
The Essence of Dynamic
Analysis

Thomas Ball
Microsoft Research

(modified by Zhang)

A “Present” Challenge for
Dynamic Analysis

#include <stdio.h>
main(t,_,a)
char *a;
{
return!0<t?t<3?main(-79,-13,a+main(-87,1-_,main(-86,0,a+1)+a)):
1,t<_?main(t+1,_,a):3,main(-94,-27+t,a)&&t==2?_<13?
main(2,_+1,"%s %d %d\n"):9:16:t<0?t<-72?main(_,t,
"@n'+,#'/*{}w+/w#cdnr/+,{}r/*de}+,/*{*+,/w{%+,/w#q#n+,/#{l+,/n{n+,/+#n+,/#\
;#q#n+,/+k#;*+,/'r :'d*'3,}{w+K w'K:'+}e#';dq#'l \
q#'+d'K#!/+k#;q#'r}eKK#}w'r}eKK{nl]'/#;#q#n'){)#}w'){){nl]'/+#n';d}rw' i;# \
){nl]!/n{n#'; r{#w'r nc{nl]'/#{l,+'K {rw' iK{;[{nl]'/w#q#n'wk nw' \
iwk{KK{nl]!/w{%'l##w#' i; :{nl]'/*{q#'ld;r'}{nlwb!/*de}'c \
;;{nl'-{}rw]'/+,}##'*}#nc,',#nw]'/+kd'+e}+;#'rdq#w! nr'/ ') }+}{rl#'{n' ')# \
}'+}##(!!/")
:t<-50?_==*a?putchar(31[a]):main(-65,_,a+1):main((*a=='/')+t,_,a+1)
:0<t?main(2,2,"%s"):*a=='/'||main(0,main(-61,*a,
"!ek;dc i@bK'(q)-[w]*%n+r3#l,{}:\nuwloca-O;m .vpbks,fxntdCeghiry"),a+1);
}

Pretty Printed Code
#include <stdio.h>
main(t,_,a)

char *a;
{

if ((!0) < t) {
if (t < 3)
main(-79,-13,a+main(-87,1-_,main(-86,0,a+1)+a));

if (t < _)
main(t+1,_,a);

if (main(-94,-27+t,a)) {
if (t==2) {

if (_ < 13) {
return main(2,_+1,"%s %d %d\n");

} else {
return 9;

}
} else

return 16;
} else
return 0;

...

A Folk Theorem

any program can be transformed into a
semantically equivalent program
consisting of a single recursive function
containing only conditional statements

The Most Basic Dynamic
Analysis: Run the Program!

On the first day of Christmas my true love gave to me
a partridge in a pear tree.

On the second day of Christmas my true love gave to me
two turtle doves
and a partridge in a pear tree.

...

On the twelfth day of Christmas my true love gave to me
twelve drummers drumming, eleven pipers piping, ten lords a-leaping,
nine ladies dancing, eight maids a-milking, seven swans a-swimming,
six geese a-laying, five gold rings;
four calling birds, three french hens, two turtle doves
and a partridge in a pear tree.

The Output Pattern

On the <ordinal> day of Christmas my
true love gave to me <list of gift
phrases, from the ordinal day down to
the second day> and a partridge in a
pear tree.
The first verse:

On the first day of Christmas my true love
gave to me a partridge in a pear tree.

Modelling of the “12 Days”
with Frequencies

12 days of Christmas
26 unique strings
66 occurrences of non-partridge-in-a-
pear-tree gifts
114 strings printed
2358 characters printed

12 days of Christmas
26 unique strings
66 occurrences of non-partridge-in-a-pear-tree gifts
114 strings printed
2358 characters printed

Other Examples of Dynamic
Analyses

Program Hot Spots
Memory Reference Errors

uninitialized memory, segment fault and memory
leak errors

Coordination Problems
racing data accesses in concurrent programs

Security of Web Applications
tainted values

Program Hot Spots
How many times does each program entity
execute?

