
Framework for Instruction-level Tracing and Analysis of
Program Executions

Sanjay Bhansali Wen-Ke Chen Stuart de Jong Andrew Edwards Ron Murray
Milenko Drinić Darek Mihǒcka Joe Chau

Microsoft Corporation, One Microsoft Way, Redmond, WA
{sanjaybh,wenkec,sdejong,andred,ronm,mdrinic,darekm,joechau}@microsoft.com

Abstract
Program execution traces provide the most intimate details of a pro-
gram’s dynamic behavior. They can be used for program optimiza-
tion, failure diagnosis, collecting software metrics like coverage,
test prioritization, etc. Two major obstacles to exploiting the full
potential of information they provide are: (i) performance overhead
while collecting traces, and (ii ) significant size of traces even for
short execution scenarios. Reducing information output in an exe-
cution trace can reduce both performance overhead and the size of
traces. However, the applicability of such traces is limited to a par-
ticular task. We present a runtime framework with a goal of collect-
ing a complete, machine- and task-independent, user-mode trace of
a program’s execution that can be re-simulated deterministically
with full fidelity down to the instruction level. The framework has
reasonable runtime overhead and by using a novel compression
scheme, we significantly reduce the size of traces. Our framework
enables building a wide variety of tools for understanding program
behavior. As examples of the applicability of our framework, we
present a program analysis and a data locality profiling tool. Our
program analysis tool is a time travel debugger that enables a de-
veloper to debug in both forward and backward direction over an
execution trace with nearly all information available as in a regu-
lar debugging session. Our profiling tool has been used to improve
data locality and reduce the dynamic working sets of real world
applications.

Categories and Subject DescriptorsD.2.5 [Software engineer-
ing]: Testing and debugging

General Terms Algorithms, design, verification

Keywords Code emulation, tracing, callback, code replay, time-
travel debugging

1. Introduction
The growing complexity of modern software systems makes it in-
creasingly challenging for software designers, implementers, and
maintainers to understand system behavior. Program execution
traces provide the most detailed description of a program’s dy-
namic behavior. Consequently there has been a lot of interest on

[copyright notice will appear here]

gathering and analyzing program execution traces to optimize pro-
grams, diagnose failures, and collect software metrics [1, 19, 24].
Traditionally, these techniques have been based on instrumenting
a program. The instrumentation can be done either at design time
by programmers, build time by a compiler, post-build time by a
binary translator [1, 21, 22], or at run time using dynamic binary
translation [2, 4, 6, 10, 19].

There exist two major obstacles in program analysis and opti-
mizations when they are based on execution traces. First, running
an instrumented binary or executing a program under a runtime
entails significant execution overhead. With a flexible instrumenta-
tion framework [1, 21, 22] and careful choices of instrumentation
points, one can reduce execution overhead. Data collected this way
is relevant to a particular task, e.g. program optimization [15, 16]
or diagnosis [1]. Second, sizes of execution traces are significant
even for a short execution scenario and after applying selected com-
pression algorithms [24]. Sizes of traces can be reduced by limiting
output information. However, the applicability of such traces is also
limited to a particular task.

In this paper we describe a runtime framework with the follow-
ing goals:

a) collect a complete trace of a program’s user-mode execution,

b) keep the tracing overhead for both space and time low, and

c) re-simulate the traced execution deterministically based on the
collected trace with full fidelity down to the instruction level.

Our framework consists of two main components: a run-time en-
gine called Nirvana and a trace recording and retrieving facility
called iDNA (Diagnostic infrastructure using Nirvana). Our ap-
proach does not require any static instrumentation of the code and
makes no assumptions of the analysis task for which the trace will
be used. The run-time engine uses a combination of dynamic bi-
nary translation and interpretation to emulate the instruction set of
a target machine. During emulation, it inserts callbacks to a client
application that records information that is sufficient to re-simulate
the application’s execution at a later time. Recorded information
can include attributes of the guest instruction being executed (e.g.
the address of the instruction, the address and the read or written
value of a memory location if it is a memory-accessing instruc-
tion), events like module loads, exceptions, thread creation, etc. It
can also include information about where to locate symbolic in-
formation, if available. However, Nirvana itself does not require
source code or additional symbolic information for code discovery.
It can execute dynamically generated code. It also addresses issues
of self-modifying code that arise in JIT-compiled and scripting lan-
guages. Nirvana supports multi-threaded applications running on
multiple processors.

VEE 2006 1 2006/3/22



���������

	

��������

�����

���	
�����
������

�����

�
�
�
��
��
� 
!"
#�

���	
�����
$��%��

&'() &*+,)-
.)/011)*

2-+334)5

678)*

9:;<= >=<?:@ABC 9:;<= >=DEAFGH;IA?B

���J���

���J���

AKLM NHA=BIE

Figure 1. Components of our tracing framework.

Our framework is designed for tracing applications executed
in user mode rather than the operating system: the claim to full
fidelity refers to the behavior observable in user mode only. Since
we do not trace kernel mode execution, our system in its current
form would be of limited use to analyze operating system bugs.
However, any pertinent changes in kernel mode operation that
can affect an application’s behavior are captured. For example,
consider an asynchronous I/O that results in a callback to the
application. Although we do not capture the I/O that happens in
kernel mode, we do detect the callback in user mode and any
subsequent instruction that reads the results of the I/O operation
will get logged. Our approach is based entirely on software; it
does not require any special hardware or changes to an operating
system1.

The advantages of such an approach are:

• It is not necessary to anticipate a priori all events of interest and
have appropriate instrumentation logic for them inserted in the
code at trace collection time. Instead, we record a complete pro-
gram execution trace that can be analyzed multiple times from
different perspectives by building different trace analyzers.

• The trace can be gathered on demand by attaching to a running
process. There is no performance overhead of the running pro-
cess when tracing is off.

• The trace can be collected on one machine and re-simulated
on another machine or even multiple machines, which allows
one to harness multi-processing capabilities of more powerful
machines to analyze traces efficiently. It also allows one to
perform live analysis by streaming the results to a different
machine. Other systems requiring re-simulation of a trace must
do it on the same machine (e.g. [14]).

