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New Focus: Performance

● Models
− More complicated (not the same as complex!)

− Still focus on principles (not soon obsolete)

● Protocols
− Elegant (in their fashion)

− Important (why else would we pay attention)

− And realistic (your mileage may vary)
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Kinds of Architectures

● SISD (Uniprocessor)
− Single instruction stream
− Single data stream 

● SIMD (Vector)
− Single instruction
− Multiple data

● MIMD (Multiprocessors)
− Multiple instruction
− Multiple data. 
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MIMD Architectures

• Memory Contention
• Communication Contention 
• Communication Latency

Shared Bus

memory

Distributed
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Revisit Mutual Exclusion

● Think of performance, not just correctness and 
progress

● Begin to understand how performance depends on 
our software properly utilizing the multiprocessor 
machine’s hardware

● And get to know a collection of locking algorithms… 

(1)
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Lock Contention

● Keep trying
− “spin” or “busy-wait”

− Good if delays are short

● Give up the processor
− Good if delays are long

− Always good on uniprocessor

(1)
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Basic Spin-Lock

CS

Resets lock 
upon exit

spin 
lock

critical 
section

...
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Basic Spin-Lock

CS

Resets lock 
upon exit

spin 
lock

critical 
section

...

…lock introduces 
sequential bottleneck
…and introduces 
contention

no parallelism
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Basic Spin-Lock

CS

Resets lock 
upon exit

spin 
lock

critical 
section

...

…lock introduces 
sequential bottleneck
…and introduces 
contention

no parallelism

Tuesday, February 28, 12



CS390C: Principles of Concurrency and Parallelism 9

 Test-and-Set

● Boolean value
● Test-and-set (TAS)
− Swap true with current value

− Return value tells if prior value was true or false

● Can reset just by writing false

● TAS aka “getAndSet”
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Test-and-Set

public class AtomicBoolean {
 boolean value;
  
 public synchronized boolean 
getAndSet(boolean newValue) {

     boolean prior = value;
     value = newValue;
     return prior;
 }
}

(5)
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Test-and-Set

AtomicBoolean lock
 = new AtomicBoolean(false)
…
boolean prior = lock.getAndSet(true)
 

(5)

Swapping in true is called 
“test-and-set” or TAS
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Test-and-Set Locks

● Locking
− Lock is free: value is false

− Lock is taken: value is true

● Acquire lock by calling TAS
− If result is false, you win

− If result is true, you lose 

● Release lock by writing false
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Test-and-set Lock

class TASlock {
 AtomicBoolean state =
  new AtomicBoolean(false);

 void lock() {
  while (state.getAndSet(true)) {}
 }
 
 void unlock() {
  state.set(false);
 }} 
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Space Complexity

● TAS spin-lock has small “footprint” 
● N thread spin-lock uses O(1) space

● As opposed to O(n) Peterson/Bakery 

● How did we overcome the Ω(n) lower bound? 

● We used a RMW operation… 
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Performance

● Experiment
− n threads

− Increment shared counter 1 million times

● How long should it take?
● How long does it take?
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Graph

idealtim
e

threads
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Graph

idealtim
e

threads

no speedup 
because of 
sequential 
bottleneck
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Mystery #1

tim
e

threads

TAS lock

Ideal

(1)
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Mystery #1

tim
e

threads

TAS lock

Ideal

(1)

What is 
going 
on? 
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Test-and-Test-and-Set Locks

● Lurking stage
− Wait until lock “looks” free
− Spin while read returns true (lock taken)

● Pouncing state
− As soon as lock “looks” available
− Read returns false (lock free)
− Call TAS to acquire lock
− If TAS loses, back to lurking
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Test-and-test-and-set Lock

class TTASlock {
 AtomicBoolean state =
  new AtomicBoolean(false);

 void lock() {
  while (true) {
   while (state.get()) {}
   if (!state.getAndSet(true))
    return;
 }
} 
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Mystery #2

TAS lock

TTAS lock

Idealtim
e

threads
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Mystery

● Both
− TAS and TTAS

− Do the same thing (in our model)

● Except that	


− TTAS performs much better than TAS

− Neither approaches ideal
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Compare and Swap

22
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Hardware Approaches
● Compare and Swap

− Three operands:

● a memory location (V)

● an expected old value (A)

● new value (B)

− Processor automatically updates location to new value 

if the value stored is the expected old value.

