Futures, Scheduling, and Work
Distribution

Companion slides for

The Art of Multiprocessor
Programming

by Maurice Herlihy & Nir Shavit

How to write Parallel Apps?

* How to

- split a program into parallel parts
- In an effective way

- Thread management

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

Matrix Multiplication

(C)=(A)e(B)

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

Matrix Multiplication

- N-1 *
Cij = 2k=0" Qi bjk

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

Matrix Multiplication

class Worker extends Thread {
int row, col;
Worker(int row, int col) {
this.row = row; this.col = col;
}
public void run() {
double dotProduct = 0.0;
for (inti=0;i<n; i+t)
dotProduct += a[row][i] * b[i][col];
c[row][col] = dotProduct;

1

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

Matrix Multiplication

[extends Thread {

|~

a thread

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

Matrix Multiplication

(int row, int col)

"X

Which matrix entry
To compute

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

Matrix Multiplication

Actual computation

LdotProduct += a[row][i] * bi][col]:
[row][col] = dotProduct;

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

Matrix Multiplication

void multiply() {
Worker[][] worker = new Worker[n][n];
for (int row ...)
for (int col ...)
worker[row][col] = new Worker(row,col);
for (int row ...)
for (int col ...)
worker[row][col].start();
for (int row ...)
for (int col ...)
worker[row][col].join();

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

Matrix Multiplication

" for (int row ...) R

for (int col ...)

worker[row][col] = new Worker(row,col);)

Create nxn
threads

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

10

Matrix Multiplication

451@1‘ them

" for (int row ...)
for (int col ...)
| worker[row][col].start();

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

11

Matrix Multiplication

7

.

4 Start them
for (int row ...)

for (int col ...)
worker[row][col].
for (int row ...)
for (int col ...)
worker[row][col].join();

Wait for
them to

}

finish
Art of Multiprocessor Programming® Herlihy -
Shavit 2007

12

Matrix Multiplication

Start them
r 4

What's wrong with this

picture?
Wait for
. them to
} finish

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

13

Thread Overhead

» Threads Require resources
- Memory for stacks
- Setup, teardown

» Scheduler overhead
- Worse for short-lived threads

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

14

Thread Pools

* More sensible to keep a pool of long-
lived threads

* Threads assignhed short-lived tasks
- Runs the task

- Rejoins pool

- Waits for next assignment

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

15

Thread Pool = Abstraction

* Insulate programmer from platform
- Big machine, big pool

- And vice-versa

» Portable code

- Runs well on any platform

- No need to mix algorithm/platform
concerns

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

16

ExecutorService Interface

 In java.util.concurrent

- Task = Runnable object
» If no result value expected
» Calls run() method.

- Task = Callable<T> object
* If result value of type T expected
» Calls T call() method.

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

17

Future<T>
Callable<T> task = ...;

Future<T> future = executor.submit(task);

T value = future.get();

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

18

Future<T>

[Future<T> future = executor.submit(task);

Submitting a Callable<T> task
returns a Future<T> object

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

19

Future<T>

T value = future.get();

The Future's get() method blocks
until the value is available

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

20

Future<?>

Runnable task = ...;

Future<?> future = executor.submit(task);

future.get();

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

21

Future<?>

[Future<?> future = executor.submit(task);

Submitting a Runnable task
returns a Future<?> object

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

22

Future<?>

future.get();

The Future's get() method blocks
until the computation is complete

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

23

Note

+ Executor Service submissions
- Like New England traffic signs
- Are purely advisory in nature

+ The executor
- Like the New England driver

- Is free to ighore any such advice
- And could execute tasks sequentially ...

Art of Multiprocessor Programming® Herlihy - 24
Shavit 2007

Matrix Addition

/Coo Coo\ /Aoo'l'Boo Bm"'Am\
\Clo Clo/ \Aio"l'Blo A11+Bn/

Art of Multiprocessor Programming® Herlihy - 25
Shavit 2007

Matrix Addition

4 parallel additions

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

26

Matrix Addition Task

class AddTask implements Runnable {

Matrix a, b; // multiply this!

public void run() {
if (a.dim == 1) {
c[0][0] = a[0][0] + b[0][0]; // base case
} else {
(partition a, b into half-size matrices a;; and b;;)
Future<?> f,, = exec.submit(add(a,,,b,y));

