’rinciples of Concurrency anc
Parallelism

Lecture 8: Locks
2/28/12

slides adapted from The Art of Multiprocessor
Programming, Herlihy and Shavit

CS390C: Principles of Concurrency and Parallelism

Tuesday, February 28, 12

New Focus: Performance

e Models

— More complicated (not the same as complex!)

— Still focus on principles (not soon obsolete)

e Protocols
— Elegant (in their fashion)
— Important (why else would we pay attention)

— And realistic (your mileage may vary)

CS390C: Principles of Concurrency and Parallelism

Tuesday, February 28, 12

Kinds of Architectures

e SISD (Uniprocessor)
— Single instruction stream

— Single data stream

e SIMD (Vector)

— Single instruction
— Multiple data

e MIMD (Multiprocessors)

— Multiple instruction
— Multiple data.

CS390C: Principles of Concurrency and Parallelism

Tuesday, February 28, 12

MIMD Architectures

Lo

%
g
g

%

Shared Bus Distributed

* Memory Contention
« Communication Contention
« Communication Latency

CS390C: Principles of Concurrency and Parallelism

Tuesday, February 28, 12

Revisit Mutual Exclusion

e Think of performance, not just correctness and
progress

e Begin to understand how performance depends on
our software properly utilizing the multiprocessor
machine’s hardware

e And get to know a collection of locking algorithms...

CS390C: Principles of Concurrency and Parallelism (1)

Tuesday, February 28, 12

Lock Contention

e Keep trying
— “spin” or “busy-wait”
— Good if delays are short
e Give up the processor
— Good if delays are long

— Always good on uniprocessor

CS390C: Principles of Concurrency and Parallelism

Tuesday, February 28, 12

Basic Spin-Lock

R

spin critical Resets lock
lock section upon exit

=
v
s

CS390C: Principles of Concurrency and Parallelism

Tuesday, February 28, 12

Basic Spin-Lock

..lock introduces
sequential bottleneck

..and introduces
contention

no parallelism

=
R 1 R

A

spin critical Resets lock
/ lock section upon exit

CS390C: Principles of Concurrency and Parallelism

Tuesday, February 28, 12

Basic Spin-Lock

..lock introduces
sequential bottleneck

..and introduces

no parallelism

Contentlon
spin critical Resets lock
/ lock section upon exit

CS390C: Principles of Concurrency and Parallelism

Tuesday, February 28, 12

Test-and-Set

e Boolean value
e Test-and-set (TAS)

— Swap true with current value

— Return value tells if prior value was true or false
e Can reset just by writing false
e TAS aka “getAndSet”

CS390C: Principles of Concurrency and Parallelism

Tuesday, February 28, 12

Test-and-Set

public class AtomicBoolean {
boolean value;

public synchronized boolean
getAndSet (boolean newValue) {

boolean prior = value;
value = newValue;
return prior;

CS390C: Principles of Concurrency and Parallelism 10

Tuesday, February 28, 12

Test-and-Set

[Bbolean prior = lock.getAndSet(true)

\/

Swapping in true is called
“test-and-set” or TAS

CS390C: Principles of Concurrency and Parallelism

11

()

Tuesday, February 28, 12

Test-and-Set Locks

e Locking
— Lock is free: value is false

— Lock is taken: value is true

e Acquire lock by calling TAS
— If result is false, you win

— If result is true, you lose

e Release lock by writing false

CS390C: Principles of Concurrency and Parallelism 12

Tuesday, February 28, 12

Test-and-set Lock

class TASlock {
AtomicBoolean state =
new AtomicBoolean(false);

void lock() {
while (state.getAndSet(true)) {}

}

void unlock() {
state.set(false);

H}

CS390C: Principles of Concurrency and Parallelism 13

Tuesday, February 28, 12

Space Complexity

e TAS spin-lock has small “footprint™
e N thread spin-lock uses O(1) space
e As opposed to O(n) Peterson/Bakery

e How did we overcome the €2(n) lower bound?
e We used a RMW operation...

CS390C: Principles of Concurrency and Parallelism 14

Tuesday, February 28, 12

Performance

e Experiment
— n threads

— Increment shared counter | million times
e How long should it take!?
e How long does it take!?