Procedures, methods, statements, branches, paths
80-20 rule

20% of program responsible for 80% of execution
time

Applications
Performance tuning
Profile-driven compilation
Reverse engineering

Memory Reference Errors
Purify, a popular link-time instrumentation
tool, detects

reads of uninitialized memory
accesses to deallocated memory
accesses out of bounds

Memory instrumentation via memory map
2 bits per byte of memory

allocated, uninitialized, initialized
“red zone”

Purify substitutes its own malloc; each
load/store instrumented to test/set bits

Race Condition Detection

P Q R

Send m1

Send m2
Recv m1

Recv m2

Send m3

Recv m3

Send m4

Recv m4

[Netzer, Miller]

Secure Web Applications
Perl

popular interpreted scripting language used for
many tasks, including CGI programming

“tainted” Perl
each scalar value received from the environment
is “tainted”
“tainted” values propagate through expressions,
assignment, etc.
“tainted” values cannot be used in critical
operations that can write to system resources

Outline

What is dynamic analysis?
Example: path profiling

How is it accomplished?
Precision vs. Efficiency

Relationships to static analysis
Trends

What is Dynamic Analysis?

Dynamic analysis is the investigation of
the properties of a running software
system over one or more executions

What is Dynamic Analysis?

What is the meaning of “run”?
abstract interpretation and static analyses
“run” a program over an abstract domain
OUT=F(IN,s)

Dynamic analysis
abstraction used in parallel with, not in
place of, concrete values
OUT=F(IN, si, v)

Some Characteristics of
Dynamic Analysis
Dynamic analysis can collect exactly the
information needed to solve a problem

Procedure specialization: parameter values
Dynamic program slicing: flow dependences
Race conditions: message sends

Scales very well
Can be language independent!

Record information at interfaces

Fundamental Results in
Dynamic Analysis

Dynamic analysis is, at its heart, an
experimental effort

Have insight
Build tool
Evaluate efficiency and effectiveness
Rethink

19

How often does a control-flow path
execute?
Levels of profiling:

blocks
edges
paths

Example: Path Profiling

B C

D

E F

A
343

400

57

20

Naive Path Profiling

put(“B”) put(“C”)

put(“D”)

put(“E”) put(“F”);
record_path();

buffer

B C

D

E F

A put(“A”) A B D F

21

Efficient Path Profiling

B C

D

E F

A
r = 4

r = 2

r += 1

count[r]++

Path Encoding
ABDEF 0
ABDF 1
ABCDEF 2
ABCDF 3
ACDEF 4
ACDF 5

22

Efficient Path Profiling

B C

D

E F

A

count[r]++
1

2

1

24

6

23

Efficient Path Profiling

B C

D

E F

A

count[r]++
1

2

1

24

6

w1 w2 w3

Exit

n1 n2 n3

0 +n1
+(n1+n2)

v
r = 4

r = 2

r += 1

24

Path Regeneration

1

4

2

P = 3

P = 3 P = 1

P = 1

P = 0

Given path sum P, which path produced it?

w1 w2 w3

Exit

n1 n2 n3

0 n1
n1+n2

v

B C

D

E F

A

25

PP Efficiency

65%43%
4%0%

99%

8%

78%

22%0%
96%

24%

23%

1%
1%0%

17%

4%

28%

0

1

2

09
9.g

o
12

4.m
88

ks
im

12
6.g

cc
12

9.c
om

pre
ss 13
0.l

i
13

2.i
jpe

g
13

4.p
erl

14
7.v

ort
ex

10
1.t

om
ca

tv
10

2.s
wim

10
3.s

u2
co

r
10

4.h
yd

ro2
d

10
7.m

gri
d

11
0.a

pp
lu

12
5.t

urb
3d

14
1.a

ps
i

14
5.f

pp
pp

14
6.w

av
e5

Benchmark

No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e

PP
QPT2
% Hash

26

Effectiveness

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000 100000

Num be r of Pa ths

%
 D

yn
am

ic
 In

st
ru

ct
io

ns

**099.go
**124.m 88ksim
**126.gcc
**129.com pre ss
**130.li
**132.ijpe g
**134.pe rl
**147.vorte x
**101.tom ca tv
**102.sw im
**103.su2cor
**104.hydro2d
**107.m grid
**110.a pplu
**125.turb3d
**141.a psi
**145.fpppp
**146.w a ve 5

