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How to write Parallel Apps?

* How to

- split a program into parallel parts
- In an effective way

- Thread management
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Matrix Multiplication

(C)=(A)e(B)
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Matrix Multiplication

- N-1 *
Cij = 2k=0" Qi bjk
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Matrix Multiplication

class Worker extends Thread {
int row, col;
Worker(int row, int col) {
this.row = row; this.col = col;
}
public void run() {
double dotProduct = 0.0;
for (inti=0;i<n; i+t)
dotProduct += a[row][i] * b[i][col];
c[row][col] = dotProduct;

1
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Matrix Multiplication

[extends Thread {

|~

a thread
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Matrix Multiplication

(int row, int col)

"X

Which matrix entry
To compute
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Matrix Multiplication

Actual computation

LdotProduct += a[row][i] * bi][col]:
[row][col] = dotProduct;
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Matrix Multiplication

void multiply() {
Worker[][] worker = new Worker[n][n];
for (int row ...)
for (int col ...)
worker[row][col] = new Worker(row,col);
for (int row ...)
for (int col ...)
worker[row][col].start();
for (int row ...)
for (int col ...)
worker[row][col].join();
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Matrix Multiplication

" for (int row ...) R

for (int col ...)

worker[row][col] = new Worker(row,col);)

Create nxn
threads

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

10



Matrix Multiplication

451@1‘ them

" for (int row ...)
for (int col ...)
| worker[row][col].start();
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Matrix Multiplication

7

.

4 Start them
for (int row ...)

for (int col ...)
worker[row][col].
for (int row ...)
for (int col ...)
worker[row][col].join();

Wait for
them to

}

finish
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Matrix Multiplication

Start them
r 4

What's wrong with this

picture?
Wait for
. them to
} finish
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Thread Overhead

» Threads Require resources
- Memory for stacks
- Setup, teardown

» Scheduler overhead
- Worse for short-lived threads
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Thread Pools

* More sensible to keep a pool of long-
lived threads

* Threads assignhed short-lived tasks
- Runs the task

- Rejoins pool

- Waits for next assignment
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Thread Pool = Abstraction

* Insulate programmer from platform
- Big machine, big pool

- And vice-versa

» Portable code

- Runs well on any platform

- No need to mix algorithm/platform
concerns
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ExecutorService Interface

 In java.util.concurrent

- Task = Runnable object
» If no result value expected
» Calls run() method.

- Task = Callable<T> object
* If result value of type T expected
» Calls T call() method.
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Future<T>
Callable<T> task = ...;

Future<T> future = executor.submit(task);

T value = future.get();
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Future<T>

[Future<T> future = executor.submit(task);

Submitting a Callable<T> task
returns a Future<T> object
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Future<T>

T value = future.get();

The Future's get() method blocks
until the value is available
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Future<?>

Runnable task = ...;

Future<?> future = executor.submit(task);

future.get();
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Future<?>

[Future<?> future = executor.submit(task);

Submitting a Runnable task
returns a Future<?> object
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Future<?>

future.get();

The Future's get() method blocks
until the computation is complete
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Note

+ Executor Service submissions
- Like New England traffic signs
- Are purely advisory in nature

+ The executor
- Like the New England driver

- Is free to ighore any such advice
- And could execute tasks sequentially ...
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Matrix Addition

/Coo Coo\ /Aoo'l'Boo Bm"'Am\
\Clo Clo/ \Aio"l'Blo A11+Bn/
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Matrix Addition

4 parallel additions
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Matrix Addition Task

class AddTask implements Runnable {

Matrix a, b; // multiply this!

public void run() {
if (a.dim == 1) {
c[0][0] = a[0][0] + b[0][0]; // base case
} else {
(partition a, b into half-size matrices a;; and b;;)
Future<?> f,, = exec.submit(add(a,,,b,y));

1
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Matrix Addition Task

[

if (a.dim == 1) {
c[0][0] = a[0][0] + b[0][0]; // base case

Base case: add directly
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Matrix Addition Task

(partition a, b into half-size matrices a;; and b;;)

