Life, Death, and the Critical Transition:
Finding Liveness Bugs in System Code

Charles Killian, James W. Anderson, Ranjit
Jhala, and Amin Vahdat

Presented by Nick Sumner
25 March 2008

Background

We already know the story:
* Process cooperation difficult

* Debugging even harder

— Finding and reproducing bugs is painful

Background

How to attack: Model Checking

Shortcomings:

— Scalability
— Safety v. Liveness expressiveness
— Must 'know cause' of bug to find it

Can heuristically detect liveness 'violations'

Background

Life
— Future progress is possible

Death

— Future progress is impossible. Liveness is violated.
Critical Transition

— A single step that disallows all future progress

Apply random execution to find T

Underlying Model

* Combine all network nodes & simulate together
* State: (values X variables)

* Transition: (event X state) - state

* Program: (variables X state, X transitions)

« Execution: Vi=0,...,00:state,

" transition, =(event,state,)> state,

Underlying Model

System

Each step, select one event & transition

Underlying Model

* Given predicate P over state S:

- S = Live, Dead, or Transient w.r.p. P

* Transient- state does not satisfy,
but it could eventually

Execution violates P = 3 state suffix w/o live states.

=NoO recovery possible

Why Not Safety Properties?

System Name Property
Pastry | AllNodes | Eventually Vn € nodes : n.(successor)” = nodes
Test that all nodes are reached by following successor pointers from each node.
SizeMatch Always Vn € nodes : n.myright.size() + n.myleft.size () = n.myleafset.size()
Test the sanity of the leafset size compared to left and right set sizes.
Chord | AllNodes | Eventually Vn € nodes: n.(successor)” = nodes
Test that all nodes are reached by following successor pointers from each node.
SuccPred Always Vn € nodes : {n.predecessor = n.me <= n.successor = n.me }
Test that a node’s predecessor is itself if and only if its successor is itself.
RandTree OneRoot Eventually for exactly 1 n € nodes : n.isRoot
Test that exactly one node believes itself to be the root node.
Timers Always Vn € nodes : {(n.state = init)||(n.recovery.nextScheduled() # 0)}
Test that either the node state is init, or the recovery timer is scheduled.
MaceTransport | AllAcked | Eventually Vn € nodes : n.inflightSize() = 0

Test that no messages are in-flight (i.e., not acknowledged).

No corresponding safety property identified.

Simplicity,

Expressiveness, Predictability

Process

1)Bounded DFS
2)Bounded Random Walks

3)Critical Transition Isolation

Process

* Exhaustive exploration

Process

* Bounded Random Walks

Transient

\«

Process

* Critical Section Isolation

Transient

\«

Bounded Walks

* BDFS- Find all valid permutations of transition
sequence length depth

* Bounded Random Walk

— Safety violations terminate
— If beyond threshold and live, disregard

— If walk through max steps, flag as possible violation

Critical Transition Isolation

Flagged executions either:
* reached a 'dead state' and must be fixed

* are still transitional and can be examined
manually or with high search depth.

' 2
Difference” ‘
Oﬂﬂﬁ: T e

Critical Transition Isolation

Run k random walks from
search edge

Critical Transition Isolation

If live execution found, search
deeper in candidate

Critical Transition Isolation

Critical Transition Isolation

Critical Transition Isolation

When dead state found, search back
within execution precisely

Critical Transition Isolation

)
- -
N

Critical Transition Isolation

N\

Critical Transition Isolation

- -

\\

Critical Transition Isolation

Eventually, critical transition is found
in O(k dmax /Ogdcrit) dc:rit e

N

Observe, this also finds the longest common
live prefix, which may help debug!

Process Errata

* Phase 1 of search may not find a dead state

- The nature of random walks

— May be transient violation

* Possible to find no initial live states: tune the
parameters.

Implementation

MaceMC

* Replaces Mace C++ API for state machines w/
atomic handlers

* Requires mini driver creation for checking

* Assumes nondeterminism only through Mace
API

* Timing model replaced via Mace API
(logical or real)

State Explosion

Structured Transitions
* Mace is driven by atomic handlers

* Each handler is a coarse unit of simulation

State Explosion

* State Hashing- Hash state in order to recognize
redundancies that needn't be explored

* Stateless Search- From initial state, reexecution
IS done by saving determinism decisions

* Prefix-based Search- To avoid initialization

perturbations, wait until system reaches steady-
state to search.

Biased Walks

* Reality does not provide a uniform distribution
of (Interesting) events.

* Randomly walk with bias towards realistic
probabilities.

* Find live states sooner.

* Still reaches corner cases by exhaustive
search.

Tuning

* k - # of random searched for liveness.

— May be increased if false dead states found

* d__ — maximum random walk depth

- May be tuned as with k.

— Shows that exhaustive approaches are infeasible

MaceMC Debugger

* Critical Transition

* Reversible execution

* Exploring alternate paths

* Diff states

* Monitor events

* Message graph

Note: Logging space required in GBs

Testing

* Applied to 4 domains seen earlier
* Found same error/LOC as safety checkers

* Runtime: seconds to days

System | Bugs | Liveness | Safety LOC
MaceTransport | 11 5 6 585/3200
RandTree 17 12 5 309/2000
Pastry 5 5 0 621/3300
Chord 19 9 10 254/2200
Totals | 32 31 21

WIDS Checker:
Combating Bugs in Distributed
Systems

Xuezheng Liu, Wel Lin, Aimin Pan, Zheng Zhang

Goal

* For reactive debugging instead of model
checking

* Execution is logged and replayed

* Predicate queries are applied over system
execution.

A Common Problem

* “Evaluating the effectiveness of our tool is a
challenge. The research community ... has not

succeeded in producing a comprehensive set of
benchmarks....”

* Applied to a handful of real bugs as in MaceMC.

* ldentifies bugs at 'scale’

A Similar Playground

* Distribution API with runtime linkage for
debugging and simulation.

* (Relatively) Atomic events form analysis units

But try to handle real world debugging issues

* (Modest) Scale
* lterative debugging

Approach

* User queries are checked at event boundaries

(timer, message, scheduler, synchronization) — via API

* Observed, logged events replayed in happens-
before order on single system.

* Query scripts run over maintained state
database

* Visualization and iterative replay/refinement

Replay

* Logging
— All WIDS nondeterminism is logged

— OS calls redirected and results captured to log
* Checkpointing

— WIDS process context can be saved

Replay

* Start from beginning or checkpoint.

* Events replayed in serialized Lamport order

* Single process for simulation

— Nodes are memory mapped files
— Page table updates to support different processes

— (Single node ~20 megs) = 40 nodes in 1 GB

Predicate Checking

* Values in database are refreshed after event
* Histories can be maintained
* Only modified predicates re-evaluated

* C++ types logged via compiler transform at
allocation time.

L Iveness

* Safety monitoring for liveness will cause false
alarms

— Additional derived variables are attached to
predicates to allow filtering

declare derived stabilized
begin_ python

retval = (Runtime current tune - last churn time) / 10.0;

if (retval < 1) : return retval;

return 1;

end python
define predicates

predicate RingConsistency auxiliary stabilized {

forall x in Node, exist v in Node,

x.pred==y.id and y.succ == x.id

* Applied in 4 scenarios

Testing

Application # of ines | # of bugs | Lines of script
Paxos 588 2 29
Lock server 2,439 2 33
BitVault 17,582 3 181
Macedon-chord 2.468 5 86