CS390C: Principles of Concurrency and Parallelism 15

Tuesday, February 28, 12

Graph

time

Ideal

threads

CS390C: Principles of Concurrency and Parallelism

16

Tuesday, February 28, 12

Graph

no speedup
because of
sequential
bottleneck

J
\/ ideal

time

threads

CS390C: Principles of Concurrency and Parallelism

16

Tuesday, February 28, 12

Mystery #1

time

|deal

threads

CS390C: Principles of Concurrency and Parallelism

17

(1)

Tuesday, February 28, 12

Mystery #1

time

threads

_

What is

going
on?

CS390C: Principles of Concurrency and Parallelism

17

(1)

Tuesday, February 28, 12

Test-and-Test-and-Set Locks

e Lurking stage
— Wait until lock “looks” free
— Spin while read returns true (lock taken)

e Pouncing state
— As soon as lock “looks” available
— Read returns false (lock free)
— Call TAS to acquire lock
— If TAS loses, back to lurking

CS390C: Principles of Concurrency and Parallelism 18

Tuesday, February 28, 12

Test-and-test-and-set Lock

class TTASlock {
AtomicBoolean state =
new AtomicBoolean(false);

void lock() {
while (true) {
while (state.get()) {}
i1f (!state.getAndSet(true))
return;

CS390C: Principles of Concurrency and Parallelism 19

Tuesday, February 28, 12

Mystery #2

TTAS lock

/ Ideal

threads

time

CS390C: Principles of Concurrency and Parallelism 20

Tuesday, February 28, 12

Mystery

e Both
— TAS and TTAS

— Do the same thing (in our model)

e Except that
— TTAS performs much better than TAS

— Neither approaches ideal

CS390C: Principles of Concurrency and Parallelism 21

Tuesday, February 28, 12

Compare and Swap

- Compare and Swap

- Three operands:

- a memory location (V)
- an expected old value (A)
- new value (B)

- Processor automatically updates location to new value
If the value stored is the expected old value.

- Using this for synchronization:

- read a value A from location V
- perform some computation to derive new value B
- use CAS to change the value of V from Ato B

22
CS390C: Principles of Concurrency and Parallelism

Tuesday, February 28, 12

Compare and Swap

public class SimulatedCAS {
private int value;

public synchronized int getValue() { return value; }

public synchronized int compareAndSwap(int expectedValue, int newValue) {
int oldValue = value;
if (value == expectedValue)
value = newValue;
return oldValue;

}

Lock-free counter:

public class CasCounter {
private SimulatedCAS value;

public int getValue() {
return value.getValue();

}

public int increment() {
int oldValue = value.getValue();
while (value.compareAndSwap(oldValue, oldValue + 1) != oldValue)
oldValue = value.getValue();
return oldValue + 1;

}

Tuesday, February 28, 12

Taxonomy

- An algorithm is said to be wait-free if every
thread makes progress in the face of arbitrary
delay (or even failure) of other threads.

- An algorithm is said to be lock-free if some
thread always makes progress.

- permits starvation

- An algorithm is said to be obstruction-free if at
any point, a single thread executed in isolation
for a bounded number of steps will complete.

24
CS390C: Principles of Concurrency and Parallelism

Tuesday, February 28, 12

Opinion

e Our memory abstraction is broken
e TAS & TTAS methods

— Are provably the same (in our model)

— Except they aren’t (in field tests)

® Need a more detailed model ...

CS390C: Principles of Concurrency and Parallelism 23

Tuesday, February 28, 12

Bus-Based Architectures

25

Bus >
= =

memory

CS390C: Principles of Concurrency and Parallelism 26

Tuesday, February 28, 12

Bus-Based Architectures

Random access memory
(10s of cycles)

