The Essence of Dynamic

!'_ Analysis

Thomas Ball
Microsoft Research
(modified by Zhang)

A "Present” Challenge for
i Dynamic Analysis

#include <stdio.h>

main(t, ,a)

char *a;

{

return!0<t?t<3?main(-79,-13,a+main(-87,1- ,main(-86,0,a+1)+a)):

1,t< ?main(t+1l, ,a):3,main(-94,-27+t,a) &&t==27 <137

main (2, +1,"%s %d %d\n"):9:16:t<0?t<-72?main(,t,

"@n'+, #'/*{}w+/whcdnr/+, {}r/*de}+, /*{*+, /w{%+, /wiqgkn+, /# {1+, /n{n+, /+#n+, /#\
#g#nt, /+k#; <+, /'y 'd* '3, H{w+K w'K:'+}e#';dg#'l \

a#"+d'K#! /+k#;gft 'rieKK#lw'r}eKK{nl] " /#;#g#n') {H#Iw') {) {(nl]'/+#n';d}rw' i;# \
) {nl]!/n{n#"'; r{#w'r nc{nl]'/#{1,+'K {rw' iK{; [{nl]"'"/wHg#n'wk nw' \
iwk{KK{nl]!/w{$'1##w#"' 1; :{nl]'/*{g#'ld;r'}{nlwb!/*de}'c \
po{nl'—{}rw]"/+, }## "' *t#nc, ', #nw] ' /+kd"+e}+; # 'rdgfw! nr'/ ") }+H{rl#'{n' ")# \
PUALEE(CIL/T)

:t<-50? ==*a?putchar(31[a]) main(-65, ,a+l):main((*a=='/')+t, ,a+l)
:0<t?main(2,2,"%s") :*a=='/"'| |main(0,main (-61, *a,

"lek;dc 1Q@bK' (g)-[w]*%n+r3#1, {}:\nuwloca-O;m .vpbks, fxntdCeghiry"),a+l);

}

Pretty Printed Code

#include <stdio.h>
main(t, ,a)

char *a;
{
if ((!'0) < t) |
if (£ <
<££1£1;§§:;13,a+main(—87,l—_,main(—8§2§2§£il£gi?;
if (£ <)

main (t+l, ,a);
if (main(-94,-27+t,a)) {

if (t==2) {
if (<13) {
return main (2, +1,"%$s %d %d\n");
} else {

return 9;
}
} else
return 16;
} else
return 0;

i A Folk Theorem

= any program can be transformed into a
semantically equivalent program
consisting of a single recursive function
containing only conditional statements

The Most Basic Dynamic
i Analysis: Run the Program!

On the first day of Christmas my true love gave to me
a partridge in a pear tree.

On the second day of Christmas my true love gave to me
two turtle doves
and a partridge in a pear tree.

On the twelfth day of Christmas my true love gave to me

twelve drummers drumming, eleven pipers piping, ten lords a-leaping,
nine ladies dancing, eight maids a-milking, seven swans a-swimming,
six geese a-laying, five gold rings;

four calling birds, three french hens, two turtle doves

and a partridge in a pear tree.

i The Output Pattern

= On the <ordina/> day of Christmas my
true love gave to me </ist of gift
phrases, from the ordinal day down to
the second day> and a partridge in a
pear tree.

s The first verse:

= On the first day of Christmas my true love
gave to me a partridge in a pear tree.

Modelling of the “12 Days”
i with Frequencies

= 12 days of Christmas
= 26 unique strings

= 66 occurrences of non-partridge-in-a-
pear-tree gifts

= 114 strings printed
= 2358 characters printed

main
main
thaih
tmaih
main
main
thaih
tmaih
main

1
1
10

11

114

[

27
67
74
33
42
27
28
43
36

67

27

67

740
385
2310
3078
3192
101394
132048
072309
1546428

BOOKTANKS

IIRRERENREND
IIRRERENREND
iiliiillllll
iiiiiiliilll

444444444444
-l-l-l-l-l-l-llllll
44444444 1.00

444444444444

iiliiiliilll

iiiiiiliilll

#Hinclude <stdioh>
main(t, ,a)

char *a;
{

if{(!0)<t){
if (t < 3)
main(-79,-13,a+main{-87,1-_,

if (t < _)
main(t+1, ,a);

if (main{-94,-27+t,a)) {
if (t==2) {
if { _<13){
return main(2, +1,"%s %d %

}else {

return 9;