Aggregation and Compression
Dynamic analysis is a problem of data aggregation
and compression, as well as abstraction

frequencies vs. the full trace
Efficient path profiling relies on cutting full trace into shorter
paths

Makes analysis efficient
Loses loop and procedural contexts

If full trace, how to compress
Zlib, sequittur, bdd, value predictor, WET…
Execution reduction, check pointing

Abstraction
Purify uses two bits per byte of memory

Outline

What is dynamic analysis?
How is it accomplished?

Precision vs. Efficiency

Relationships to static analysis, model
checking, and testing
Trends

How is Dynamic Analysis
Accomplished ?

Observation of behavior
hardware monitoring
PC sampling
breakpoints

Instrumentation
code added to original program
ideally does not affect semantics of program
does affect the running time of a program

Interpreters
interpreter instrumentation

Creating Instrumentation
Tools

Source-level
Pattern-matching over parse tree or AST and
rewriting
A* [Ladd, Ramming], Astlog [Crew], …
Full access to source information and precise
mapping

Binary
ATOM [Srivastava] , EEL [Larus], Diablo, Bluto…
Analyze programs from multiple languages
Limited access to source information

Run-time
Valgrind, PIN

Instrumentation Issues
How much to generate?

Everything
Just the necessary facts
Less than necessary

On-line vs. off-line analysis
What/When to instrument?

Source code, IR, assembly, machine code
Preprocessor, compile-time, link-time, executable,
run-time

Automation

Outline

What is dynamic analysis?
How is it accomplished?

Precision vs. Efficiency

Relationships to static analysis
Trends

Static and Dynamic Analysis,
Explained

Program + Input = Behavior

Static Analysis

Program + Input = Behavior

Program as a guide to behavior
input insensitive

Dynamic Analysis

Program + Input = Behavior

Input + behavior as a guide to the program
Input sensitive

Dynamic and Static Analysis
Completeness

static complete
dynamic incomplete

Precision
dynamic analysis can examine exactly the
concrete values needed to help answer a question

All state along one/a few paths.
static analysis confounded by abstraction and
infeasible paths

A small subset of states for all possible paths

Diving Deeper…

Abstraction
Infeasible paths
Interplay between static and dynamic
analyses

Abstraction
Static analysis

abstraction is required for termination
Bound number of states (stores)
Bound size of each state (store)

Dynamic analysis
termination is a property of the running system, not a major
concern of analysis
abstraction helps reduce run-time overhead

Purify: two bits per byte to record state of memory
Path profiling: short paths rather than long traces

Precision a concern in both

Feasible and Infeasible Paths
Dynamic analysis leaves feasible paths
unexplored

may conclude a property holds when it really
doesn’t (precise for test set but unsafe)

Static analysis explores infeasible paths
may conclude a property doesn’t hold when it
really does (safe but imprecise)

What can one do to increase confidence in
either analysis?

Node* Delete(Node* z) {
Node *y, *x;
if ((z->left == nilNode) || [36]

(z->right == nilNode))
y = z;

else
y = treeSuccessor(z->right);

if (y->left != nilNode) [12]
x = y->left;

else
x = y->right;

x->parent = y->parent;
if (y->parent == nilNode) [6]

root = x;
else if (y == y->parent->left)

y->parent->left = x;
else

y->parent->right = x;
if (y != z) [2]

z->key = y->key;
return(y);