~

J

<

memory

CS390C: Principles of Concurrency and Parallelism

>

27

Tuesday, February 28, 12

Bus-Based Architectures

- S

Shared Bus
Broadcast medium

*One broadcaster at a time
*Processors and memory all

“snoop”
_
| |
< Bus >
=
memory

CS390C: Principles of Concurrency and Parallelism 28

Tuesday, February 28, 12

BUS Per-Processor Caches

*Small
*Fast: 1 or 2 cycles

Address & state information

Bus

memory

CS390C: Principles of Concurrency and Parallelism

29

Tuesday, February 28, 12

Jargon Watch

e Cache hit

— “l found what | wanted in my cache”
— Good Thing™

CS390C: Principles of Concurrency and Parallelism 30

Tuesday, February 28, 12

Processor Issues Load Request

=h=

Bus >
= =
memory

CS390C: Principles of Concurrency and Parallelism

=
<

31

Tuesday, February 28, 12

Processor Issues Load Request

data
OOo
! H \ | | |
us

memory data

CS390C: Principles of Concurrency and Parallelism

32

Tuesday, February 28, 12

Memory Responds

Got your
data right
here

Oo, memary

CS390C: Principles of Concurrency and Parallelism

33

Tuesday, February 28, 12

Memory Responds

Got your
data right
here

OOo memory

CS390C: Principles of Concurrency and Parallelism

33

Tuesday, February 28, 12

Processor Issues Load Request

memory data

CS390C: Principles of Concurrency and Parallelism

34

Tuesday, February 28, 12

Processor Issues Load Request

memory data

CS390C: Principles of Concurrency and Parallelism

35

Tuesday, February 28, 12

Processor Issues Load Request

data
:I= cache
==

memory data

CS390C: Principles of Concurrency and Parallelism

36

Tuesday, February 28, 12

Other Processor Responds

| got
data

}

memory data

CS390C: Principles of Concurrency and Parallelism

37

Tuesday, February 28, 12

Other Processor Responds

ri=h=

Bus

= =
memory

CS390C: Principles of Concurrency and Parallelism

38

Tuesday, February 28, 12

Other Processor Responds

memory

CS390C: Principles of Concurrency and Parallelism

38

Tuesday, February 28, 12

Modify Cached Data

CS390C: Principles of Concurrency and Parallelism

39 (1)

Tuesday, February 28, 12

Modify Cached Data

memory data

CS390C: Principles of Concurrency and Parallelism

40 (1)

Tuesday, February 28, 12

Modify Cached Data

CS390C: Principles of Concurrency and Parallelism

41

Tuesday, February 28, 12

Modify Cached Data

What's up with the other
copies”? ‘ data

CS390C: Principles of Concurrency and Parallelism 42

Tuesday, February 28, 12

Cache Coherence

e We have lots of copies of data
— Original copy in memory

— Cached copies at processors

e Some processor modifies its own copy
— What do we do with the others!?

— How to avoid confusion!?

CS390C: Principles of Concurrency and Parallelism 43

Tuesday, February 28, 12

Write-Back Caches

e Accumulate changes in cache
e Write back when needed

— Need the cache for something else
— Another processor wants it

e On first modification
— Invalidate other entries

— Requires non-trivial protocol ...

CS390C: Principles of Concurrency and Parallelism a4

Tuesday, February 28, 12

Write-Back Caches

e Cache entry has three states
— Invalid: contains raw seething bits
— Valid: | can read but | can’t write
— Dirty: Data has been modified

e Intercept other load requests

® Write back to memory before using cache

CS390C: Principles of Concurrency and Parallelism 43

Tuesday, February 28, 12

Tnvalidate

memory data

CS390C: Principles of Concurrency and Parallelism

46

Tuesday, February 28, 12

Tnvalidate

Mine, all

= =
memory

CS390C: Principles of Concurrency and Parallelism

47

Tuesday, February 28, 12

Invalidate
& i
| | |
= =

memory data

CS390C: Principles of Concurrency and Parallelism

48

Tuesday, February 28, 12

Tnvalidate

Other caches lose read permission

Mﬂ@

(}
memory

CS390C: Principles of Concurrency and Parallelism

49

Tuesday, February 28, 12

Invalidate

Other caches lose read permission

1y
<

This cache acquires write permission J

CS390C: Principles of Concurrency and Parallelism >0

Tuesday, February 28, 12

Invalidate

o/ A AN

4 . . N
Memory provides data only if not present
In any cache, so no need to change it now

(expensive)

=

memory

\

CS390C: Principles of Concurrency and Parallelism >

Tuesday, February 28, 12

Another Processor Asks for Data

2l RS

cache.

= =
memory

CS390C: Principles of Concurrency and Parallelism 52 (2)

Tuesday, February 28, 12

Owner Responds

memory data

CS390C: Principles of Concurrency and Parallelism

53

(2)

Tuesday, February 28, 12

Owner Responds

memory data

CS390C: Principles of Concurrency and Parallelism

53

(2)

Tuesday, February 28, 12

End of the Day ...

cache

>
\

JReading OK, no writing‘

54)

CS390C: Principles of Concurrency and Parallelism

Tuesday, February 28, 12

Mutual Exclusion

e What do we want to optimize!
— Bus bandwidth used by spinning threads
— Release/Acquire latency

— Acquire latency for idle lock

CS390C: Principles of Concurrency and Parallelism >3

Tuesday, February 28, 12

Simple TASLock

e TAS invalidates cache lines
e Spinners

— Miss in cache
— Go to bus

e [hread wants to release lock

— delayed behind spinners

CS390C: Principles of Concurrency and Parallelism 36

Tuesday, February 28, 12

Test-and-test-and-set

e Wait until lock “looks” free
— Spin on local cache

— No bus use while lock busy

e Problem: when lock is released

— |nvalidation storm ...