}

} else

return 16;
} else
return 0

yelseif (t < 0) {
if (t_ < —?2)_{ o

Other Examples of Dynamic
i Analyses

= Program Hot Spots

= Memory Reference Errors

= uninitialized memory, segment fault and memory
leak errors

= Coordination Problems
= racing data accesses in concurrent programs

= Security of Web Applications
= tainted values

i Program Hot Spots

= How many times does each program entity

execute?
= Procedures, methods, statements, branches, paths

= 80-20 rule
= 20% of program responsible for 80% of execution
time
= Applications
« Performance tuning
= Profile-driven compilation
= Reverse engineering

i Memory Reference Errors

= Purify, a popular link-time instrumentation
tool, detects
= reads of uninitialized memory
= accesses to deallocated memory
= accesses out of bounds

= Memory instrumentation via memory map

= 2 bits per byte of memory
= allocated, uninitialized, initialized
= red zone”
= Purify substitutes its own malloc; each
load/store instrumented to test/set bits

i Race Condition Detection

Q R

Recv mil
|
Send m3

Recv m2

Recv m4
J

INlat=ar Millar

i Secure Web Applications

s Perl

= popular interpreted scripting language used for
many tasks, including CGI programming

= tainted” Perl
= each scalar value received from the environment
is “tainted”
= tainted” values propagate through expressions,
assignment, etc.

= “tainted” values cannot be used in critical
operations that can write to system resources

i Outline

= What is dynamic analysis?
» Example: path profiling
= How is it accomplished?
= Precision vs. Efficiency
= Relationships to static analysis

s [rends

i What is Dynamic Analysis?

Dynamic analysis is the investigation of
the properties of a running software
system over one or more executions

i What is Dynamic Analysis?

= What is the meaning of “run”?

= abstract interpretation and static analyses
“run” a program over an abstract domain

= OUT=F(IN,s)
= Dynamic analysis

= abstraction used in parallel with, not in
place of, concrete values

« OUT=F(IN, s, V)

Some Characteristics of
i Dynamic Analysis

= Dynamic analysis can collect exactly the
information needed to solve a problem
= Procedure specialization: parameter values
=« Dynamic program slicing: flow dependences
= Race conditions: message sends

= Scales very well

= Can be language independent!
= Record information at interfaces

Fundamental Results in
i Dynamic Analysis

= Dynamic analysis is, at its heart, an
experimental effort
= Have insight
= Build tool
= Evaluate efficiency and effectiveness
= Rethink

i Example: Path Profiling

= How often does a control-flow path
execute?

= Levels of profiling: i
= blocks
B)
» edges
- D

i Naive Path Profiling

buffer
put(“A”) A Dl [F
put(“C”)
D] put(“D”)
put(“F’,);

record path();

20

i Efficient Path Profiling

Path Encoding
ABDEF 0
ABDF 1
ABCDEF 2
ABCDF 3
ACDEF 4
ACDF 5

21

i Efficient Path Profiling

Al 6

count|[r]++

i Efficient Path Profiling

®e
ceu,
‘e,
®e
e,
®e

......
......
......
o®

e

.

.................

......
..........

72

Path Regeneration »
i Given path sum P, which path produced it"
1ve

P=3

\%
n1+n2)
% Ir\ - .
W2 w3
n1 n2 n3=:._._..

®e
ce,
e,
®e
®e
e,

.......
e
........
.

oe
oo ®

.................