1

Art of Multiprocessor Programming® Herlihy - 27
Shavit 2007

Matrix Addition Task

[

if (a.dim == 1) {
c[0][0] = a[0][0] + b[0][0]; // base case

Base case: add directly

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

28

Matrix Addition Task

(partition a, b into half-size matrices a;; and b;;)

Constant-time operation

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

29

Matrix Addition Task

(Future<?> foo = exec.submit(add(aoo,|Ooo));N

 Future<?> f,; = exec.submit(add(a,,b,,));

Submit 4 tasks

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

30

Matrix Addition Task

[foo-get(); ---; f1-get();

=== | ot them finish

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

31

Dependencies

* Matrix example is not typical

» Tasks are independent
- Don't need results of one task ...
- To complete another

» Often tasks are not independent

Art of Multiprocessor Programming® Herlihy - 32
Shavit 2007

Fibonacci

" 1ifn=00r1
F(n) <

_ F(n-1) + F(n-2) otherwise

- Note

- potential parallelism
- Dependencies

Art of Multiprocessor Programming® Herlihy - 33
Shavit 2007

Disclaimer

» This Fibonacci implementation is
- Egregiously inefficient
» So don't deploy it
- But illustrates our point
* How to deal with dependencies

+ Exercise:
- Make this implementation efficient!

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

34

Multithreaded Fibonacci

class FibTask implements Callable<Integer> {
static ExecutorService exec =
Executors.newCachedThreadPool();
int arg;
public FibTask(int n) {
arg = n;
}
public Integer call() {
if (arg > 2) {
Future<integer> left = exec.submit(new FibTask(arg-1));
Future<integer> right = exec.submit(new FibTask(arg-2));
return left.get() + right.get();
} else {
return 1;

1

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

35

Multithreaded Fibonacci

Parallel calls

/N

[

Future<integer> left = exec.submit(new FibTask(arg-1));
Future<Integer> right = exec.submit(new FibTask(arg-2));

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

36

Multithreaded Fibonacci

Pick up & combine results

return left.get() + right.get();

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

37

Dynamic Behavior

* Multithreaded program is

- A directed acyclic graph (DAG)
- That unfolds dynamically

» Each node is

- A single unit of work

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

38

wo(2) ib(1) ib
D=>0O=0)] (C C

é(l)

ArT oT Multiprocessor Programming® Herlihy -
Shavit 2007

39

Arrows Reflect Dependencies

O=>0O=0)] |C O ||C

3 (5(1)

ArT oT Multiprocessor Programming® Herlihy -
Shavit 2007

40

How Parallel is That?

» Define work:

- Total time on one processor
» Define critical-path length:
- Longest dependency path

- Can't beat that!

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

41

Fib Work

ib(4)

O->Q-+0O

fib(2)

»»o O+0~+0
QO" ib()] A ‘-)

Art of Multiprocessor Programming® Herlihy - 42
Shavit 2007

Fib Work
000

=

O C O 6-0

) ..

0 9.0 c 676

O ®, J work is 17

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

43

Fib Critical Path

ib(4)
O=-Q-0O

55Q~0 O+0~0
5 X
O-0-0] o | [&7J(0

/
O 10

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

44

Fib Critical Path

fib(4)

D->Q=®

=

lORee;

O~+Q~0
- X/

[e} @] O 1O
“y‘ Critical path length is 8

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

45

Notation Watch

* Tp = time on P processors
» T; = work (time on 1 processor)

» T, = critical path length (time on o
processors)

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

46

Simple Bounds

+ Tp2T,/P

- In one step, can't do more than P work
- Tp2 T,

- Can't beat infinite resources

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

47

More Notation Watch

» Speedup on P processors

- Ratio T;/Tp

- How much faster with P processors

* Linear speedup

- T,/T, = O(P)

» Max speedup (average parallelism)
- T,/T.

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

48

Matrix Addition

/Coo Coo\ /Aoo'l'Boo Bm"'Am\
\Clo Clo/ \Aio"l'Blo A11+Bn/

Art of Multiprocessor Programming® Herlihy - 49
Shavit 2007

Matrix Addition

4 parallel additions

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

50

Addition

* Let Ap(n) be running time
- For n x n matrix
- on P processors
* For example
- Ay(n) is work
- A.(n) is critical path length

Art of Multiprocessor Programming® Herlihy -

Shavit 2007

51

Addition

* Work is Partition, synch, etc

Ay(n) =glcn/2>]+[e<1)

4 spawned additions

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

52

Addition
+ Work is

Ain)=4 A, (n/2)+ O(1)
= O(n?)