− Using this for synchronization:

● read a value A from location V

● perform some computation to derive new value B

● use CAS to change the value of V from A to B

9
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Compare and Swap

23
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Compare and Swap

10

public class SimulatedCAS {

     private int value;

     public synchronized int getValue() { return value; }

 public synchronized int compareAndSwap(int expectedValue, int newValue) {

         int oldValue = value;

         if (value == expectedValue)

             value = newValue;

         return oldValue;

     }

}

Lock-free counter:

public class CasCounter {

    private SimulatedCAS value;

    public int getValue() {

        return value.getValue();

    }

    public int increment() {

        int oldValue = value.getValue();

        while (value.compareAndSwap(oldValue, oldValue + 1) != oldValue)

            oldValue = value.getValue();

        return oldValue + 1;

    }

}
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Taxonomy

24
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Lock-free algorithms

● An algorithm is said to be wait-free if every 

thread makes progress in the face of arbitrary 

delay (or even failure) of other threads.

● An algorithm is said to be lock-free if some 

thread always makes progress.

− permits starvation

● An algorithm is said to be obstruction-free if at 

any point, a single thread executed in isolation 

for a bounded number of steps will complete.

11
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Opinion

● Our memory abstraction is broken
● TAS & TTAS methods
− Are provably the same (in our model)

− Except they aren’t (in field tests)

● Need a more detailed model …
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Bus-Based Architectures

Bus

cache

memory

cachecache
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Bus-Based Architectures

Bus

cache

memory

cachecache

Random access memory 
(10s of cycles)
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Bus-Based Architectures

cache

memory

cachecache

Shared Bus
•Broadcast medium
•One broadcaster at a time
•Processors and memory all 
“snoop”

Bus
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Bus-Based Architectures

Bus

cache

memory

cachecache

Per-Processor Caches
•Small
•Fast: 1 or 2 cycles
•Address & state information
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Jargon Watch

● Cache hit
− “I found what I wanted in my cache”

− Good Thing™
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Bus

Processor Issues Load Request

cache

memory

cachecache

data
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Bus

Processor Issues Load Request

Bus

cache

memory

cachecache

data

Gimme
data
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cache

Bus

Memory Responds

Bus

memory

cachecache

data

Got your 
data right 

here data
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cache

Bus

Memory Responds

Bus

memory

cachecache

data

Got your 
data right 

here 

data
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Bus

Processor Issues Load Request

memory

cachecachedata

data

Gimme
data
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Bus

Processor Issues Load Request

Bus

memory

cachecachedata

data

Gimme
data
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Bus

Processor Issues Load Request

Bus

memory

cachecachedata

data

I got 
data

Tuesday, February 28, 12



CS390C: Principles of Concurrency and Parallelism 37

Bus

Other Processor Responds

memory

cachecache

data

I got 
data

datadata
Bus
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Bus

Other Processor Responds

memory

cachecache

data

datadata
Bus
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Bus

Other Processor Responds

memory

cachecache

data

datadata
Bus
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Modify Cached Data

Bus

data

memory

cachedata

data

(1)
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Modify Cached Data

Bus

data

memory

cachedata

data

data

(1)
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memory

Bus

data

Modify Cached Data

cachedata

data
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memory

Bus

data

Modify Cached Data

cache

What’s up with the other 
copies?

data

data
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Cache Coherence

● We have lots of copies of data
− Original copy in memory 

− Cached copies at processors

● Some processor modifies its own copy
− What do we do with the others?