......
..........

o PP

Efficiency

17%

EPP —
23% 99%
0 QPT2
28% % Hash
g 4 24% 78%
— 0 o
= % 1% 96% . 43% 65%
b= 0% 22% 8% 0% 49,
-
o 1-)
b
1]
©
Q
N
T
g |
(e)
4
0 - : : : : : : n R : n R AR ! ! !
¢ Vv & O SR N R AP S KT
W P N YN SO S S NN
XV R N

Benchmark

‘L Effectiveness

100 —
ey ——**099.g0
90 —**124.m 88ksim
**126.gcc
80 **129.compress
—**130.1i
" 70 —**132.ijpeg
5 ——**134.perl
§ 60 —**147.vortex
‘3 —**101.tomcatv
£ 50 .
) **102.swim
§ 40 **103.su2cor
Y **104.hydro2d
X 30 **107.mgrid
**110.applu
20 **125.turb3d
**141.apsi
10 ——**145.fpppp
**146.wave5b
0 } } } }
1 10 100 1000 10000 100000

Number of Paths

i Aggregation and Compression

= Dynamic analysis is a problem of data aggregation
and compression, as well as abstraction

« frequencies vs. the full trace

= Efficient path profiling relies on cutting full trace into shorter
paths

Makes analysis efficient
Loses loop and procedural contexts

« If full trace, how to compress
« Zlib, sequittur, bdd, value predictor, WET...
= Execution reduction, check pointing

= Abstraction
= Purify uses two bits per byte of memory

i Outline

= What is dynamic analysis?

= How is it accomplished?
» Precision vs. Efficiency

= Relationships to static analysis, model
checking, and testing

s [rends

How is Dynamic Analysis
i Accomplished ?

= Observation of behavior
= hardware monitoring
=« PC sampling
= breakpoints

= Instrumentation
= code added to original program
= ideally does not affect semantics of program
= does affect the running time of a program
= Interpreters
= interpreter instrumentation

Creating Instrumentation
Tools

s Source-level

» Pattern-matching over parse tree or AST and
rewriting

= A* [Ladd, Ramming], Astlog [Crew], ...
= Full access to source information and precise
mapping
= Binary
= ATOM [Srivastava] , EEL [Larus], Diablo, Bluto...
= Analyze programs from multiple languages
= Limited access to source information

= Run-time
= Valgrind, PIN

i Instrumentation Issues

= How much to generate?
= Everything
= Just the necessary facts
= Less than necessary

= On-line vs. off-line analysis

= What/When to instrument?

= Source code, IR, assembly, machine code
= Preprocessor, compile-time, link-time, executable,
run-time

s Automation

i Outline

= What is dynamic analysis?

= How is it accomplished?
= Precision vs. Efficiency

= Relationships to static analysis
= [rends

Static and Dynamic Analysis,

‘L Explained

+ Input = Behavior

‘L Static Analysis

+ I%t = Behavior
\/

as a guide to behavior
= Input insensitive

i Dynamic Analysis

+ Input = Behavior
w

Input + behavior as a guide to the
= Input sensitive

i Dynamic and Static Analysis

= Completeness
= Static complete
= dynamic incomplete

s Precision

=« dynamic analysis can examine exactly the
concrete values needed to help answer a question
= All state along one/a few paths.
» Static analysis confounded by abstraction and
infeasible paths
= A small subset of states for all possible paths

i Diving Deeper...

= Abstraction
= Infeasible paths

= Interplay between static and dynamic
analyses

i Abstraction

= Static analysis

= abstraction is required for termination
= Bound number of states (stores)
= Bound size of each state (store)

= Dynamic analysis

=« termination is a property of the running system, not a major
concern of analysis

= abstraction helps reduce run-time overhead
= Purify: two bits per byte to record state of memory
= Path profiling: short paths rather than long traces

= Precision a concern in both

i Feasible and Infeasible Paths

= Dynamic analysis leaves feasible paths
unexplored

= may conclude a property holds when it really
doesn’t (precise for test set but unsafe)

= Static analysis explores infeasible paths

= may conclude a property doesn’t hold when it
really does (safe but imprecise)

= What can one do to increase confidence in
either analysis?

ol o wlls o Ve | &V &= J 1 §

Node *y, *x;

if ((z->left == nilNode) || [36]
(z->right == nilNode))
Yy = z;
else
y = treeSuccessor (z->right) ;

if (y->left !'= nilNode) [12]
x = y->left;

else
x = y->right;

xXx->parent = y->parent;

if (y->parent == nilNode) [6]
root = x;

else if (y == y->parent->left)
y->parent->left = x;

else
y->parent->right = x;

if (y !'= z) [2]
z->key = y->key;

return (y) ;