• It reduces the software engineering effort for building and de-
bugging new tools for trace analysis. Since all tools share a
common infrastructure for trace gathering and retrieving, tool
writers can focus on their analysis engines instead of optimiz-
ing and debugging their tracing infrastructures.

The trade-off for this flexibility is a performance overhead both
in time and space. Our current performance overhead is approxi-
mately a12 − 17× slowdown of a cpu-intensive user-mode appli-
cation. This makes it impractical to have it turned on all the time in

1 Although a minor change in the operating system can make it easier for
gaining control of applications (see Section 2)

a production environment. However, the overhead is not prohibitive
and in many desktop applications that are not cpu-bound it is prac-
tical to run applications in full tracing mode all the time and get a
rich repository of traces for dynamic analysis. To demonstrate the
practical applicability of this approach, we describe two tools that
we have built on our framework:

1) a time traveling debugger, and

2) a data-locality profiling tool that collects and analyzes traces to
help optimize data layout for better locality.

The novel contributions of our paper are as follows:

• A compression scheme that enables us to get a complete
instruction-level trace with low space overhead and modest run-
time overhead. Our scheme yields a compression rate of about
0.5 bits per dynamic instruction instance. It strikes a balance
between trace collection and re-simulation speed (affected by
compression and decompression) on one side, and compression
rate on the other side. While it is possible to get much better ab-
solute compression rates, the runtime overhead for compression
and decompression would be quite significant.

• An event-driven run-time instrumentation interface that makes
it very easy to build new tools for tracing and analysis and
to re-simulate a previously recorded execution. Unlike other
systems, our system allows instrumentation to be done either at
tracing time or during replay thereby providing a very flexible
framework for building offline analysis tools.

• A set of engineering decisions that enables building practical
tools on top of our framework, which includes:

A code cache management scheme that scales well with
multiple threads and processors.

A technique to gather traces of multi-threaded applications
on multi-processors with very little additional overhead.

A practical technique to handle self-modifying code.

The rest of the paper is organized as follows: Section 2 describes
the architecture of our system and goes into details of our run-time
engine and its interface. Section 3 describes the trace recording,
compression, and playback components. Section 4 gives a brief de-
scription of two applications we have built on top of this infrastruc-
ture. Section 5 presents experimental results to show the time and

VEE 2006 2 2006/3/22



Original (guest) code:
mov eax,[ebp+4]

Translated (host) code:
mov edx, nirvContext._ebp
add edx, 4 ; 2nd argument7→ address of memory accessed
mov ecx, nirvContext ; 1st argument7→ pointer to NirvContext
push 4 ; 3rd argument7→ number of bytes accessed
call MemRefCallback ; calling convention assumes ecx and edx hold 1st and 2nd argument
mov eax, [edx]
mov nirvContext._eax, eax ; update NirvContext with new value

Figure 2. An example of Nirvana’s binary translation of a guest instruction.

space overheads of recording and re-simulating traces. Section 6
describes related work.

2. Nirvana Runtime Engine
In this section, we describe our runtime engine called Nirvana that
is the core component of our tracing and recording framework (Fig-
ure 1). Our framework is organized as a 3-layered architecture. The
bottom layer is the Nirvana runtime engine that simulates a guest
process (i.e. the application being monitored). The middle layers
(iDNA Trace Writer and iDNA Trace Reader) use the simulator to
record and then re-simulate the guest process. The upper layer con-
tains the task-specific iDNA client, such as a debugger, which takes
information in the trace and presents it to the user.

Nirvana simulates a given processor’s architecture by break-
ing the processor’s native instructions (called guest or original
instructions/code hereafter) into sequences of lower level micro-
operations (called host or translated instructions/code hereafter)
that are then executed. Breaking the instructions into micro-
operations allows Nirvana to insert instrumentation into each stage
of the instruction’s data path. For example, it may insert instrumen-
tation at the instruction fetch, memory read, and memory write.

Nirvana runs on top of the operating system in user mode. It pro-
vides an API that can be used to either launch an application under
its control or attach to a running process. We have implemented two
mechanisms by which Nirvana can gain control of an application
being monitored. The first mechanism relies on a small set of minor
changes to the OS that allows Nirvana to register for control on a
particular process. These changes are identical to the changes re-
quired to give debugger notifications and should be straightforward
to support on any operating system. Whenever the OS schedules
one of the threads of that process, it dispatches a call to Nirvana and
provides the starting address and register context for that thread.
The second mechanism relies on a driver that traps all transitions
from kernel to user mode and transfers control to Nirvana.

2.1 Binary Translation

Upon gaining control of an application, Nirvana emulates the in-
struction stream by breaking the guest instructions into sequences
of simpler operations. Figure 2 illustrates an example of binary
translation performed by Nirvana for a single instruction. This ex-
ample shows the code generated when a client registers for no-
tification on every memory access (see Section 2.4). The origi-
nal instructionmov eax,[ebp+4] reads a value from the mem-
ory. During translation Nirvana generates additional code such
that it can notify the client about the event. Nirvana keeps on the
side the client’s execution context (NirvContext). In order to ex-
ecute the client instruction, Nirvana performs the memory arith-
metic operation on the client’s execution context stored in variable
nirvContext. Then, it prepares registers for the client’s callback

function. After the callback function, the instruction is executed
and Nirvana updates the client’s execution context.

This approach to binary translation in Nirvana differs from other
binary translation systems such as [2, 6]:

• The simpler operations used by Nirvana are supported by most
architectures. This approach is similar to that used in Valgrind
[19] and makes it easy to extend our system to run on other host
architectures.

• Provides the ability to monitor code execution at instruction and
sub-instruction level granularity with low overhead.

• Provides a framework that works at process level as opposed to
the entire system (operating system and all applications) [14].

Nirvana’s goal is to provide a flexible environment and rich set
of dynamic instrumentation points such that a full execution trace
can be recorded. This includes providing access to each executed
instruction as well as each stage of the execution of an instruc-
tion, and enabling triggering of instrumentation callbacks by events
at the instruction or sub-instruction level. Consequently, running
translated code during emulation is much slower than native execu-
tion.

