α βλ α α β γ α β α γ

→
→ →

→ → → → → → →
→ → → → → → → → →

CS590F Software Reliability

Examples

We write e:t for the statement “e has type t.”

: . :
: . : . :
: . : . : . ():() ()
: . : . : .() ():() ()

x x
x y x
f g x gf x
f g x f x g x

λ α α α
λ αλ β α β α
λ α βλ β γλ α α β β γ α γ
λ α β γλ α βλ α α β γ α β α γ

→
→ →

→ → → → → → →
→ → → → → → → → →

CS590F Software Reliability

Examples

We write e:t for the statement “e has type t.”

: . :
: . : . :
: . : . : . ():() ()
: . : . : .() ():() ()

x x
x y x
f g x gf x
f g x f x g x

λ α α α
λ αλ β α β α
λ α βλ β γλ α α β β γ α γ
λ α β γλ α βλ α α β γ α β α γ

→
→ →

→ → → → → → →
→ → → → → → → → →

CS590F Software Reliability

Examples

We write e:t for the statement “e has type t.”

: . :
: . : . :
: . : . : . ():() ()
: . : . : .() ():() ()

x x
x y x
f g x gf x
f g x f x g x

λ α α α
λ αλ β α β α
λ α βλ β γλ α α β β γ α γ
λ α β γλ α βλ α α β γ α β α γ

→
→ →

→ → → → → → →
→ → → → → → → → →

CS590F Software Reliability

Type Environments

To determine whether the types in an expression are correct we
perform type checking.

But we need types for free variables, too!

A type environment is a function from variables to types. The syntax
of environments is:

The meaning is:

if
(, :)()

() if
x y

A x y
A y x y

τ
τ

=
=

≠

| , :A A x τ= ∅

CS590F Software Reliability

Type Checking Rules

Type checking is done by structural induction.
• One inference rule for each form
• Assumptions contain types of free variables
• A term is well-typed if ∅ | e: τ

CS590F Software Reliability

Example

: , : :
: : . :

 : . : . :

x y x
x y x

x y x

α β α
α λ β β α

λ α λ β α β α
→

∅ → →

d

d

d???

CS590F Software Reliability

Example

: , : :
: : . :

 : . : . :

x y x
x y x

x y x

α β α
α λ β β α

λ α λ β α β α
→

∅ → →

d

d

d

CS590F Software Reliability

Example

: , : :
: : . :

 : . : . :

x y x
x y x

x y x

α β α
α λ β β α

λ α λ β α β α
→

∅ → →

d

d

d

CS590F Software Reliability

Example

: , : :
: : . :

 : . : . :

x y x
x y x

x y x

α β α
α λ β β α

λ α λ β α β α
→

∅ → →

d

d

d

CS590F Software Reliability

Not Straightforward

: , : :
: : . :

 : . : . :

x y x
x y x

x y x

α β α
α λ β β α

λ α λ β α β α
→

∅ → →

d

d

d

CS590F Software Reliability

Type Checking Algorithm

There is a simple algorithm for type checking

Observe that there is only one possible “shape” of
the type derivation

• only one inference rule applies to each form.

? : ?
? : . : ?

: . : . : ?

x
y x

x y x
λ β

λ α λ β∅

d
d

d

CS590F Software Reliability

Algorithm (Cont.)

Walk the proof tree from the root to the leaves, generating the correct
environments.

Assumptions are simply gathered from lambda abstractions.

: , : : ?
: : . : ?

: . : . : ?

x y x
x y x

x y x

α β
α λ β
λ α λ β∅

d

d

d

CS590F Software Reliability

Algorithm (Cont.)

In a walk from the leaves to the root, calculate the type of each
expression.

The types are completely determined by the type environment and the
types of subexpressions.