}

36 total paths
8 feasible paths

False flow
dependences

Control Flow Paths

All

Feasible

Executed

Dynamic
Analysis

Static
Analysis

Two Sides of Imprecisoin

Imprecision in Dynamic Analysis
(Feasible-Executed)/Feasible
increase precision as Executed approaches
Feasible

systematic generation of tests

Imprecision in Static Analysis
(All-Feasible)/All =
Infeasible/(Infeasible+Feasible)
increase precision as Infeasible approaches 0

methods to eliminate infeasible paths

Node* Delete(Node* z) {
Node *y, *x;
if ((z->left == nilNode) || [36]

(z->right == nilNode))
y = z;

else
y = treeSuccessor(z->right);

if (y->left != nilNode) [12]
x = y->left;

else
x = y->right;

x->parent = y->parent;
if (y->parent == nilNode) [6]

root = x;
else if (y == y->parent->left)

y->parent->left = x;
else

y->parent->right = x;
if (y != z) [2]

z->key = y->key;
return(y);

}

Node* Delete(Node* z) {
if (z->left == nilNode) [9]

return reparent(z,z->right);
else if (z->right == nilNode) [6]

return reparent(z,z->left);
else { [3]

Node *y = treeSuccessor(z->right);
z->key = y->key;
return reparent(y,y->right);

}
Node* reparent(Node *n, Node *c) {
c->parent = n->parent;
if (n->parent == nilNode) [3]

root = c;
else if (n == n->parent->left) [2]

n->parent->left = c;
else [1]

n->parent->right = c;
return n;

}

State Space
Dynamic and static analysis represent two
extremes of state space exploration of
programs
Dynamic analysis is a depth-first exploration
of program behavior
Static analysis is “breadth-first”, sort of…

combines information from multiple paths
the longer the paths analyzed, the greater the
chance that results will be imprecise

infeasible paths
abstraction

Program Paths

C D

E F

A B

C D

E F

A B

Interplay of Dynamic and Static
Analysis

Data Flow Analysis
path-sensitive DFA
“widening” DFA

Program Slicing

Restructuring for Path-
sensitive Data Flow

C D

E F

A B

C

E

A B

C D

E F

[Ammons, Larus]

“Widening” Data Flow Analysis

Keep info at merge
rather than lose

collecting semantics

Can’t collect
everything

What to keep, what
to drop?

X=2 X=3

{ X=2, X=3 }

X=X+1

{ X=2, X=3, X=4 }

Program Slicing

Static Analysis
Control flow analysis
reaching definitions
pointer alias and shape analysis

Dynamic Analysis
exact computation of flow dependences in
trace

Dynamic/Static Analysis for
Slicing

Levels of precision
Compute flow dependences between
statement instances
Compute paths/edges/nodes covered and
perform static analysis over these entities

[Agrawal, Horgan]

Outline

What is dynamic analysis?
How is it accomplished?

Precision vs. Efficiency

Relationships to static analysis, model
checking, and testing
Trends

Size and Complexity

Plagues both static and dynamic
analyses, though less for the latter

State space and path explosion for static
analysis
Depth-first scales

Binding times

Binding times of program and system
components are becoming more and
more dynamic

Virtual functions,Factories, Objects, DLLs,
Dynamic class loaders, …
Boon to extensibility, reconfigurability,
maintenance
A thorn for static analysis

Multi-lingual Systems
How many languages does it take to deploy a
web application?

Client side
HTML, Java

Server side
A general purpose language: Perl, C, C++, Java, …
Server side scripting: Javascript, ASP, …
Database languages: SQL

Tcl and integrating applications
How to analyze a system in the face of
multiple languages?

Will analysis at the interfaces suffice?

A Golden Age for Dynamic
Program Analysis

Open Problems

The problem of perturbation
Dynamic differencing
Dynamic analysis and test generation
Frameworks for dynamic analysis
Interactions of dynamic analysis, languages
and optimizations
Machine learning models of program behavior
Hybrid dynamic/static analyses
Analyzing non-terminating programs