Nirvana supports a pure interpretation mode as well as a trans-
lation mode with code caches [20]. Code caches are used to store
translated code so that if the program reuses an execution path, the
binary translator can reuse the translated code. By default, Nirvana
uses a code cache. However, under certain cases, described later,
Nirvana can switch to the interpretation mode.

2.2 Code Cache Management

Three important design issues that affect the code cache perfor-
mance are:

(i) number of code caches,

(ii ) replacement policy, and

(iii ) size of code cache.

Ideally, there should be a single code cache that is shared by all
threads running on multiple processors. This produces the smallest
code working set. However, such a policy creates contention on a
multi-processor machine while the code cache is being populated.
There are techniques that can reduce the contention [20]. However,
they create additional complications and performance overheads in
code cache management such as code fragmentation and generation
of relocatable code. On the other hand, the simplest approach of
having a per-thread code cache does not scale for applications that
have tens or hundreds of threads.

Nirvana uses a hybrid approach. The number of code caches is
bounded byP + δ whereP is the number of processors andδ is a
small fixed number. Each thread uses a dedicated code cache tied

VEE 2006 3 2006/3/22



Event name Description
TranslationEvent when a new instruction is translated
SequencingEvent start of a sequence point and other special events
InstructionStartEvent start of every instruction
MemReadEvent memory read
MemWriteEvent memory write
MemRefEvent memory reference
FlowChangeEvent flow control instruction (branch, call, ret)
CallRets calls and returns
DllLoadEvent load of a new module

Table 1. Sample callback events supported by Nirvana.

to the processor it is running on. When Nirvana detects a thread
voluntarily leaving the code cache (e.g., making a system call), it
saves the state of that thread in thread-local storage and returns
the code cache to a pool where it is available for reuse by the next
thread scheduled on that processor. A thread does not leave its code
cache upon a timer interrupt, or while it is executing client callback
code, even though the OS may place it in a wait state. In such
cases the code cache cannot be reused, and Nirvana will use one
of the extraδ code caches to simulate another thread’s execution if
there is one available. If none of the extra code caches are available,
Nirvana falls back to interpretation on that thread.

We use a default code cache size of 4 MB, which can be overrid-
den by a client. This cache is used to hold both the translated code
as well as the mapping tables to map an original instruction to its
translated copy in the code cache [20]. The two regions are grown
in opposite directions from either end of the code cache and when
space gets exhausted, it triggers a code cache flush. While more so-
phisticated code cache flushing policies can be implemented [13],
we did not need to go beyond our simple scheme since empirical
data on our target applications show that this policy in combination
with other parameters of our code cache management works quite
well: the time spent in JIT translation is typically between 2% and
6% of the total tracing time.

2.3 Self-Modifying Code

Self-modifying code is typically found in scripting languages and
high-level language virtual machines (VM) (e.g. Microsoft’s Com-
mon Language Infrastructure (CLI) and Java VM’s). They use JIT
compilation to dynamically compile code in their own code blocks
which can be freed and reused. Nirvana uses several techniques
to detect and handle self-modifying code. For detection, the tech-
niques used are snooping on specific system calls and/or inserting
checks at specific execution points. When self-modifying code is
detected, Nirvana handles it by either flushing the code cache and
re-translating code or interpreting.

For the correct execution on certain platforms (such as IA64),
it is necessary to insert a special OS call to indicate when a code
block is modified. Nirvana snoops for these calls and triggers a code
cache flush when it detects such a call. The default behavior is not
to rely on the presence of such calls. However, it is an optimization
that a client can configure Nirvana to use instead of the more
expensive detection schemes.

On older implementations of high-level VMs and for applica-
tions where it is not known whether there are other instances of self-
modifying code, Nirvana monitors the page protection of the code
page. If it is a non-writable page, Nirvana takes that to be a strong
hint that the code is not modifiable, marks that page as non-writable
and translates all code from that page as usual. If it detects that code
is from a writable page, Nirvana assumes that the page could be
self-modifying. For such code, it inserts a self-modifying check at
specific execution points (e.g. instruction boundaries) to make sure

that the code has not been modified since it was translated. Nirvana
also continually snoops on system calls to check whether the page
protection of a code page is changed from non-writable to writable,
and triggers a code cache flush if so. Finally, it monitors the set
of code cache flushes and if the rate is above a threshold, it sets all
pages to be writable and falls back on the slower code that explicitly
checks for self-modification. Another alternative is to fall back on
interpretation for code pages that are found to be flushed too often.
In our experiments we have not encountered such a situation.

2.4 Nirvana API

Nirvana’s API set is simple and compact and was designed to make
it very easy to write applications that can dynamically instrument
and observe program behavior. It uses an event-based model that
clients can use to register callbacks. There are just two basic func-
tions required for tracing an application:

SetRuntimeOptions() This API is used to override
any default parameter, like
code cache size, interpretation
mode, etc.

RegisterEventCallback() This is the core function
that instructs Nirvana to
insert a callback to the
client on specific events.

A sample set of events is presented in Table 1. Note that an event
namedSequencingEvent encompasses all special events on the
system which include system calls, exceptions, thread creations,
thread creations, etc. A parameter in the callback indicates which
specificSequencingEvent triggered the notification.