Constant-time operation

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

29



Matrix Addition Task

(Future<?> foo = exec.submit(add(aoo,|Ooo));N

 Future<?> f,; = exec.submit(add(a,,b,,));

Submit 4 tasks
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Matrix Addition Task

[ foo-get(); ---; f1-get();

=== | ot them finish
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Dependencies

* Matrix example is not typical

» Tasks are independent
- Don't need results of one task ...
- To complete another

» Often tasks are not independent
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Fibonacci

" 1ifn=00r1
F(n) <

_ F(n-1) + F(n-2) otherwise

- Note

- potential parallelism
- Dependencies
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Disclaimer

» This Fibonacci implementation is
- Egregiously inefficient
» So don't deploy it
- But illustrates our point
* How to deal with dependencies

+ Exercise:
- Make this implementation efficient!
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Multithreaded Fibonacci

class FibTask implements Callable<Integer> {
static ExecutorService exec =
Executors.newCachedThreadPool();
int arg;
public FibTask(int n) {
arg = n;
}
public Integer call() {
if (arg > 2) {
Future<integer> left = exec.submit(new FibTask(arg-1));
Future<integer> right = exec.submit(new FibTask(arg-2));
return left.get() + right.get();
} else {
return 1;

1
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Multithreaded Fibonacci

Parallel calls

/N

[

Future<integer> left = exec.submit(new FibTask(arg-1));
Future<Integer> right = exec.submit(new FibTask(arg-2));
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Multithreaded Fibonacci

Pick up & combine results

return left.get() + right.get();
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Dynamic Behavior

* Multithreaded program is

- A directed acyclic graph (DAG)
- That unfolds dynamically

» Each node is

- A single unit of work

Art of Multiprocessor Programming® Herlihy -
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wo(2) ib(1) ib
D=>0O=0)] (C C

é(l)
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Arrows Reflect Dependencies

O=>0O=0)] |C O ||C

3 (5(1)
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How Parallel is That?

» Define work:

- Total time on one processor
» Define critical-path length:
- Longest dependency path

- Can't beat that!
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Fib Work

ib(4)

O->Q-+0O

fib(2)

»»o O+0~+0
QO" ib( )] A ‘- )
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Fib Work
000

=

O C O 6-0

) ..

0 9.0 c 676

O ®, J work is 17
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Fib Critical Path

ib(4)
O=-Q-0O

55Q~0 O+0~0
5 X
O-0-0] o | [&7J(0

/
O 10
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Fib Critical Path

fib(4)

D->Q=®

=

lORee;

O~+Q~0
- X/

[ e} @ ] O 1O
“y‘ Critical path length is 8
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Notation Watch

* Tp = time on P processors
» T; = work (time on 1 processor)

» T, = critical path length (time on o
processors)
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Simple Bounds

+ Tp2T,/P

- In one step, can't do more than P work
- Tp2 T,

- Can't beat infinite resources

Art of Multiprocessor Programming® Herlihy -
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More Notation Watch

» Speedup on P processors

- Ratio T;/Tp

- How much faster with P processors

* Linear speedup

- T,/T, = O(P)

» Max speedup (average parallelism)
- T,/T.

Art of Multiprocessor Programming® Herlihy -
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Matrix Addition

/Coo Coo\ /Aoo'l'Boo Bm"'Am\
\Clo Clo/ \Aio"l'Blo A11+Bn/
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Matrix Addition

4 parallel additions

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

50



Addition

* Let Ap(n) be running time
- For n x n matrix
- on P processors
* For example
- Ay(n) is work
- A.(n) is critical path length
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Addition

* Work is Partition, synch, etc

Ay(n) =glcn/2>]+[e<1)

4 spawned additions
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Addition
+ Work is

Ain)=4 A, (n/2)+ O(1)
= O(n?)

Same as double-loop summation
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Addition

» Critical Path length is

A_(n) Ew(n/Z)}[@(l)

spawned additions in
parallel

Partition, synch, etc
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Addition

* Critical Path length is

A .(nN)=A_n/2)+06(1)
= O(log n)
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Matrix Multiplication Redux

(C)=(A)e(B)
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Matrix Multiplication Redux
C: Cp B A A, B11 BIZ
(CZI 622] B [AZI AZZj ) (BZI BZZ)
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First Phase ...