CS390C: Principles of Concurrency and Parallelism >7

Tuesday, February 28, 12

Local Spinning while Lock is Busy

CS390C: Principles of Concurrency and Parallelism

58

Tuesday, February 28, 12

On Release

memory

CS390C: Principles of Concurrency and Parallelism >9

Tuesday, February 28, 12

On Release

Everyone misses,
rereads

free

CS390C: Principles of Concurrency and Parallelism

60

(1)

Tuesday, February 28, 12

On Release

Everyone tries TAS

CS390C: Principles of Concurrency and Parallelism

61

(1)

Tuesday, February 28, 12

Problems

e Everyone misses

— Reads satisfied sequentially
e Everyone does TAS
— Invalidates others’ caches

e Eventually quiesces after lock acquired

— How long does this take!?

CS390C: Principles of Concurrency and Parallelism 62

Tuesday, February 28, 12

Measuring Quiescence Time

X = time of ops that don't L“, -
use the bus .

Y = time of ops that cause ", T
intensive bus traffic @' .

In critical section, run ops X then ops Y. As long as
Quiescence time is less than X, no drop in performance.

By gradually varying X, can determine the exact time
to quiesce.

CS390C: Principles of Concurrency and Parallelism 63

Tuesday, February 28, 12

Quiescence Time

Increses
linearly with

the number of
processors for
bus architecture

time

threads

CS390C: Principles of Concurrency and Parallelism 64

Tuesday, February 28, 12

Mystery Explained

TTAS lock

/ Ideal

threads

time

CS390C: Principles of Concurrency and Parallelism 65

Tuesday, February 28, 12

Mystery Explained

TTAS lock

|deal

time

~N
Better than TAS

but still not as
good as ideal

thread

J

65

CS390C: Principles of Concurrency and Parallelism

Tuesday, February 28, 12

Solution: Introduce Delay

* |f the lock looks free
 Butlfail to getit

 There must be contention
» Better to back off than to collide again

"

time - - ! ; ; I spin lock
rd r.d d P

CS390C: Principles of Concurrency and Parallelism 66

—_—

Tuesday, February 28, 12

Dynamic Example: Exponential
Backoff

(

If 1 fail to get lock

— wait random duration before retry

— Each subsequent failure doubles
expected wait

time = - spin Iock

CS390C: Principles of Concurrency and Parallelism 67

Tuesday, February 28, 12

Exponential Backoff Lock

public class Backoff implements lock
public void lock() {
int delay MIN DELAY;
while (true) {
while (state.get()) {}
1f (!lock.getAndSet(true))
return;
sleep(random() % delay);
if (delay < MAX DELAY)
delay = 2 * delay;
+ir}