In addition, we have implemented APIs that facilitate an emula-
tion of a specific instruction stream that is useful e.g. to re-simulate
a captured execution trace:

CreateVirtualProcessor() Create a virtual processor
to emulate a particular ISA

DeleteVirtualProcessor() Cleanup and release
resources held by the
virtual processor

SetVirtualProcessorState() Set register state for the
virtual processor

GetVirtualProcessorState() Query register state for the
virtual processor

ExecuteVirtualProcessor() Begin emulation of the
virtual processor

Nirvana also provides some convenience utility functions to log
information robustly and efficiently that we do not describe in this
paper. Figure 3 shows a sample Nirvana client that can be used to

VEE 2006 4 2006/3/22



void __fastcall MemCallback(NirvContext *pcntx, void *pAddr, void* nBytes)
{

X86REGS *pregs = (X86REGS *)pcntx->pvCpuRegs;
Log(pregs->InstructionPointer(), pAddr, nBytes);

}

// Initialize is a special routine that is called once Nirvana launches
// or attaches to a process.

extern ’’C’’ __declspec(dllexport) bool __cdecl Initialize()
{

if (InitializeNirvanaClient() != FALSE)
{

RegisterEventCallback(MemRefEvent, MemCallback);
}

}

Figure 3. Sample Nirvana client code to get a trace of all memory references made by an application

record references to all memory addresses that are read or written
to by a guest application. As can be seen it is trivial to write in less
than half a page of code a powerful client using Nirvana’s API.

3. iDNA Tracing and Re-Simulation
In this section we present the tracing component called iDNA.
iDNA consists of two main components: iDNA Trace Writer that
is used during trace recording and iDNA Trace Reader that is used
during re-simulation from a recorded trace. Figure 1 shows the in-
teraction between iDNA components, Nirvana, and the guest appli-
cation being analyzed. The guest process is simulated by Nirvana,
which takes over the user mode execution of the guest process for
each thread. The simulator instruments the code stream with call-
backs that are defined in the iDNA Trace Writer. The callbacks
gather information about the execution that the iDNA Trace Reader
needs to re-simulate later. This information is stored in a trace file.
Each execution trace contains all the information necessary to re-
construct the entire execution process including the executed code
bytes (see /refsec:IDNA:compr). iDNA also records special execu-
tion events such as exceptions and module loads. This way, one can
re-simulate the trace with full fidelity down to the instruction level.

The iDNA Trace Reader uses Nirvana to re-simulate a pro-
gram’s execution from the information in the trace. As in the traced
execution, the simulator uses callbacks into iDNA Trace Reader to
request code and data stored in the trace. A trace-analysis client
application interacts with the iDNA Interface. The iDNA Interface
provides functions to enable efficient transitions between execu-
tion points in a trace in both forward and backward directions. It
also provides functions for navigation between arbitrary execution
points in the trace. Table 2 presents a sample of the iDNA API for
navigation through a trace file. This API is based on a standard
debugger API enhanced with functionality specific for backward
execution. iDNA automatically reconstructs the state of execution
for each execution point and provides it on demand to the client.
For example, at any point in time a trace-analysis client application
can retrieve the register state of a thread or the value of an address
in memory.

Although iDNA Trace Writer achieves very good compression
during recording, in many cases a complete execution trace of an
application from the beginning to end is not needed. For example,
when analyzing program failures one usually is interested only in
the last portion of the execution history to diagnose the failure. To
support such scenarios iDNA uses a circular (or ring) buffer whose
size is specified by the user. iDNA records the trace into the ring

buffer, and when the buffer is full it goes back to the beginning of
the buffer and overwrites the data there. This feature enables the
client application to significantly reduce the trace size for many
tasks and yet capture enough information for analysis. The default
ring buffer size is 16MB, which is sufficient to debug many bugs.

In the remainder of this section we describe further details of
recording and re-simulating of execution traces.

3.1 Trace Recording for Re-simulation

Conceptually, the log file holds all the code bytes, registers, and
data values at every dynamic instance of instructions during the
execution. Recording all of that information would not be practi-
cal from a time or space standpoint, so iDNA employs multiple
compression techniques to drastically reduce the amount of data it
needs to record. These techniques take advantage of the fact that
we can use Nirvana during re-simulation to regenerate the execu-
tion state on each thread.

The iDNA Trace Writer logs all the inputs the Nirvana simu-
lator will need to re-simulate the program. The inputs include the
original (guest) code bytes, the register state after a kernel-to-user
transition, the register state after certain special instructions whose
effects are time or machine specific (e.g. the RTDSC and CPUID
instructions on IA-32), and the memory values read by the execut-
ing instructions.

With the inputs to the simulator recorded in the log file, the
iDNA Trace Reader can feed Nirvana an instruction pointer (IP)
and the current register state of a thread at an instance of the
instruction. Nirvana then starts executing from that IP in the same
way it does during live execution. Because Nirvana is simulating
instructions, it automatically keeps the register and IP state current
for each instruction that executes.

3.1.1 Data Cache Compression

Employing Nirvana during re-simulation to re-generate memory
and register data drastically reduces the amount of data the iDNA
Trace Writer needs to log to the trace file. iDNA Trace Writer still
needs to log all the values read/written by the instruction stream
from/to memory. Logging every one of those reads creates exces-
sively large logging overhead. In order to reduce the overhead, we
have designed a compression algorithm that limits the amount of
data we need to store in the trace file. The key insight for reduc-
ing the data size is to recognize thatnot all memory values that are
read need to be recorded; we only need to record those memory
reads that cannot be predicted.

VEE 2006 5 2006/3/22



API name Description
ExecuteForwared() Execute forward the specified number of steps or until the next breakpoint.
ExecuteBackwards() Execute backward the specified number of steps or until the previous breakpoint.
JumpToPosition() Set the iDNA Trace Reader execution state to the specified position.
SetPositionBreakPoint() Set a breakpoint to a specific position in the trace.
SetExecutionBreakPoint() Set a breakpoint to a specific execution address.
SetMemoryBreakPoint() Set a breakpoint to an access of a specific memory location.
SetEventBreakPoint() Set a breakpoint on a particular event (e.g. module load, exception, etc.).
ClearBreakPoint() Remove one or more breakpoints.
FindPrevWrite() Find the previous write to a specified memory location relative to the current position.
FindNextWrite() Find the next write to a specified memory location relative to the current position.
FindPrevRead() Find the previous read from a specified memory location relative to the current position.
FindNextRead() Find the next read from a specified memory location relative to the current position.

Table 2. iDNA API functions that facilitate navigation through a trace.