B

2-21

“ll_“
B |

8 multiplications
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Second Phase ...

_ [AuBu + 'ﬁlngg_lf,uBm + AmBg,j
ok 21312 + A,,B

4 additions
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Multiplication

* Work is Final addition

My(n) =@1(n/2)]'[m<n)

8 parallel
multiplications
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Multiplication
» Work is

M;(n) = 8 M(n/2) + O(n?)
= O(n3)

Same as serial triple-nested loop

Art of Multiprocessor Programming® Herlihy -
Shavit 2007

61



Multiplication

* Critical path length is
Final addition

M..(n) =|M°°(n/ 2)|+|A°o(n)|

Half-size parallel
multiplications
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Multiplication
* Critical path length is
M..(n) = M_(n/2) + A_(n)

= M..(n/2) + O(log n)
= O(log® n)

Art of Multiprocessor Programming® Herlihy -
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Parallelism

* My(n)/ M_.(n) = ©(n3/log? n)
» To multiply Two 1000 x 1000 matrices
- 10003/10%=10"

* Much more than number of
processors on any real machine
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Shared-Memory
Multiprocessors

* Parallel applications

- Do not have direct access to HW
processors

* Mix of other jobs
- All run together
- Come & go dynamically
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Ideal Scheduling Hierarchy

Tasks

| User-levelscheder

Processors
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Realistic Scheduling Hierarchy

Tasks

| User-levelscheduler

Threads

| Kernehlevelscheduler

Processors
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For Example

» Initially,

- All P processors available for application
» Serial computation

- Takes over one processor

- Leaving P-1 for us

- Waits for I/0

- We get that processor back ....
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Speedup

* Map threads onto P processes

* Cannot get P-fold speedup
- What if the kernel doesn't cooperate?

» Can try for speedup proportional to
- time-averaged number of processors
the kernel gives us
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Scheduling Hierarchy

+ User-level scheduler
- Tells kernel which threads are ready

* Kernel-level scheduler
- Synchronous (for analysis, not correctness!)
- Picks p; threads to schedule at step i
- Processor average
T steps is: 1<
over eps | P.-1%p
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Greed is Good

* Greedy scheduler
- Schedules as much as it can
- At each time step

» Optimal schedule is greedy (why?)

* But not every greedy schedule is
optimal
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Theorem

* Greedy scheduler ensures that

T<T/Py+ T_(P-1)/P,
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Deconstructing

T< TI/PA + Too(P"]-)/PA
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Deconstructing

Actual time
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Deconstructing

T,/P,4

Work divided by
processor average
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Deconstructing

Cannot do better than
critical path length
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Deconstructing

(P-1)/P,

The higher the average
the better it is ...
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Proof Strategy

Bound this!
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Put Tokens in Buckets

Processor found work Processor available but
., couldn't find work

L 4
L 4
*

2
*
‘ ‘

\0‘/ \g;/

work idle

Art of Multiprocessor Programming® Herlihy - 79
Shavit 2007



At the end ...

T
Total #tokens = Z P,
i=1

e e

work idle

Art of Multiprocessor Programming® Herlihy -
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At the end ...

T1 tokens

\‘0/ .

\_ work idle
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Must Show

< T.(P-1) tokens

P
e '¢¥

work \_ idle )
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Idle Steps

* An idle step is one where there is at
least one idle processor

* Only time idle tokens are generated
* Focus on idle steps
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Every Move You Make ...

* Scheduler is greedy
* At least one node ready

- Number of idle threads in one idle
step

- AT most p;-1 < P-1
ow many idle steps?
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Unexecu’red sub-DAG

% Longest path
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Last node ready
To execute
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Every Step You Take ...