: , : :
: : . :

 : . : . :

x y x
x y x

x y x

α β α
α λ β β α

λ α λ β α β α
→

∅ → →

d

d

d

CS590F Software Reliability

A Bigger Example

: , : :
: : . : : :

 : . : . : () : . :
 (: . : .) : . : ()

x y x
x y x z z

x y x z z
x y x z z

α α β α α
α α λ β β α α α α

λ α α λ β α α β α α λ α α α
λ α α λ β λ α α α β α α

→ →
→ → →

∅ → → → → → ∅ →
∅ → → → → →

d

d d
d d

d

CS590F Software Reliability

What Do Types Mean?

Thm. If A d e:τ and e →∗
β d, then A d d:τ

• Evaluation preserves types.

This is the basis of a claim that there can be no
runtime type errors

• functions applied to data of the wrong type
Adding to a function
Using an integer as a function

CS590F Software Reliability

Type Inference

The type erasure of e is e with all type information
removed (i.e., the untyped term).

Is an untyped term the erasure of some simply typed
term? And what are the types?

This is a type inference problem. We must infer,
rather than check, the types.

CS590F Software Reliability

Type Inference

recast the type rules in an equivalent form

typing in the new rules reduces to a constraint
satisfaction problem

the constraint problem is solvable via term
unification.

CS590F Software Reliability

New Rules

Sidestep the problems by introducing explicit unknowns and constraints

1 1

2 2

1 2

1 2

1 1

1 1 2 2

2 2 3 3

1 2 1 2 3

1 2 1 2 3 2

:
 :

() , : :
 : . : :

 :
 : :
 : :

int int
 i : int : int if :

x x

x x

A e
A e

A x A x e
A x A x e A e e

A e
A e A e
A e A e

A A e e A e e e

τ
τ

τ τ βα α τ
α λ α τ β

τ
τ τ
τ τ

τ τ τ τ τ
τ

= →=
→

= = = =
+

d

d

d

d d d

d

d d

d d

d d d

CS590F Software Reliability

New Rules

Type assumption for variable x is a fresh variable αx

1 1

2 2

1 2

1 2

1 1

1 1 2 2

2 2 3 3

1 2 1 2 3

1 2 1 2 3 2

:
 :

() , : :
 : . : :

 :
 : :
 : :

int int
 i : int : int if :

x x

x x

A e
A e

A x A x e
A x A x e A e e

A e
A e A e
A e A e

A A e e A e e e

τ
τ

τ τ βα α τ
α λ α τ β

τ
τ τ
τ τ

τ τ τ τ τ
τ

= →=
→

= = = =
+

d

d

d

d d d

d

d d

d d

d d d

CS590F Software Reliability

New Rules

Hypotheses are all arbitrary
• Can always complete a derivation, pending constraint resolution

1 1

2 2

1 2

1 2

1 1

1 1 2 2

2 2 3 3

1 2 1 2 3

1 2 1 2 3 2

:
 :

() , : :
 : . : :

 :
 : :
 : :

int int
 i : int : int if :

x x

x x

A e
A e

A x A x e
A x A x e A e e

A e
A e A e
A e A e

A A e e A e e e

τ
τ

τ τ βα α τ
α λ α τ β

τ
τ τ
τ τ

τ τ τ τ τ
τ

= →=
→

= = = =
+

d

d

d

d d d

d

d d

d d

d d d

CS590F Software Reliability

New Rules

Equality conditions represented as side constraints

1 1

2 2

1 2

1 2

1 1

1 1 2 2

2 2 3 3

1 2 1 2 3

1 2 1 2 3 2

:
 :

() , : :
 : . : :

 :
 : :
 : :

int int
 i : int : int if :

x x

x x

A e
A e

A x A x e
A x A x e A e e

A e
A e A e
A e A e

A A e e A e e e

τ
τ

τ τ βα α τ
α λ α τ β

τ
τ τ
τ τ

τ τ τ τ τ
τ

= →=
→

= = = =
+

d

d

d

d d d

d

d d

d d

d d d

CS590F Software Reliability

Solutions of Constraints

The new rules generate a system of type equations.

Intuitively, a solution of these equations gives a
derivation.