One of the components of the iDNA Trace Writer is a tag-less
direct mapped cache for each guest process thread. The cache is
designed to hold the last accessed value for memory accesses for
the thread. The cache is indexed by the accessed address. The cache
buffer is initialized to all zeros. Every time an instruction reads a
value from memory, the value is compared to its mapped position
in the cache. The value is logged in the trace file only if the cached
value is different from the actual value read from memory. Reading
a different value from a memory location compared to previously
written value to the same location can happen due to a change
to the memory location during kernel mode execution, DMA, or
by a thread running on a different processor. Otherwise, a counter
is incremented that keeps track of how many reads are correctly
predicted. When a value does not match the cached value, the cache
is also updated. The read prediction rate is enhanced even further by
taking all data values written by the instruction stream and writing
them directly to the cache. The iDNA Trace Reader uses the same
type of cache during re-simulation. The only difference is that the
iDNA Trace Reader uses the trace file instead of the monitored
application to update the cache when the instruction stream read
corresponds to a logged read. The reader re-directs the simulator’s
instruction and data fetch operations to point to the stored code
bytes and data cache buffer.

The example in Figure 4 shows how our data cache works to
eliminate the need to store data values in the trace file2. The iDNA
Trace Writer will receive notification when the address in memory
representing bothi and j are written. Those values are always
stored directly into the cache. The reads ofi and j in the loop are
always predicted correctly, since their cache values are updated by
previous writes. However, after the call tosystemcall(), when the
value of i is read it is not the predicted value of 46 (presumably
because it changed during the system call). So in this example, the
iDNA Trace Writer will have one record fori with its initial value
of 1 and a successful prediction count of 11 (sincei was predicted
correctly 11 times) followed by another record fori with a value of
0. It will not record any further values for eitheri or j as long as their
cached values match the observed values. During re-simulation,
the iDNA Trace Reader reads the initial value for each memory
location from the trace log and decreases the prediction count each
time the memory location is read. When the count goes to 0, it gets
the new value for that location from the next record in the trace file.

3.2 Scheduling

iDNA records information provided by Nirvana into a file on disk.
In order to avoid introducing contention between different threads

2 We assume in this example that the values of i and j are not in registers,
but read directly from memory.

i = 1;
for (j = 0; j < 10; j++)
{

i = i + j;
}
k = i; // value read is 46
system_call();
k = i; // value read is 0

Figure 4. An example that illustrates data compression.

��

��

�

� �

�

� �

	



�

������ ������

������� ������� ������� �������
�

Figure 5. Sequencing between two threads.

of the process and to reduce I/O, iDNA buffers the data for each
thread independently in different streams in shared memory. The
buffers are flushed to disk asynchronously either when the buffer
is full or the thread or process terminates. Within each stream we
record the data needed to simulate the program execution from the
trace file at a later time. The data within the file represents the se-
quence of instructions executed while recording, and each executed
instruction is a unique point in time. Because each thread’s execu-
tion is independently recorded, at certain events within the program
execution the iDNA Trace Writer creates ordering points orkey
frames. Key frames enable the reader to know how sequences of
instructions relate to each other across multiple threads.

3.2.1 Instruction Sequencing

Key frameordering is generated from an incrementing counter that
is global to the guest process. A key frame is logged to a thread’s
stream whenever:

• the thread enters or leaves user mode execution,

• a synchronization operation is executed, or

• a memory barrier operation is executed.

A synchronization operation is any instruction or combination of
instructions that is used to serialize execution. For example on
x86 architectures, instructions that have alock prefix and the
xchg instruction (which is implicitly atomic) are synchronization
operations.

VEE 2006 6 2006/3/22



Between two key frames is an instruction sequence. Within a
single thread all instructions in a sequence are ordered by when
they are executed. Between threads they are ordered by the counter
stored in the key frame at the start and end of each instruction
sequence. We generate key frames, as opposed to using a counter
to individually order every instruction, to save on both space in our
log file and logging time overhead.

In the example shown in Figure 5, threadT1 has three key
frames: 1, 4, and 7. The first instruction sequence occurs between
frame 1 and 4. We denote this sequence asT1(1, 4). Using our
method we know that all instructions in sequenceT1(1, 4) are
executed beforeT2(5, 6) andT2(6, 8) on the second thread. This is
because the start of those sequences begin after sequenceT1(1, 4)
ends. However, because execution onT1(1, 4) overlapsT2(2, 3)
andT2(3, 5) we cannot order the instructions between threads on
those sequences. This is one reason why generating a key frame on
every synchronization operation is important. It ensures that thread
sequencing events in the code that order statements are preserved
during re-simulation.

In addition to these key frames, the iDNA Trace Writer also gen-
erates checkpoint frames (also called key frames hereafter) at reg-
ular intervals (currently after 5 MB increment of the logged data
size) where it records the thread context (values of all registers,
flags, floating point state) and flushes the data cache. These check-
point frames are not necessary for correct re-simulation, but are an
optimization that allows re-simulation to begin from random places
in the trace instead of having to always go to the beginning of the
trace.

With this method we can get a total ordering of instructions
on a single processor system by tracking context-swaps between
threads. On multi-processor systems, no total ordering exists be-
cause instructions on different processors run concurrently. How-
ever we guarantee that all synchronization and memory barrier in-
structions are totally ordered. This is sufficient to analyze an execu-
tion trace for certain kinds of data races, e.g. by detecting missing
synchronization instructions when accessing a shared memory lo-
cation.

3.3 Sequence-Based Scheduling

The execution trace conceptually holds all the guest instructions ex-
ecuted in each guest process thread. The ordering of any particular
instruction during re-simulation is determined by what sequence it
is in. On multi-processor systems, it is not possible to determine
precise time ordering of the instructions based on their trace po-
sitions. Thus, the iDNA Trace reader implements a scheduler that
determines what instruction sequence is next to execute across all
the threads. We call this sequence-based scheduling.

As shown in Figure 6, the scheduler schedules all instructions
within a sequence before it moves onto the next sequence. The or-
dering is based on the sequencing counter number at the key frame
that starts the sequence. The resulting ordering of instructions is
likely to be different than the precise time ordering of instructions
during execution. However, the ordering of key events (kernel-user
transitions, instances of synchronization instructions, and instances
of memory barrier instructions) is preserved.