Same as double-loop summation

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

53

Addition

» Critical Path length is

A_(n) Ew(n/Z)}[@(l)

spawned additions in
parallel

Partition, synch, etc

Art of Multiprocessor Programming® Herlihy - 54
Shavit 2007

Addition

* Critical Path length is

A .(nN)=A_n/2)+06(1)
= O(log n)

Art of Multiprocessor Programming® Herlihy -

Shavit 2007

99

Matrix Multiplication Redux

(C)=(A)e(B)

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

Matrix Multiplication Redux
C: Cp B A A, B11 BIZ
(CZI 622] B [AZI AZZj) (BZI BZZ)

Art of Multiprocessor Programming® Herlihy - 57
Shavit 2007

First Phase ...

B

2-21

“ll_“
B |

8 multiplications

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

58

Second Phase ...

_ [AuBu + 'ﬁlngg_lf,uBm + AmBg,j
ok 21312 + A,,B

4 additions

Art of Multiprocessor Programming® Herlihy - 59
Shavit 2007

Multiplication

* Work is Final addition

My(n) =@1(n/2)]'[m<n)

8 parallel
multiplications

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

60

Multiplication
» Work is

M;(n) = 8 M(n/2) + O(n?)
= O(n3)

Same as serial triple-nested loop

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

61

Multiplication

* Critical path length is
Final addition

M..(n) =|M°°(n/ 2)|+|A°o(n)|

Half-size parallel
multiplications

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

62

Multiplication
* Critical path length is
M..(n) = M_(n/2) + A_(n)

= M..(n/2) + O(log n)
= O(log® n)

Art of Multiprocessor Programming® Herlihy -

Shavit 2007

63

Parallelism

* My(n)/ M_.(n) = ©(n3/log? n)
» To multiply Two 1000 x 1000 matrices
- 10003/10%=10"

* Much more than number of
processors on any real machine

Art of Multiprocessor Programming® Herlihy - 64
Shavit 2007

Shared-Memory
Multiprocessors

* Parallel applications

- Do not have direct access to HW
processors

* Mix of other jobs
- All run together
- Come & go dynamically

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

65

Ideal Scheduling Hierarchy

Tasks

| User-levelscheder

Processors

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

66

Realistic Scheduling Hierarchy

Tasks

| User-levelscheduler

Threads

| Kernehlevelscheduler

Processors

Art of Multiprocessor Programming® Herlihy - 67
Shavit 2007

For Example

» Initially,

- All P processors available for application
» Serial computation

- Takes over one processor

- Leaving P-1 for us

- Waits for I/0

- We get that processor back

Art of Multiprocessor Programming® Herlihy - 68
Shavit 2007

Speedup

* Map threads onto P processes

* Cannot get P-fold speedup
- What if the kernel doesn't cooperate?

» Can try for speedup proportional to
- time-averaged number of processors
the kernel gives us

Art of Multiprocessor Programming® Herlihy - 69
Shavit 2007

Scheduling Hierarchy

+ User-level scheduler
- Tells kernel which threads are ready

* Kernel-level scheduler
- Synchronous (for analysis, not correctness!)
- Picks p; threads to schedule at step i
- Processor average
T steps is: 1<
over eps | P.-1%p

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

70

Greed is Good

* Greedy scheduler
- Schedules as much as it can
- At each time step

» Optimal schedule is greedy (why?)

* But not every greedy schedule is
optimal

Art of Multiprocessor Programming® Herlihy - 71
Shavit 2007

Theorem

* Greedy scheduler ensures that

T<T/Py+ T_(P-1)/P,

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

72

Deconstructing

T< TI/PA + Too(P"]-)/PA

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

73

Deconstructing

Actual time

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

74

Deconstructing

T,/P,4

Work divided by
processor average

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

75

Deconstructing

Cannot do better than
critical path length

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

76

Deconstructing

(P-1)/P,

The higher the average
the better it is ...

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

7

Proof Strategy

Bound this!