A solution is a substitution Vars → Types
such that the equations are satisfied.

CS590F Software Reliability

Example

A solution is

int

α β γ
α γ β
β

= →
= →
=

int int, int, intα β γ= → = =

CS590F Software Reliability

Solving Type Equations

Term equations are a unification problem.
• Solvable in near-linear time using a union-find based

algorithm.

No solutions α = T[α] are permitted
• The occurs check.
• The check is omitted if we allow infinite types.

CS590F Software Reliability

Unification

Four rules.

If no inconsistency or occurs check violation found, system has a
solution.

• int = x → y

{ } { }
{ } { }
{ }

1 2 3 1 3 24 4

{ }
[/]

,
int int

S S
S S
S S
S S

α α
α τ τ α α τ
τ τ τ τ τ τ τ τ

∪ = ⇒
∪ = ⇒ ∪ ≅
∪ → = → ⇒ ∪ = =
∪ = ⇒

CS590F Software Reliability

Syntax

We distinguish solved equations α { τ

Each rule manipulates only unsolved equations.

{ } { }
{ } { }
{ }

1 2 3 1 3 24 4

{ }
[/]

,
int int

S S
S S
S S
S S

α α
α τ τ α α τ
τ τ τ τ τ τ τ τ

∪ = ⇒
∪ = ⇒ ∪ ≅
∪ → = → ⇒ ∪ = =
∪ = ⇒

CS590F Software Reliability

Rules 1 and 4

Rules 1 and 4 eliminate trivial constraints.

Rule 1 is applied in preference to rule 2
• the only such possible conflict

{ } { }
{ } { }
{ }

1 2 3 1 3 24 4

{ }
[/]

,
int int

S S
S S
S S
S S

α α
α τ τ α α τ
τ τ τ τ τ τ τ τ

∪ = ⇒
∪ = ⇒ ∪ ≅
∪ → = → ⇒ ∪ = =
∪ = ⇒

CS590F Software Reliability

Rule 2

Rule 2 eliminates a variable from all equations but one (which is
marked as solved).

• Note the variable is eliminated from all unsolved as well as solved
equations

{ } { }
{ } { }
{ }

1 2 3 1 3 24 4

{ }
[/]

,
int int

S S
S S
S S
S S

α α
α τ τ α α τ
τ τ τ τ τ τ τ τ

∪ = ⇒
∪ = ⇒ ∪ ≅
∪ → = → ⇒ ∪ = =
∪ = ⇒

CS590F Software Reliability

Rule 3

Rule 3 applies structural equality to non-trivial terms.

Note rule 4 is a degenerate case of rule 3 for a type constructor of
arity zero.

{ } { }
{ } { }
{ }

1 2 3 1 3 24 4

{ }
[/]

,
int int

S S
S S
S S
S S

α α
α τ τ α α τ
τ τ τ τ τ τ τ τ

∪ = ⇒
∪ = ⇒ ∪ ≅
∪ → = → ⇒ ∪ = =
∪ = ⇒

CS590F Software Reliability

Correctness

Each rule preserves the set of solutions.
• Rules 1 and 4 eliminate trivial constraints.
• Rule 2 substitutes equals for equals.
• Rule 3 is the definition of equality on function types.

{ } { }
{ } { }
{ }

1 2 3 1 3 24 4

{ }
[/]

,
int int

S S
S S
S S
S S

α α
α τ τ α α τ
τ τ τ τ τ τ τ τ

∪ = ⇒
∪ = ⇒ ∪ ≅
∪ → = → ⇒ ∪ = =
∪ = ⇒

CS590F Software Reliability

Termination

Rules 1 and 4 reduce the number of equations.

Rule 2 reduces the number of variables in unsolved equations.

Rule 3 decreases the height of terms.