4. Applications
An efficient instruction level trace opens a whole new field of pos-
sible applications. We have deployed Nirvana internally within Mi-
crosoft and it is being used by other researchers and product groups
to build applications in security [9] and performance analysis. We
have built several applications that have also been deployed inter-
nally within Microsoft. We are going to describe two of them - time
travel debugging and data locality profiling. A third major applica-
tion is focused on finding bugs by analyzing traces, but a descrip-

tion of that is beyond the scope of this paper. All of these applica-
tions are in routine use by several product groups within Microsoft.

4.1 Time Travel Debugging

Time travel debugging is the ability to go arbitrarily forward and
backward in time in a debugger to debug a program. Time travel
debugging brings a whole new dimension to diagnosing and un-
derstanding a program since in addition to the typical “forward”
debugging experience, a programmer can now travel backwards
through the execution of their program to interesting points.

We have integrated this technology into a traditional debugger.
After loading a trace into the debugger, the user can travel to the
last exception that occurred in the trace, and then examine the
memory and register state at that instant in time. If the exception
was caused while de-referencing an invalid memory address, he
or she can set breakpoints on the memory location containing the
invalid address, and travel backwards to the point in time where
that memory was last written to before the exception. On the iDNA
level of abstraction, we go back to the first key frame before the
breakpoint, recreate the simulation state and re-simulate forward
to the breakpoint. From the user standpoint, it appears as if the
simulation is going seamlessly in the backward direction. Since
we have checkpoint frames at regular intervals, going backwards is
very efficient: in a debugger the response time for stepping back is
indistinguishable from the response time for going forward during
a live debugging. This can make diagnosing difficult bug almost
trivial. Note that the client application does not need to handle
issues related to positioning in the trace. All positioning is handled
by the iDNA layer. Table 2 presents the set of iDNA APIs that
facilitates navigation through a trace file.

The key functionalities we added to the debugger include:

• Querying the current “time” (i.e. the current position in the
trace)

• Stepping backwards

• Backwards code breakpoints

• Backwards data (read and/or write) breakpoints

• Running backwards (until a breakpoint)

• Jumping to a specific “time”

The first implementation of time travel debugging took about 3-
4 man-months of effort which includes the learning time to become
familiar with the debugger code base. Most of the effort in integra-
tion was to modify the debugger interface that queries for memory
values (which could contain code or data) at a given point in time.
The trace reader component provides the values of these code and
data values by time traveling back in time to the last place where
that memory value was updated. An additional 4-6 man-months of
effort was used to implement various optimizations to get good re-
sponse times for common debugging operations and make it robust
enough for deployment.

The integration of tracing with the debugger should have a dra-
matic impact on developer productivity when developers are de-
bugging non-deterministic bugs and/or bugs that are hard to repro-
duce. We have implemented several optimizations and indexes that
make it efficient to do common tasks during debugging like exam-
ining call stacks, local variables, stack values, and memory loca-
tions that are temporally close to the current position. With these
optimizations, the response time for most of these tasks is almost
the same as in a live debugger session.

4.2 Data Locality Profiling

The second application we developed is a tool called ClassRef,
which has been used to optimize how applications use dynamic

VEE 2006 7 2006/3/22



�
�
� �
� �
� �
� 	

 � �
 � �
� � �
� � �

�� �� ��

�����

���� !" ���# $" ���! " ���% " ���$ "

&' (' )' *' + ' ,' -' .' /' 0 ' 1' 2' 3' 4' 5' 6' 7

8�9�:;<��

Figure 6. Sequence based scheduling.

memory in a garbage collected environment. ClassRef takes advan-
tage of the fact that our trace contains all of the information about
what virtual memory addresses are referenced by an application.
Using that information, our tool displays reference data for objects
in the garbage collected heap. For a specified time period it shows
which fields in an application’s classes are referenced and which
instances of those classes are referenced. In addition it tracks down
potential memory leaks and maps that data back to the source code.

ClassRef has been used to find opportunities for improving data
locality. Improving data locality may involve implementing some
of the following solutions:

• Class re-factoring

Splitting a class

Removing fields

• Class layout improvements

• Nulling objects that are no longer referenced

• Changing allocation patterns to keep heavily referenced objects
together

For example, ClassRef may show that a field in a heavily used
base class is only used in one of its derived classes. In that case,
moving the field from the base to the derived class may result in
significant memory savings. ClassRef may also show a spike in the
number of uncollected and unreferenced objects in an application
while running in steady state. This may indicate that the applica-
tion is holding references to objects, preventing the garbage collec-
tor from doing its job. ClassRef has been used to help obtain sig-
nificant savings of dynamic working sets in real applications (un-
published report from an internal product that is currently under
development).

5. Experimental Results
Nirvana currently supports the x86 family of CPUs and is currently
being extended to support x64. Our tracing framework has been
used to gather traces on hundreds of program scenarios and is in
routine use by users to trace many different kinds of applications. In
this section, we present the effectiveness of our framework on a set
of benchmarks that consists of a SPEC2000 application, two desk-
top applications, Internet browser, a binary disassembly applica-
tion, and a C# application. We have chosen this set of benchmarks
in such a way that it contains representatives of applications that are
computation intensive (Gzip and SatSolver), user interface (UI) in-

tensive (Spreadsheet and Presentation), and I/O intensive (Internet
browser and DumpAsm3). SatSolver is an example of an applica-
tion with self-modifying code that our framework handles success-
fully. We conducted all the experiments on an Intel P4 processor on
2.2 GHz with 1GB RAM.

In Table 3, we present tracing overhead of our framework. We
compare execution times of benchmark applications running in
native mode with execution times under the tracing environment
of our framework. The overhead ranges from 5.66 to 17 times
the native execution times. Our framework exhibits the smallest
overhead with UI intensive applications. This low overhead is the
consequence of high volume of I/O operations, which means that
the processor is not utilized close to 100 %. The time to re-simulate
a traced application is currently about 3-4 times the cost of tracing.
We expect that this can be optimized to be on par with tracing
time. The cost during re-simulation is usually dominated by the
analysis task, so we have focused more on optimizing commonly
used operations during analysis instead of the raw re-simulation
time.