» Consider longest path in unexecuted
sub-DAG at step i

* At least one node in path ready

* Length of path shrinks by at least one
at each step

» Initially, path is T
* So there are at most T, idle steps
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Counting Tokens

*+ At most P-1 idle threads per step
- At most T, steps

+ So idle bucket contains at most
- T..(P-1) tokens

+ Both buckets contain

- T, + T_(P-1) tokens
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Recapitulating

T< Pl(T1 + T (P - 1))

A
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Turns Out

- This bound is within a factor of 2 of
optimal
» Actual optimal is NP-complete
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Work Distribution
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Work Dealing
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The Problem with
Work Dealing

D’oh'
D’Oh' i l

Art of Mul;‘iprocessor Programming® Herlihy -
Shavit 2007




Work Stealing /5
Q work...

Yes! ydr dr
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Lock-Free Work Stealing

» Each thread has a pool of ready work
* Remove work without synchronizing

» If you run out of work, steal someone
else's

- Choose victim at random
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Local Work Pools

Each work pool is a Double-Ended Queue
B .

55

S| 8 @

L L L

DS
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Work DEQueue!

S,
S,
S) -

popBottom

> work

pushBottom

1. Double-Ended Queue
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Obtain Work

-Obtain work
‘Run thread until
‘Blocks or terminates

! popBottom
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New Work

-Unblock node
*Spawh node

H 5 pushBottom
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Whatcha Gonna do When the
Well Runs Dry?

o
o

Q empty
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Steal Work from Others

Pick random guy’s DEQeueue

» B B B
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Steal this Thread!

L

pop Top

L
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Thread DEQueue

» Methods

- pushBottom | Never happen
>

- popBottom | concurrently
- popTop
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Thread DEQueue

* Methods
_ pushBoTTom 7 These most
- popBottom [ common - make
 popTop - them fast

(minimize use of
CAS)

Art of Multiprocessor Programming® Herlihy -
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Ideal

- Wait-Free
- Linearizable
» Constant time

/N

r

U

Fortune Cookie: "It is better to be young,
rich and beautiful, than old, poor, and ugly”

~

J
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Compromise

» Method popTop may fail if
- Concurrent popTop succeeds, or a
- Concurrent popBottom takes last work

Blame the
victim!
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roblem
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roblem
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Fix for Dreaded ABA

stamp
top

| bottom N
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Bounded DEQueue

public class BDEQueue {
AtomicStampedReference<lnteger> top;
volatile Int bottom;

Runnable[] tasks;

-
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Bounded DQueue

[AtomicStampedReTerence<Integer> top;

Index & Stamp
(synchronized)
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Bounded DEQueue

olatilTe 1nt bottom;

Index of bottom thread
(no need to synchronize
The effect of a write
must be seen - so we
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Bounded DEQueue

[Runnable[] tasksj

N

Array holding tasks
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pushBottom()

public class BDEQueue {

Qoid pushBottom(Runnable r){
tasks[bottom] = r;
bottom++;

}
.
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pushBottom()

tasks[bottom] = r;

Bottom is the index to store
the new task in the array
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pushBottom()

[bottom++ ]

Adjust the bottom index
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Steal Work

public Runnable popTop() {

int[] stamp = new Int[1];

int oldTop = top.get(stamp), newTop = oldTop + 1;

int oldStamp = stamp[0], newStamp = oldStamp + 1;

iT (bottom <= oldTop)
return null;

Runnable r = tasks[oldTop];

iIT (top.CAS(oldTop, newTop, oldStamp, newStamp))
return r;

return null;

}
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Steal Work

int oldTop = top.get(stamp),
int oldStamp = stamp[0],

Read top (value & stamp)
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Steal Work

newTop = oldTop + 1;
newStamp = oldStamp + 1;

Compute new value & stamp
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Steal Work

iT (bottom <= oldTop)
return null;

Quit if queue is empty

Art of Multiprocessor Programming® Herlihy - 127
Shavit 2007



Steal Work

Runnable r = tasks[oldTop];
iIT (top.CAS(oldTop, newTop, oldStamp, newStamp))

return r;
\/
Try to steal the task
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Steal Work

[return null;‘ Give UP 'f
} ) conflict occurs
Art of Multiprocessor Programming® Herlihy - 129
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Take Work