{ } { }
{ } { }
{ }

1 2 3 1 3 24 4

{ }
[/]

,
int int

S S
S S
S S
S S

α α
α τ τ α α τ
τ τ τ τ τ τ τ τ

∪ = ⇒
∪ = ⇒ ∪ ≅
∪ → = → ⇒ ∪ = =
∪ = ⇒

CS590F Software Reliability

Termination (Cont.)

Rules 1, 3, and 4 always terminate
• because terms must eventually be reduced to height 0.

Eventually rule 2 is applied, reducing the number of variables.

{ } { }
{ } { }
{ }

1 2 3 1 3 24 4

{ }
[/]

,
int int

S S
S S
S S
S S

α α
α τ τ α α τ
τ τ τ τ τ τ τ τ

∪ = ⇒
∪ = ⇒ ∪ ≅
∪ → = → ⇒ ∪ = =
∪ = ⇒

CS590F Software Reliability

A Nitpick

We really need one more operation.

τ = α should be flipped to α = τ if τ is not a variable.
• Needed to ensure rule 2 applies whenever possible.
• We just assume equations are maintained in this “normal

form”.

CS590F Software Reliability

Solutions

The final system is a solution.
• There is one equation α { τ for each variable.
• This is a substitution with all the solutions of the original

system

Must also perform occurs check to guarantee there
are no recursive constraints.

CS590F Software Reliability

Example

, , int
int , int, int

int int , int, int
int, int , int, int

int int, int, int int, int
int, int int, int

α β γ α γ β β
α γ α γ β

γ γ α γ β
γ γ α γ β

γ α β
γ α β

= → = → =
= → = → ≅

→ = → ≅ → ≅
= = ≅ → ≅
= ≅ ≅ → ≅

≅ ≅ → ≅

rewrites

CS590F Software Reliability

Example

, , int
int , int, int

int int , int, int
int, int , int, int

int int, int, int int, int
int, int int, int

α β γ α γ β β
α γ α γ β

γ γ α γ β
γ γ α γ β

γ α β
γ α β

= → = → =
= → = → ≅

→ = → ≅ → ≅
= = ≅ → ≅
= ≅ ≅ → ≅

≅ ≅ → ≅

rewrites

CS590F Software Reliability

Example

, , int
int , int, int

int int , int, int
int, int , int, int

int int, int, int int, int
int, int int, int

α β γ α γ β β
α γ α γ β

γ γ α γ β
γ γ α γ β

γ α β
γ α β

= → = → =
= → = → ≅

→ = → ≅ → ≅
= = ≅ → ≅
= ≅ ≅ → ≅

≅ ≅ → ≅

rewrites

CS590F Software Reliability

Example

, , int
int , int, int

int int , int, int
int, int , int, int

int int, int, int int, int
int, int int, int

α β γ α γ β β
α γ α γ β

γ γ α γ β
γ γ α γ β

γ α β
γ α β

= → = → =
= → = → ≅

→ = → ≅ → ≅
= = ≅ → ≅
= ≅ ≅ → ≅

≅ ≅ → ≅

rewrites

CS590F Software Reliability

Example

, , int
int , int, int

int int , int, int
int, int , int, int

int int, int, int int, int
int, int int, int

α β γ α γ β β
α γ α γ β

γ γ α γ β
γ γ α γ β

γ α β
γ α β

= → = → =
= → = → ≅

→ = → ≅ → ≅
= = ≅ → ≅
= ≅ ≅ → ≅

≅ ≅ → ≅

rewrites

CS590F Software Reliability

Example

, , int
int , int, int

int int , int, int
int, int , int, int

int int, int, int int, int
int, int int, int

α β γ α γ β β
α γ α γ β

γ γ α γ β
γ γ α γ β

γ α β
γ α β

= → = → =
= → = → ≅

→ = → ≅ → ≅
= = ≅ → ≅
= ≅ ≅ → ≅

≅ ≅ → ≅

rewrites

CS590F Software Reliability

An Example of Failure

, (), int
int , (int int), int

(int int) int , int, int
int, int int , int, int

int int int, int int, int int, int

α β γ α γ β β β
α γ α γ β

γ γ α γ β
γ γ α γ β

γ α β

= → = → → =
= → = → → ≅

→ → = → ≅ → ≅
= → = ≅ → ≅

→ = ≅ → ≅ → ≅

CS590F Software Reliability

Notes

The algorithm produces the most general unifier of
the equations.