The compression rates of trace files yielded by our framework
are illustrated in Figure 7. We define the compression rate as the ra-
tio of the trace file size in bits and the number of executed instruc-
tions for each benchmark application. The compression rates range
from 0.08 bits per instruction for Gzip to 1.1 for SatSolver. Average
compression ratio for the benchmark set is 0.51 bits per instruction.
Not surprisingly, the worst compression rate is obtained for the C#
application because concurrent garbage collection interferes with
our data prediction mechanisms. The best compression rates are
encountered for applications that perform long and repetitive local
computation on data, which enables our prediction mechanism to
be highly accurate.

6. Related Work
There exist a number of run-time systems that monitor program
execution. DELI [10] is based on earlier approaches (Dynamo [2]
and DynamoRIO [4]). These systems were originally designed for
run-time optimizations. They allow client applications to control
the execution flow of an application. However, these approaches do
not provide infrastructure for collecting fine-grain program execu-
tion information (e.g. value of an accessed memory location). They
leave it up to a client application to handle many engineering details
(e.g. the management of self-modifying code and multi-threaded

3 DumpAsm is an in-house application that disassembles binaries and prints
out their assembly code.

VEE 2006 8 2006/3/22



Application Instructions Compression rate Trace size Native time Tracing time Tracing
Name (millions) [bits/instruction] [MB] [s] [s] overhead

Gzip 24 097 0.08 245 11.7 187 15.98
Spreadsheet 1 781 0.44 99 18.2 105 5.76
Presentation 7 392 0.57 528 43.6 247 5.66
Internet browser 116 0.36 5.15 0.499 6.94 13.90
DumpAsm 2 408 0.50 152 2.74 46.6 17.01
SatSolver 9 431 1.10 1 300 9.78 127 12.98
Average tracing overhead 11.89

Table 3. The comparison of native execution time with execution time while tracing. The last column represents the tracing overhead as a
ratio of tracing time and native time.

�

���

���

���

���

�

���

��	
 �
������ �������	�� ������������ ���
��� ��������

� !"#$%%& ' #()$
*+&)%, &'%)#-.)& '/

Figure 7. Compression rate as the ratio of the trace file size in the number of bits and the number of executed instructions. The number
above each bar represents the trace file size.

issues). Shade [8] was one of the earliest work that shares many
of the same goals as our work. The JIT translation technique used
in Nirvana is quite similar to that used in Shade and with similar
performance characteristics. Shade does not provide re-simulation
capabilities nor does it deal with tracing deterministically on multi-
processors. Another system that is similar to Nirvana is Valgrind
[19] which breaks instructions into RISC-like micro-operations and
provides instruction level binary instrumentation. However, it lacks
a general tracing and re-simulation capability, and handles self-
modifying code and multi-threaded applications in an ad hoc man-
ner.

Pin [17] is a newer dynamic binary translator that provides dy-
namic instrumentation like Nirvana using an API that was inspired
by ATOM [21]. It performs several optimizations during translation
and it yields tracing overhead that is lower than Nirvana’s. How-
ever, Pin and its performance is not fully comparable to Nirvana
since it is not clear how effective some of the optimizations would
be for heavier instrumentation at the sub-instruction level (e.g. ev-
ery memory read and write) and for multi-threaded applications.

A number of research efforts have been directed towards collec-
tion of program execution traces for their later analysis. The main
focus of these approaches is handling large trace sizes by compress-
ing them on the fly so that they can be efficiently stored and re-
trieved. Zhang and Gupta [24] show some of the latest advances
in collecting complete execution traces by statically instrument-
ing a binary. Their approach uses an efficient compression mech-

anism which allows the reconstruction of the entire program exe-
cution. Once the reconstruction is done, all the relevant informa-
tion about the instrumented location are readily available for anal-
ysis. It requires a sophisticated static analysis for both the instru-
mentation and reconstruction of the trace, and it is not clear how
multi-threaded issues and self-modifying code can be handled in
their framework. TraceBack [1] is another static instrumentation-
based tool that collects and reconstructs control flow information
of multi-threaded applications for fault detection.

There are various checkpointing schemes that take a snapshot of
the full system state from where execution can restart determinis-
tically [3, 11, 12]. TTVM [14] and FDR [23] both use checkpoint-
ing to retrieve system state and record all inputs into the system
(I/O, interrupts, DMA transfers) to do deterministic re-simulation.
Our approach does not require system state checkpointing or the
tracking of system inputs since we only trace user mode execu-
tion. The most closely related work to ours is BugNet [18] that
also targets debugging user mode execution and also tracks reads
from memory. BugNet proposes modifications to the hardware by
using a first-load bit to record when an L1 or L2 cache block is
replaced. Whenever there is a load of a memory location whose
first-load bit is set, the logging of that read is skipped. Our caching
scheme is purely software based, and allows us to use a thread-
specific cache for each process, instead of using a per-processor
cache that is shared across different processes. In BugNet, the first
load bits are not tracked across interrupts. They are reset instead

VEE 2006 9 2006/3/22



and, in effect, create a new checkpoint interval on every interrupt.
The corresponding operation in our scheme is to flush the predic-
tion cache. However, there is no need to flush the prediction cache
on interrupts since we do not need to know when the cache is in-
validated. Instead, we check on each read whether the value read is
the one predicted and if so, logging can be skipped.

There has also been considerable work on trace compression
and specifically value prediction-based compression (VPC) [5] that
is relevant to our work. VPC algorithms can achieve better com-
pression rate than our scheme, but at a higher performance over-
head for compression and decompression.

Time traveling debugging that is based on virtual machine re-
simulation has been done by others. ReVirt is one of the latest
systems that shows how system level virtual machines can be used
to do time traveling debugging of operating systems [14]. Data-
locality profiling and optimizations based on profile traces have
been reported in others (e.g. [7]), but these approaches are based
on static instrumentation of code.