Art of Multiprocessor Programming® Herlihy - 78
Shavit 2007

Put Tokens in Buckets

Processor found work Processor available but
., couldn't find work

L 4
L 4
*

2
*
‘ ‘

\0‘/ \g;/

work idle

Art of Multiprocessor Programming® Herlihy - 79
Shavit 2007

At the end ...

T
Total #tokens = Z P,
i=1

e e

work idle

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

80

At the end ...

T1 tokens

\‘0/ .

_ work idle

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

Must Show

< T.(P-1) tokens

P
e '¢¥

work _ idle)

Art of Multiprocessor Programming® Herlihy - 82
Shavit 2007

Idle Steps

* An idle step is one where there is at
least one idle processor

* Only time idle tokens are generated
* Focus on idle steps

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

83

Every Move You Make ...

* Scheduler is greedy
* At least one node ready

- Number of idle threads in one idle
step

- AT most p;-1 < P-1
ow many idle steps?

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

84

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

85

Unexecu’red sub-DAG

% Longest path

Art of Multiprocessor Programming® Herlihy -
Sh it 2007

86

Last node ready
To execute

Art of Multiprocessor Programming® Herlihy - 87
Shavit 2007

Every Step You Take ...

» Consider longest path in unexecuted
sub-DAG at step i

* At least one node in path ready

* Length of path shrinks by at least one
at each step

» Initially, path is T
* So there are at most T, idle steps

Art of Multiprocessor Programming® Herlihy - 88
Shavit 2007

Counting Tokens

*+ At most P-1 idle threads per step
- At most T, steps

+ So idle bucket contains at most
- T..(P-1) tokens

+ Both buckets contain

- T, + T_(P-1) tokens

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

89

Recapitulating

T< Pl(T1 + T (P - 1))

A

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

90

Turns Out

- This bound is within a factor of 2 of
optimal
» Actual optimal is NP-complete

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

91

Work Distribution

Shavit 2007

Work Dealing

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

93

The Problem with
Work Dealing

D’oh'
D’Oh' i l

Art of Mul;‘iprocessor Programming® Herlihy -
Shavit 2007

Work Stealing /5
Q work...

Yes! ydr dr

Art of Multiprocessor Programming® Herlihy - 95

Shavit 2007

Lock-Free Work Stealing

» Each thread has a pool of ready work
* Remove work without synchronizing

» If you run out of work, steal someone
else's

- Choose victim at random

Art of Multiprocessor Programming® Herlihy - 96
Shavit 2007

Local Work Pools

Each work pool is a Double-Ended Queue
B .

55

S| 8 @

L L L

DS

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

97

Work DEQueue!

S,
S,
S) -

popBottom

> work

pushBottom

1. Double-Ended Queue

Art of Multiprocessor Programming® Herlihy - 98
Shavit 2007

Obtain Work

-Obtain work
‘Run thread until
‘Blocks or terminates

! popBottom

Art of Multiprocessor Programming® Herlihy - 99
Shavit 2007

New Work

-Unblock node
*Spawh node

H 5 pushBottom

Art of Multiprocessor Programming® Herlihy - 100
Shavit 2007

Whatcha Gonna do When the
Well Runs Dry?

o
o

Q empty

Art of Multiprocessor Programming® Herlihy - 101
Shavit 2007

Steal Work from Others

Pick random guy’s DEQeueue

» B B B

Art of Multiprocessor Programming® Herlihy - 102
Shavit 2007

000,

Steal this Thread!

L

pop Top

L

Art of Multiprocessor Programming® Herlihy - 103
Shavit 2007

Thread DEQueue

» Methods

- pushBottom | Never happen
>

- popBottom | concurrently
- popTop

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

104

Thread DEQueue

* Methods
_ pushBoTTom 7 These most
- popBottom [common - make
 popTop - them fast

(minimize use of
CAS)

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

105

Ideal

- Wait-Free
- Linearizable
» Constant time

/N

r

U

Fortune Cookie: "It is better to be young,
rich and beautiful, than old, poor, and ugly”

~

J

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

106

Compromise

» Method popTop may fail if
- Concurrent popTop succeeds, or a
- Concurrent popBottom takes last work

Blame the
victim!

