
CS 353 Project 2
Deterministic Scheduler

Dohyeong Kim

Deterministic Scheduler

● Goal
○ Always execute a concurrent program in the exact

same order.
○ Execute one thread at a time.

● Implementation details
○ Global Lock
○ Next Thread

Global Lock

● One global mutex lock for all threads.
● Only the thread holding the lock can be

executed.
○ Every thread should acquire the lock before it begins

its own execution.
■ e.g. Before a new thread starts, before a thread

wakes up from waiting, ...

○ Every thread should release the lock before it ends
or pause its own execution.
■ e.g. Before a thread finishes, before a thread

waits for a mutex, ...

Next Thread

● Only the selected next thread can hold the
global lock.
○ If current thread is not the selected next thread,

wait till current thread is selected.

● LOCK(GL)
○ while (true)

 PLOCK(GL)
 if (currentThread == nextThread)
 break;
 else
 PRELEASE(GL);

Next Thread

● Every thread should select a next available
thread before it releases the global lock.
○ The selected thread should be available to execute.

■ it should not be waiting for a mutex or another
thread.

Algorithm

● Enter a thread / a new thread starts
○ LOCK(GL)
○ // begin execution

● Leave a thread / a thread finishes
○ // select a next available thread

○ UNLOCK(GL)

○ // terminate execution

Algorithm

● pthread_join(joinee)
○ if (joinee is still running)

■ // select a next available thread
■ UNLOCK(GL)
■ // wait till joinee is terminated
■ LOCK(GL)

Algorithm

● pthread_mutex_lock(L)
○ if (L is held by another thread)

■ // select a next available thread
■ UNLOCK(GL)
■ // wait till L is not held by any other threads
■ LOCK(GL)
■ LOCK(L) // this should always succeed

○ else
■ LOCK(L)

● pthread_mutex_unlock(L)
○ UNLOCK(L)

Algorithm

● sched_yield()
○ if (another available thread exists)

■ // select a next available thread
■ UNLOCK(GL)
■ LOCK(GL)

● You may also need to implement
○ A list of threads
○ Status of threads

■ e.g. available, waiting for mutex, …
○ Status of mutex locks

■ e.g. available, held by a thread, …
○ ...

Code template

● Code template is available on the project
web page.

● You can modify everywhere in chess.cpp
■ Please ignore // TODO comment.

Code template

● chess.cpp re-defines pthread functions.
○ When a test program call pthread functions it will call

the function in chess.cpp instead of the original
pthread functions.

○ If you need to use original pthread functions inside
chess.cpp, use original_pthread_xyz() instead.

■ e.g. original_pthread_mutex_lock() instead of

pthread_mutex_lock(),

original_pthread_mutex_unlock() instead of
pthread_mutex_unlock(), ...

Questions ?

If you have more questions while doing
projects, use piazza

http://www.piazza.com/purdue/fall2014/cs353