7. Conclusion
We have described a framework that can be used to collect de-
tailed traces of a program’s user-mode execution and re-simulate
those traces with full fidelity down to the instruction level. The
framework is based on dynamic binary translation and does not
require any static instrumentation of the program. The traces pro-
duced are task-independent and self-contained, making it easy to
transmit them to other machine for re-simulation and analysis. The
framework uses a layered architecture and exposes an event-based
API that makes it easy to write tracing and trace-analysis applica-
tions.

Our tracing overheads, both time and space, are quite reason-
able as demonstrated by empirical data on a variety of applications.
We have described engineering decisions that allow our approach to
scale well with multiple threads and processors, and self-modifying
code. We believe that these efficiencies open up many practical ap-
plication areas for understanding program behavior from different
perspectives. We have described two real analysis applications that
we have built on top of our framework and are working on several
other applications.

8. Acknowledgements
We are grateful to many of our colleagues at Microsoft including
Todd Proebsting, Hoi Vo, Kieu Nguyen, Jordan Tigani, Zhenghao
Wang, and Ken Pierce for their valuable contributions on our frame-
work and tools, and to the anonymous reviewers for their construc-
tive comments on earlier drafts of this paper.

References
[1] Andrew Ayers, Richard Schooler, Chris Metcalf, Anant Agarwal,

Junghwan Rhee, and Emmett Witchel,TraceBack: first fault diagnosis
by reconstruction of distributed control flow, Programming Language
Design and Implementation (PLDI ’05) (2005), 201–12.

[2] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia,Dynamo:
a transparent dynamic optimization system, Programming Language
Design and Implementation (PLDI ’00) (2000), 1–12.

[3] Thomas C. Bressoud and Fred B. Schneider,Hypervisor based fault-
tolerance, Symposium on Operating Systems Principles (SOSP ’95)
(1995), 1–11.

[4] Derek Bruening, Timothy Garnet, and Saman Amarasinghe,An
infrastructure for adaptive dynamic optimization, International
Symposium on Code Generation and Optimization (CGO ’03) (2003),
265–75.

[5] Martin Burtscher, Ilya Ganusov, Sandra J. Jackson, Jian Ke, Paruj
Ratanaworabhan, and Nana B. Sam,The vpc trace compression

algorithms, IEEE Transactions on Computers54 (2005), no. 11,
1329–44.

[6] Wen-Ke Chen, Sorin Lerner, Ronnie Chaiken, and David Gillies,
Mojo: a dynamic optimization system, ACM Workshop on Feedback-
Directed and Dynamic Optimization (2000), 81–90.

[7] Trishul Chilimbi and James R. Larus,Cache-conscious structure
layout, Programming Languages Design and Implementation (PLDI
’99) (1999), 13–24.

[8] Bob Cmelik and David Keppel,Shade: a fast instruction-set simulator
for execution profiling, ACM SIGMETRICS (1994), 128–37.

[9] Manuel Costa, Jon Crowcroft, Miguel Castro, Antony Rowstron,
Lidong Zhou, Lintao Zhang, and Paul Barham,Vigilante: End-to-
end containment of internet worms, ACM Symposium on Operating
Systems Principles (SOSP ’05) (2005), 133–147.

[10] Giuseppe Desoli, Nikolay Mateev, Evelyn Duesterwald, Paolo
Faraboschi, and Joseph A. Fisher,DELI: a new run-time control
point, ACM/IEEE International Symposium on Microarchitecture
(MICRO ’02) (2002), 257–68.

[11] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai,
and Peter M. Chen,Revirt: enabling intrusion analysis through virtual
machine logging and replay, Symposium on Operating Systems
Design and Implementation (OSDI ’02) (2002), 211–224.

[12] E.N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David
B.Johnson,A survey of rollback recovery protocols in message-
passing systems, ACM Computing Survey34 (2002), no. 3, 375–408.

[13] Kim Hazelwood and James E. Smith,Exploring code cache
eviction granularities in dynamic optimization systems, International
Symposium on Code Generation and Optimization (CGO ’04) (2004),
89.

[14] Samuel T. King, George W. Dunlap, and Peter M. Chen,Debugging
operating systems with time-traveling virtual machines, USENIX
Annual Technical Conference (2005), 1–15.

[15] James R. Larus,Whole program paths, Programming Language
Design and Implementation (PLDI ’99) (1999), 259–69.

[16] James R. Larus and Eric Schnarr,EEL: machine-independent exe-
cutable editing, Programming Language Design and Implementation
(PLDI ’95) (1995), 291–300.

[17] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and
Kim Hazelwood,Pin: building customized program analysis tools
with dynamic instrumentation, Programming Language Design and
Implementation (PLDI ’05) (2005), 190 – 200.

[18] Satish Narayanaswamy, Gilles Pokam, and Brad Calder,Bugnet:
Continuously recording program execution fro deterministic replay
debugging, International Symposium on Computer Architecture
(ISCA ’05) (2005), 284–95.

[19] Nicholas Nethercote and Julian Seward,Valgrind: a program
supervision framework, Electronic Notes in Theoretical Computer
Science89 (2003), no. 2.

[20] James E. Smith and Ravi Nair,Virtual machines, first ed., Morgan
Kaufman, San Francisco, Ca., 2005.

[21] Amitabh Srivastava and Alan Eustace,ATOM: a system for building
customized program analysis tools, Programming Language Design
and Implementation (1994), 196–205.

[22] Amitabh Srivastava, Hoi Vo, and Andrew Edwards,Vulcan: binary
transformation in distributed environment, Tech. Report MSR-TR-
2001-50, Micorosft Research, April 2001.

[23] Min Xu, Rastislav Bodik, and Mark D. Hill,A ’flight data recorder’
for enabling full-system multiprocessor deterministic replay, Inter-
national Symposium on Computer Architecture (ISCA ’03) (2003),
122–35.

[24] Xiangyu Zhang and Rajiv Gupta,Whole execution traces and
their applications, ACM Transactions on Architecture and Code
Optimization2 (2005), no. 3, 301–334.

VEE 2006 10 2006/3/22