− How to avoid confusion?
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Write-Back Caches

● Accumulate changes in cache
● Write back when needed
− Need the cache for something else

− Another processor wants it

● On first modification
− Invalidate other entries

− Requires non-trivial protocol … 
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Write-Back Caches

● Cache entry has three states
− Invalid: contains raw seething bits

− Valid: I can read but I can’t write

− Dirty: Data has been modified
● Intercept other load requests

● Write back to memory before using cache
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Bus

Invalidate

memory

cachedatadata

data
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Bus

Invalidate

Bus

memory

cachedatadata

data

Mine, all 
mine!
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Bus

Invalidate

Bus

memory

cachedatadata

data

cache

Uh,oh
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cache
Bus

Invalidate

memory

cachedata

data

Other caches lose read permission

Tuesday, February 28, 12



CS390C: Principles of Concurrency and Parallelism 50

cache
Bus

Invalidate

memory

cachedata

data

Other caches lose read permission

This cache acquires write permission

Tuesday, February 28, 12



CS390C: Principles of Concurrency and Parallelism 51

cache
Bus

Invalidate

memory

cachedata

data

Memory provides data only if not present 
in any cache, so no need to change it now 

(expensive)

(2)
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cache
Bus

Another Processor Asks for Data

memory

cachedata

data

(2)

Bus
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cache data
Bus

Owner Responds

memory

cachedata

data

(2)

Bus

Here it is!
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cachedata
Bus

Owner Responds

memory

cachedata

data

(2)

Bus

Here it is!
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Bus

End of the Day …

memory

cachedata

data

(1)

Reading OK, no writing

data data
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Mutual Exclusion

● What do we want to optimize?
− Bus bandwidth used by spinning threads

− Release/Acquire latency

− Acquire latency for idle lock
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Simple TASLock 

● TAS invalidates cache lines
● Spinners
− Miss in cache

− Go to bus

● Thread wants to release lock
− delayed behind spinners
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Test-and-test-and-set

● Wait until lock “looks” free
− Spin on local cache

− No bus use while lock busy

● Problem: when lock is released
− Invalidation storm …

Tuesday, February 28, 12
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Local Spinning while Lock is Busy

Bus

memory

busybusybusy

busy
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Bus

On Release

memory

freeinvalidinvalid

free
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On Release

Bus

memory

freeinvalidinvalid

free

miss miss

Everyone misses, 
rereads

(1)
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On Release

Bus

memory

freeinvalidinvalid

free

TAS(…) TAS(…)

Everyone tries TAS

(1)
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Problems

● Everyone misses
− Reads satisfied sequentially

● Everyone does TAS
− Invalidates others’ caches

● Eventually quiesces after lock acquired
− How long does this take?  
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Measuring Quiescence Time

P1

P2

Pn

  
  

  

X = time of ops that don’t 
       use the bus
Y = time of ops that cause 
        intensive bus traffic

In critical section, run ops X then ops Y. As long as 
Quiescence time is less than X, no drop in performance. 

By gradually varying X, can determine the exact time 
to quiesce.
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Quiescence Time

Increses 
linearly with 
the number of 
processors for 
bus architecturetim

e

threads
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Mystery Explained

TAS lock

TTAS lock

Idealtim
e

threads
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Mystery Explained

TAS lock

TTAS lock

Idealtim
e

threads Better than TAS 
but still not as 
good as ideal
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Solution: Introduce Delay

spin locktime
dr1dr2d

• If the lock looks free
• But I fail to get it

• There must be contention
• Better to back off than to collide again
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Dynamic Example: Exponential 
Backoff

time
d2d4d spin lock

 If I fail to get lock
− wait random duration before retry
− Each subsequent failure doubles 

expected wait
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Exponential Backoff Lock

public class Backoff implements lock { 
 public void lock() {
  int delay = MIN_DELAY;
  while (true) {
   while (state.get()) {}
   if (!lock.getAndSet(true))
    return;
   sleep(random() % delay);
   if (delay < MAX_DELAY)
    delay = 2 * delay;
 }}}  