Art of Multiprocessor Programming® Herlihy - 107
Shavit 2007

Art of Multiprocessor Programming® Herlihy - 108
Shavit 2007

Art of Multiprocessor Programming® Herlihy - 109
Shavit 2007

&

Art of Multiprocessor Programming® Herlihy - 110
Shavit 2007

roblem

Art of Multiprocessor Programming® Herlihy - 111
Shavit 2007

roblem

Art of Multiprocessor Programming® Herlihy - 112
Shavit 2007

&

Art of Multiprocessor Programming® Herlihy - 113
Shavit 2007

Art of Multiprocessor Programming® Herlihy - 114
Shavit 2007

Art of Multiprocessor Programming® Herlihy - 115
Shavit 2007

Fix for Dreaded ABA

stamp
top

| bottom N

Art of Multiprocessor Programming® Herlihy - 116
Shavit 2007

Bounded DEQueue

public class BDEQueue {
AtomicStampedReference<lnteger> top;
volatile Int bottom;

Runnable[] tasks;

-

Art of Multiprocessor Programming® Herlihy - 117
Shavit 2007

Bounded DQueue

[AtomicStampedReTerence<Integer> top;

Index & Stamp
(synchronized)

Art of Multiprocessor Programming® Herlihy - 118
Shavit 2007

Bounded DEQueue

olatilTe 1nt bottom;

Index of bottom thread
(no need to synchronize
The effect of a write
must be seen - so we

Art of Aﬂlﬁi%cges orm%rmr(n)igx)—l:e)r'ﬂl';r'er') 119

Shavit 2007

Bounded DEQueue

[Runnable[] tasksj

N

Array holding tasks

Art of Multiprocessor Programming® Herlihy - 120
Shavit 2007

pushBottom()

public class BDEQueue {

Qoid pushBottom(Runnable r){
tasks[bottom] = r;
bottom++;

}
.

Art of Multiprocessor Programming® Herlihy - 121
Shavit 2007

pushBottom()

tasks[bottom] = r;

Bottom is the index to store
the new task in the array

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

122

pushBottom()

[bottom++]

Adjust the bottom index

Art of Multiprocessor Programming® Herlihy - 123
Shavit 2007

Steal Work

public Runnable popTop() {

int[] stamp = new Int[1];

int oldTop = top.get(stamp), newTop = oldTop + 1;

int oldStamp = stamp[0], newStamp = oldStamp + 1;

iT (bottom <= oldTop)
return null;

Runnable r = tasks[oldTop];

iIT (top.CAS(oldTop, newTop, oldStamp, newStamp))
return r;

return null;

}

Art of Multiprocessor Programming® Herlihy - 124
Shavit 2007

Steal Work

int oldTop = top.get(stamp),
int oldStamp = stamp[0],

Read top (value & stamp)

Art of Multiprocessor Programming® Herlihy - 125
Shavit 2007

Steal Work

newTop = oldTop + 1;
newStamp = oldStamp + 1;

Compute new value & stamp

Art of Multiprocessor Programming® Herlihy - 126
Shavit 2007

Steal Work

iT (bottom <= oldTop)
return null;

Quit if queue is empty

Art of Multiprocessor Programming® Herlihy - 127
Shavit 2007

Steal Work

Runnable r = tasks[oldTop];
iIT (top.CAS(oldTop, newTop, oldStamp, newStamp))

return r;
\/
Try to steal the task

Art of Multiprocessor Programming® Herlihy - 128
Shavit 2007

Steal Work

[return null;‘ Give UP 'f
}) conflict occurs
Art of Multiprocessor Programming® Herlihy - 129

Shavit 2007

Take Work

Runnable popBottom() {

iIT (bottom == 0) return null;

bottom--;

Runnable r = tasks[bottom];

int[] stamp = new iInt[1];

int oldTop = top.get(stamp), newTop = O;

int oldStamp = stamp[0], newStamp = oldStamp + 1;
iIT (bottom > oldTop) return r;

iIT (bottom == oldTop){

bottom = O;

iIT (top.CAS(oldTop, newTop, oldStamp, newStamp))
return r;

}

top.set(newTop,newStamp); return null;

}

Shavit 2007

Take Work

iIT (bottom == 0) return null;

Make sure queue is non-empty

Shavit 2007

Take Work
[Eﬁﬁgg;;; r = tasks [bottqrn]_;]

Prepare to grab bottom task

Shavit 2007

Take Work

r

.

iInt[] stamp = new int[1];
int oldTop = top.get(stamp), newTop = O;
int oldStamp = stamp[0O], newStamp = oldStamp + 15

Read top, & prepare new values

Shavit 2007

Take Work

iIT (bottom > oldTop) return r;

If top & bottom 1 or more
apart, no conflict

Shavit 2007

Take Work

[if (bottom == T‘){_]

At most one item left

Shavit 2007

Take Work

Try to steal last item.