= 36 total paths
= 8 feasible paths

= False flow
dependences

i Control Flow Paths

Static
Analysis

Feasible

 Excauted

Dynamic
Analysis

i Two Sides of Imprecisoin

= Imprecision in Dynamic Analysis
= (Feasible-Executed)/Feasible

= iNCrease precision as Executed approaches
Feasible
= Systematic generation of tests

= Imprecision in Static Analysis

= (All-Feasible)/All =
Infeasible/(Infeasible+Feasible)

= increase precision as Infeasible approaches 0
= methods to eliminate infeasible paths

e Y I A S

Node

*y’ *x;
if ((z->left == nilNode) || [36]
(z->right == nilNode))
y = z;
else
y = treeSuccessor (z->right);
if (y->left !'= nilNode) [12]

x = y->left;
else
x = y->right;

xXx->parent = y->parent;

nilNode) [6]

if (y->parent ==
root = x;

else if (y == y->parent->left)
y->parent->left = x;

else
y->parent->right = x;

if (y '= z) [2]

z->key = y->key;

return(y) ;

A I o e "o oS | VI e J L

if (z->left == nilNode) [©
return reparent(z,z->right);

else if (z->right == nilNode) [€
return reparent(z,z->left);

else { [3
Node *y = treeSuccessor (z->right
z->key = y->key;
return reparent(y,y->right);

}

Node* reparent(Node *n, Node *c) {
c->parent = n->parent;

if (n->parent == nilNode) [3
root = c;

else if (n == n->parent->left) [2
n->parent->left = c;

else [1

n->parent->right = c;
return n;

i State Space

= Dynamic and static analysis represent two
extremes of state space exploration of
programs

= Dynamic analysis is a depth-first exploration
of program behavior

= Static analysis is “breadth-first”, sort of...
= combines information from multiple paths

« the longer the paths analyzed, the greater the
chance that results will be imprecise
= infeasible paths
= abstraction

i Program Paths

Analysis

i Interplay of Dynamic and Static

= Data Flow Analysis

= path-sensitive DFA
= "'widening” DFA
= Program Slicing

Restructuring for Path-
i sensitive Data Flow

[Ammons, Larus

B
N
B
C DI
NN

i “"Widening” Data Flow Analysis

= Keep info at merge
rather than lose

= collecting semantics

s Can't collect
everything X=X+

= What to keep, what \/

to drop? { X=2, X=3, X=4}

i Program Slicing

= Static Analysis
= Control flow analysis
= reaching definitions
= pointer alias and shape analysis

= Dynamic Analysis

= exact computation of flow dependences in
trace

Dynamic/Static Analysis for

i Slicing

= Levels of precision

= Compute flow dependences between
statement instances

=« Compute paths/edges/nodes covered and
perform static analysis over these entities

[Agrawal, Horgan]

i Outline

= What is dynamic analysis?

= How is it accomplished?
= Precision vs. Efficiency

= Relationships to static analysis, model
checking, and testing

s [rends

i Size and Complexity

= Plagues both static and dynamic
analyses, though less for the latter

= State space and path explosion for static
analysis

= Depth-first scales

i Binding times

= Binding times of program and system
components are becoming more and
more dynamic

= Virtual functions,Factories, Objects, DLLs,
Dynamic class loaders, ...

= Boon to extensibility, reconfigurability,
maintenance

= A thorn for static analysis

i Multi-lingual Systems

= How many languages does it take to deploy a
web application?

= Client side
« HTML, Java

= Server side
= A general purpose language: Perl, C, C++, Java, ...
= Server side scripting: Javascript, ASP, ...
= Database languages: SQL

= Tcl and integrating applications

= How to analyze a system in the face of
multiple languages?

= Will analysis at the interfaces suffice?

|

A Golden Age for Dynamic
Program Analysis

i Open Problems

= The problem of perturbation

= Dynamic differencing

= Dynamic analysis and test generation
= Frameworks for dynamic analysis

= Interactions of dynamic analysis, languages
and optimizations

= Machine learning models of program behavior
= Hybrid dynamic/static analyses
= Analyzing non-terminating programs