• All solutions are preserved.

Less general solutions are all substitution instances
of the most general solution.

There exists more efficient algorithm, amortized time
complexity is close to linear

CS590F Software Reliability

Application – Treating Program Property
as A Type

INT, BOOL, and STRING are types, and
• “ALLOCATED” and “FREED” can also be treated as types.

For example, p=q

CS590F Software Reliability

Uses

Find bugs
• Every equivalence class with a malloc should have a free

Alias analysis

Implemented for C in a tool Lackwit
• O’Callahan & Jackson

CS590F Software Reliability

Where is Type Inference Strong?

Handles data structures smoothly

Works in infinite domains
• Set of types is unlimited

No forwards/backwards distinction

Type polymorphism good fit for context sensitivity

CS590F Software Reliability

Where is Type Inference Weak?

No flow sensitivity
• Equality-based analysis only gets equivalence classes

Context-sensitive analyses don’t always scale
• Type polymorphism can lead to exponential blowup in

constraints

CS590F Software Reliability

Flow Sensitive: Data Flow Analysis

CS590F Software Reliability

An example DFA: reaching definitions

For each use of a variable, determine what
assignments could have set the value being read
from the variable

Information useful for:
• performing constant and copy prop
• detecting references to undefined variables
• presenting “def/use chains” to the programmer
• building other representations, like the program dependence

graph

Let’s try this out on an example

CS590F Software Reliability

x := ...

x := ...
y := ...
y := ...
p := ...
if (...) {

... x ...
x := ...
... y ...

}
else {

... x ...
x := ...
*p := ...

}
... x ...
... y ...
y := ...

y := ...

y := ...

p := ...

... x ...

x := ...

... y ...

... x ...

x := ...

*p := ...

... x ...

... x ...

y := ...

if (...)

Example CFG

CS590F Software Reliability

1: x := ...

2: y := ...

3: y := ...

4: p := ...

... x ...

5: x := ...

... y ...

... x ...

6: x := ...

7: *p := ...

... x ...

... y ...

8: y := ...

x := ...

y := ...

y := ...

p := ...

... x ...

x := ...

... y ...

... x ...

x := ...

*p := ...

... x ...

... x ...

y := ...

if (...)

Visual sugar

CS590F Software Reliability

1: x := ...

2: y := ...

3: y := ...

4: p := ...

... x ...

5: x := ...

... y ...

... x ...

6: x := ...

7: *p := ...

... x ...

... y ...

8: y := ...

CS590F Software Reliability

Safety

Safety:
• can have more bindings than the “true” answer, but can’t

miss any

CS590F Software Reliability

Reaching definitions generalized

Computed information at a program point is a set of
var → stmt bindings

• eg: { x → s1, x → s2, y → s3 }

How do we get the previous info we wanted?
• if a var x is used in a stmt whose incoming info is in, then: { s

| (x → s) ∈ in }

This is a common pattern
• generalize the problem to define what information should be

computed at each program point
• use the computed information at the program points to get

the original info we wanted

CS590F Software Reliability

1: x := ...

2: y := ...

3: y := ...

4: p := ...

... x ...

5: x := ...

... y ...

... x ...

6: x := ...

7: *p := ...

... x ...

... y ...

8: y := ...