Runnable popBottom() {

iIT (bottom == 0) return null;

bottom--;

Runnable r = tasks[bottom];

int[] stamp = new iInt[1];

int oldTop = top.get(stamp), newTop = O;

int oldStamp = stamp[0], newStamp = oldStamp + 1;
iIT (bottom > oldTop) return r;

iIT (bottom == oldTop){

bottom = O;

iIT (top.CAS(oldTop, newTop, oldStamp, newStamp))
return r;

}

top.set(newTop,newStamp); return null;

}
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Take Work

iIT (bottom == 0) return null;

Make sure queue is non-empty
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Take Work
[Eﬁﬁgg;;; r = tasks [bottqrn]_;]

Prepare to grab bottom task

Shavit 2007



Take Work

r

.

iInt[] stamp = new int[1];
int oldTop = top.get(stamp), newTop = O;
int oldStamp = stamp[0O], newStamp = oldStamp + 15

Read top, & prepare new values
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Take Work

iIT (bottom > oldTop) return r;

If top & bottom 1 or more
apart, no conflict
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Take Work

[if (bottom == T‘){_]

At most one item left
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Take Work

Try to steal last item.

In any case reset Bottom

because the DEQueue will be empty
even if unsucessful (why?)

/T~

bottom = O;
iIT (top.CAS(oldTop, newTop, oldStamp, newStamp))
return r;
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I win CAS

[

bottom = 0O;

Take Work

>
.

IT (top.CAS(oldTop, newTop, oldStamp, newStamp)%

return r,
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Take Work

I lose CAS
Thief must
have won...

S
o

bottom = O;
IT (top.CAS(oldTop, newTop, oldStamp, newStamp))
return r;
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Take Work

failed to get last item
Must still reset top

1

[top-set(newTop,newStamp); return null; ]
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Old English Proverb

* "May as well be hanged for stealing a
sheep as a goat”

* From which we conclude

- Stealing was punished severely

- Sheep were worth more than goats
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Variations

+ Stealing is expensive
- Pay CAS

- Only one thread taken
* What if

- Randomly balance loads?
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Work Balancing

32+‘Tz;q

Art of Multiprocessor Programming® Herlihy -
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Work-Balancing Thread

public void run() {

int me = ThreadlD.get();

while (true) {
Runnable task = queue[me].deqQ;
iIfT (task = null) task.runQ);
Int size = queue[me].size();

iIT (random.nextlnt(size+l) == size) {
int victim = random.nextlnt(queue.length);
int min = .., max = ..;

synchronized (queue[min]) {
synchronized (queue[max]) {
balance(queue[min], queue[max]);

hagdds
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Work-Balancing Thread

Runnable task = queue[me].deq(Q);
iIf (task = null) task.run();

Keep running tasks
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Work-Balancing Thread

With probability
1/|queuel]

Int size = queue[me].size();
iIT (random.nextlnt(size+l) == size) {
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Work-Balancing Thread

Choose random victim

int victim = random.nextlnt(queue.length); ]
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Work-Balancing Thread

Lock queues in canonical order

[ _ _
int min = .., max = ..;

synchronized (queue[min]) {
. synchronized (queue[max]) { )
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Work-Balancing Thread

Rebalance queues

balance(queue[min], queue[max]);
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Work Stealing & Balancing

» Clean separation between app &
scheduling layer

- Works well when number of
processors fluctuates.

* Works on "black-box" operating
systems
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SOME RIGHTS RESERVED

This work is licensed under a

You are free:
- to Share — to copy, distribute and transmit the work
- to Remix — to adapt the work

Under the following conditions:

- Attribution. You must attribute the work to “The Art of
Multiprocessor Programming” (but not in any way that suggests that
the authors endorse you or your use of the work).

- Share Alike. If you alter, transform, or build uIEl)on this work, you
may distribute the resulting work only under the same, similar or a
compatible license.

For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to

- http://creativecommons.org/licenses/by-sa/3.0/.

Any of the above conditions can be waived if you get permission from
the copyright holder.

Nothing in this license impairs or restricts the author's moral rights.
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