In any case reset Bottom

because the DEQueue will be empty
even if unsucessful (why?)

/T~

bottom = O;
iIT (top.CAS(oldTop, newTop, oldStamp, newStamp))
return r;

Shavit 2007

I win CAS

[

bottom = 0O;

Take Work

>
.

IT (top.CAS(oldTop, newTop, oldStamp, newStamp)%

return r,

Shavit 2007

Take Work

I lose CAS
Thief must
have won...

S
o

bottom = O;
IT (top.CAS(oldTop, newTop, oldStamp, newStamp))
return r;

Shavit 2007

Take Work

failed to get last item
Must still reset top

1

[top-set(newTop,newStamp); return null;]

Shavit 2007

Old English Proverb

* "May as well be hanged for stealing a
sheep as a goat”

* From which we conclude

- Stealing was punished severely

- Sheep were worth more than goats

Art of Multiprocessor Programming® Herlihy - 140
Shavit 2007

Variations

+ Stealing is expensive
- Pay CAS

- Only one thread taken
* What if

- Randomly balance loads?

Art of Multiprocessor Programming® Herlihy -

Shavit 2007

141

Work Balancing

32+‘Tz;q

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

142

Work-Balancing Thread

public void run() {

int me = ThreadlD.get();

while (true) {
Runnable task = queue[me].deqQ;
iIfT (task = null) task.runQ);
Int size = queue[me].size();

iIT (random.nextlnt(size+l) == size) {
int victim = random.nextlnt(queue.length);
int min = .., max = ..;

synchronized (queue[min]) {
synchronized (queue[max]) {
balance(queue[min], queue[max]);

hagdds

Art of Multiprocessor Programming® Herlihy - 143
Shavit 2007

Work-Balancing Thread

Runnable task = queue[me].deq(Q);
iIf (task = null) task.run();

Keep running tasks

Art of Multiprocessor Programming® Herlihy - 144
Shavit 2007

Work-Balancing Thread

With probability
1/|queuel]

Int size = queue[me].size();
iIT (random.nextlnt(size+l) == size) {

Art of Multiprocessor Programming® Herlihy - 145
Shavit 2007

Work-Balancing Thread

Choose random victim

int victim = random.nextlnt(queue.length);]

Art of Multiprocessor Programming® Herlihy - 146
Shavit 2007

Work-Balancing Thread

Lock queues in canonical order

[_ _
int min = .., max = ..;

synchronized (queue[min]) {
. synchronized (queue[max]) {)

Art of Multiprocessor Programming® Herlihy - 147
Shavit 2007

Work-Balancing Thread

Rebalance queues

balance(queue[min], queue[max]);

Art of Multiprocessor Programming® Herlihy - 148
Shavit 2007

Work Stealing & Balancing

» Clean separation between app &
scheduling layer

- Works well when number of
processors fluctuates.

* Works on "black-box" operating
systems

Art of Multiprocessor Programming® Herlihy - 149
Shavit 2007

TOM
MARVOLO

RIDDLE

Art of Multiprocessor Programming® Herlihy -

Shavit 2007

150

SOME RIGHTS RESERVED

This work is licensed under a

You are free:
- to Share — to copy, distribute and transmit the work
- to Remix — to adapt the work

Under the following conditions:

- Attribution. You must attribute the work to “The Art of
Multiprocessor Programming” (but not in any way that suggests that
the authors endorse you or your use of the work).

- Share Alike. If you alter, transform, or build uIEl)on this work, you
may distribute the resulting work only under the same, similar or a
compatible license.

For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to

- http://creativecommons.org/licenses/by-sa/3.0/.

Any of the above conditions can be waived if you get permission from
the copyright holder.

Nothing in this license impairs or restricts the author's moral rights.

Art of Multiprocessor Programming® Herlihy - 151
Shavit 2007