CS590F Software Reliability

Constraints for reaching definitions

out = in – { x → s’ | x ∈ must-point-to(p) ∧
s’ ∈ stmts }

∪ { x → s | x ∈ may-point-to(p) }

s: x := ...

in

out

s: *p := ...

in

out

out = in – { x → s’ | s’ ∈ stmts } ∪ { x → s }

CS590F Software Reliability

Constraints for reaching definitions

s: if (...)

in

out[0] out[1] more generally: ∀ i . out [i] = in

out [0] = in ∧
out [0] = in

merge

out

in[0] in[1]

more generally: out = U i in [i]

out = in [0] ∪ in [1]

CS590F Software Reliability

Flow functions

The constraint for a statement kind s often have the
form: out = Fs(in)

Fs is called a flow function
• other names for it: dataflow function, transfer function

Given information in before statement s, Fs(in)
returns information after statement s

CS590F Software Reliability

The Problem of Loops

If there is no loop, the topological order can be
adopted to evaluate transfer functions of statements.

What if loops?

CS590F Software Reliability

1: x := ...

2: y := ...

3: y := ...

4: p := ...

... x ...

5: x := ...

... y ...

... x ...

6: x := ...

7: *p := ...

... x ...

... y ...

8: y := ...

CS590F Software Reliability

Solution: iterate!

Initialize all sets to the empty

Store all nodes onto a worklist

while worklist is not empty:
• remove node n from worklist
• apply flow function for node n
• update the appropriate set, and add nodes whose inputs

have changed back onto worklist

CS590F Software Reliability

Termination

How do we know the algorithm terminates?

Because
• operations are monotonic
• the domain is finite

CS590F Software Reliability

Monotonicity

Operation f is monotonic if

X ` Y => f(x) ` f(y)

We require that all operations be monotonic
• Easy to check for the set operations
• Easy to check for all transfer functions; recall:

out = in – { x → s’ | s’ ∈ stmts } ∪ { x → s }
s: x := ...

in

out

CS590F Software Reliability

Termination again

To see the algorithm terminates
• All variables start empty
• Variables and rhs’s only increase with each update
• Sets can only grow to a max finite size

Together, these imply termination

CS590F Software Reliability

What Else In DFA

May vs. must

Backward vs. Forward

Lattice
• Mere goal: help prove the termination of the analysis
• To show the domain is finite (has finite height)

CS590F Software Reliability

Where is Dataflow Analysis Useful?

Best for flow-sensitive, context-insensitive,
distributive problems on small pieces of code

• E.g., the examples we’ve seen and many others

Extremely efficient algorithms are known
• Use different representation than control-flow graph, but not

fundamentally different

CS590F Software Reliability

Where is Dataflow Analysis Weak?

Lots of places

CS590F Software Reliability

Data Structures

Not good at analyzing data structures

Works well for atomic values
• Labels, constants, variable names

Not easily extended to arrays, lists, trees, etc.

CS590F Software Reliability

The Heap

Good at analyzing flow of values in local variables

No notion of the heap in traditional dataflow
applications

• Aliasing

CS590F Software Reliability

Context Sensitivity

Standard dataflow techniques for handling context
sensitivity don’t scale well

CS590F Software Reliability

Flow Sensitivity (Beyond Procedures)

Flow sensitive analyses are standard for analyzing
single procedures

Not used (or not aware of uses) for whole programs
• Too expensive

CS590F Software Reliability

The Call Graph

Dataflow analysis requires a call graph
• Or something close

Inadequate for higher-order programs
• First class functions
• Object-oriented languages with dynamic dispatch

Call-graph hinders algorithmic efficiency

CS590F Software Reliability

Coming Back: The Essence of Static
Analysis

Examine the program text (no execution)

Build a model of the program state
• An abstract of the run-time state

Reason over the possible behaviors.
• E.g. “run” the program over the abstract state

The property an analysis needs to promise is that it
TERMINATES

• Slogan of most researchers:

Finite Lattices + Monotonic Functions =
Program Analysis

CS590F Software Reliability

Tips on Designing Analysis

Program analysis is a formalization of INTUITIVE
insights.

• Type inference
• Reaching definition
• …

Steps
• Look at the code (segment), gain insights;
• More systematic: manually “runs” through the code with your

abstraction.
• Works? Good, lets do formalization.

CS590F Software Reliability

Next Lecture

Dynamic Program Analysis