CS390C: Principles of Concurrency and Parallelism

{

68

Tuesday, February 28, 12

Spin-Waiting Overhead

TTAS Lock

time

Backoff lock

threads

CS390C: Principles of Concurrency and Parallelism 69

Tuesday, February 28, 12

Backoff: Other Issues

e Good

— Easy to implement
— Beats TTAS lock

e Bad

— Must choose parameters carefully

— Not portable across platforms

CS390C: Principles of Concurrency and Parallelism 70

Tuesday, February 28, 12

TIdea

e Avoid useless invalidations
— By keeping a queue of threads
e Each thread

— Notifies next in line
— Without bothering the others

CS390C: Principles of Concurrency and Parallelism 71

Tuesday, February 28, 12

next

flags

Anderson Queue Lock

idle

2

CS390C: Principles of Concurrency and Parallelism

72

Tuesday, February 28, 12

next

flags

Anderson Queue Lock

acquiring

CS390C: Principles of Concurrency and Parallelism

m getAndincrement

73

Tuesday, February 28, 12

next

flags

Anderson Queue Lock

acquiring

CS390C: Principles of Concurrency and Parallelism

m getAndincrement

74

Tuesday, February 28, 12

Anderson Queue Lock

CS390C: Principles of Concurrency and Parallelism

75

Tuesday, February 28, 12

next

n ”1 “

flags
T

Anderson Queue Lock

acquired acquiring

CS390C: Principles of Concurrency and Parallelism

76

Tuesday, February 28, 12

next

Anderson Queue Lock

acquired acquiring

flags

getAndincrement

F| F| F| F| F| F| F

CS390C: Principles of Concurrency and Parallelism 77

Tuesday, February 28, 12

next

flags

Anderson Queue Lock

acquired acquiring

getAndincrement

FIYF| F| F| F| F| F

CS390C: Principles of Concurrency and Parallelism 78

Tuesday, February 28, 12

Anderson Queue Lock

acquired acGeriINg

CS390C: Principles of Concurrency and Parallelism

79

Tuesday, February 28, 12

next

flags

Anderson Queue Lock

released acquired

CS390C: Principles of Concurrency and Parallelism

80

Tuesday, February 28, 12

Anderson Queue Lock

released acquired

CS390C: Principles of Concurrency and Parallelism

81

Tuesday, February 28, 12

Anderson Queue Lock

class ALock implements Lock {
boolean[] flags={true,false,..,false};
AtomicInteger next

= new AtomicInteger(0);
ThreadLocal<Integer> mySlot;

CS390C: Principles of Concurrency and Parallelism 82

Tuesday, February 28, 12

Anderson Queue Lock

public lock() {
mySlot = next.getAndIncrement();
while (!flags[mySlot % n]) {};

flags[mySlot % n] = false;
}

public unlock() {
flags[(mySlot+l) % n] = true;
}

CS390C: Principles of Concurrency and Parallelism 83

Tuesday, February 28, 12

Local Spinning

released acquired

-

CS390C: Principles of Concurrency and Parallelism

Spin
on
my
bit

84

Tuesday, February 28, 12

Local Spinning

acquired

Spin
O on
my
bit
F‘ F‘ F

released

Unfortunately many bits share cache
line

|

CS390C: Principles of Concurrency and Parallelism 84

Tuesday, February 28, 12

False Sharing

released acquired

next Spi
pin

OF on

my

bit

F| F| F
l

|
LineCJSQOC: Principles of Concurrency and ParaIIL'nime 2 85

Tuesday, February 28, 12

False Sharing

released acquired
next Spi
ollg
O on
m

Spinning thread
gets cache
invalidation on
account of store
by threads it is
not waiting for

Line

CJSQOC: Principles of Concurrency and ParaIILTIL

&

%

ne 2

85

Tuesday, February 28, 12

False Sharing

released acquired
Spin
O on

m

[Result:

contention Spinning thread

gets cache
invalidation on
F account of store
by threads it is
%

Y \n_ot waiting for

Line

CJSQOC: Principles of Concurrency and ParaIILTIL

ne 2 85

Tuesday, February 28, 12

The Solution: Padding

released acquired

LIneCJSQOC: Principles of Concurrency and ParaIIL'nlme 2

86

Tuesday, February 28, 12

Performance

TTAS

e Shorter handover than
backoff

queue © Curve is practically flat
e Scalable performance

CS390C: Principles of Concurrency and Parallelism 87

Tuesday, February 28, 12

Anderson Queue Lock

Good

— First truly scalable lock
—Simple, easy to implement
—Back to FIFO order (like Bakery)

CS390C: Principles of Concurrency and Parallelism 88

Tuesday, February 28, 12

Anderson Queue Lock

Bad

—Space hog...

—One
per t

oV
oV

bit per thread =» one cache line
read

hat if unknown number of threads!?

nat if small number of actual contenders?

CS390C: Principles of Concurrency and Parallelism 89

Tuesday, February 28, 12

S

This

f SERYVED

work is licensed under a

You are free:
- to Share — to copy, distribute and transmit the work

- to Remix — to adapt the work

Under the following conditions:

- Attribution. You must attribute the work to “The Art of
Multiprocessor Programming” (but not in any way that
sug%:sts that the authors endorse you or your use of the
wor

- Share Alike. If you alter, transform, or build upon this work,
you may distribute the resulting work only under the same,
similar or a compatible license.

For any reuse or distribution, you must make clear to others the

license terms of this work. The best way to do this is with a link

to
- http://creativecommons.org/licenses/by-sa/3.0/.

Any of the above conditions can be waived if you get permission

from the copyright holder.

Noﬁhing in this license impairs or restricts the author's moral

rights.

CS390C: Principles of Concurrency and Parallelism 90

Tuesday, February 28, 12

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