Tuesday, February 28, 12



CS390C: Principles of Concurrency and Parallelism 69

Spin-Waiting Overhead

TTAS Lock

Backoff locktim
e

threads
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Backoff: Other Issues

● Good
− Easy to implement

− Beats TTAS lock

● Bad
− Must choose parameters carefully

− Not portable across platforms
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Idea

● Avoid useless invalidations
− By keeping a queue of threads

● Each thread
− Notifies next in line
− Without bothering the others
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Anderson Queue Lock

flags

next

T F F F F F F F

idle
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Anderson Queue Lock

flags

next

T F F F F F F F

acquiring

getAndIncrement
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Anderson Queue Lock

flags

next

T F F F F F F F

acquiring

getAndIncrement
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Anderson Queue Lock

flags

next

T F F F F F F F

acquired

Mine!
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Anderson Queue Lock

flags

next

T F F F F F F F

acquired acquiring
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Anderson Queue Lock

flags

next

T F F F F F F F

acquired acquiring

getAndIncrement
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Anderson Queue Lock

flags

next

T F F F F F F F

acquired acquiring

getAndIncrement
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acquired

Anderson Queue Lock

flags

next

T F F F F F F F

acquiring
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released

Anderson Queue Lock

flags

next

T T F F F F F F

acquired
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released

Anderson Queue Lock

flags

next

T T F F F F F F

acquired

Yow!
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Anderson Queue Lock

class ALock implements Lock {
 boolean[] flags={true,false,…,false};
 AtomicInteger next
  = new AtomicInteger(0);
 ThreadLocal<Integer> mySlot;
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Anderson Queue Lock

public lock() {
 mySlot = next.getAndIncrement();
 while (!flags[mySlot % n]) {};
 flags[mySlot % n] = false;
}

public unlock() {
 flags[(mySlot+1) % n] = true;
}  
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released

Local Spinning 

flags

next

T F F F F F F F

acquired
Spin 
on 
my 
bit
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released

Local Spinning 

flags

next

T F F F F F F F

acquired
Spin 
on 
my 
bit

Unfortunately many bits share cache 
line
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released

False Sharing

flags

next

T F F F F F F F

acquired
Spin 
on 
my 
bit

Line 1 Line 2
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released

False Sharing

flags

next

T F F F F F F F

acquired
Spin 
on 
my 
bit

Line 1 Line 2

 Spinning thread 
gets cache 

invalidation on 
account of store 
by threads it is 
not waiting for
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released

False Sharing

flags

next

T F F F F F F F

acquired
Spin 
on 
my 
bit

Line 1 Line 2

 Spinning thread 
gets cache 

invalidation on 
account of store 
by threads it is 
not waiting for

 Result: 
contention
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released

The Solution: Padding

flags

next

T / / / F / / /

acquired

Line 1 Line 2

Spin 
on 
my 
line
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Performance

● Shorter handover than 
backoff

● Curve is practically flat
● Scalable performance

queue

TTAS
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Anderson Queue Lock

Good
−First truly scalable lock
−Simple, easy to implement
−Back to FIFO order (like Bakery)
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Anderson Queue Lock

Bad
−Space hog…
−One bit per thread  one cache line 

per thread
●What if unknown number of threads?
●What if small number of actual contenders?
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This work is licensed under a Creative Commons Attribution-
ShareAlike 2.5 License. 

• You are free:
– to Share — to copy, distribute and transmit the work 
– to Remix — to adapt the work 

• Under the following conditions:
– Attribution. You must attribute the work to “The Art of 

Multiprocessor Programming” (but not in any way that 
suggests that the authors endorse you or your use of the 
work). 

– Share Alike. If you alter, transform, or build upon this work, 
you may distribute the resulting work only under the same, 
similar or a compatible license. 

• For any reuse or distribution, you must make clear to others the 
license terms of this work. The best way to do this is with a link 
to
– http://creativecommons.org/licenses/by-sa/3.0/. 

• Any of the above conditions can be waived if you get permission 
from the copyright holder. 

• Nothing in this license impairs or restricts the author's moral 
rights. 
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