
ENHANCING SOFTWARE RELIABILITY WITH

SPECULATIVE THREADS

a dissertation

submitted to the department of electrical engineering

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

Jeffrey Thomas Oplinger

August 2004

c© Copyright by Jeffrey Thomas Oplinger 2004

All Rights Reserved

ii

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Monica S. Lam
(Principal Advisor)

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Oyekunle A. Olukotun

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Mendel Rosenblum

Approved for the University Committee on Graduate

Studies.

iii

iv

Abstract

As high-end microprocessors continue to provide more and more computing power,

non-performance metrics such as security, availability, reliability, and usability have

become much more important. Errors and vulnerabilities in software programs have

caused significant losses of data and productivity throughout the world. Software

tools are available to help identify and prevent these problems, but they are often

not used in practice because of large runtime overheads and limited applicability. We

believe that hardware support can make these existing tools faster and more useful,

as well as provide new functionality that helps programmers write safer code.

We suggest using a monitor-and-recover programming paradigm to enhance soft-

ware reliability and propose an architectural design based on thread-level speculation

(TLS) that makes this paradigm more efficient and easier to program. Programmers

can add monitoring code, with normal sequential semantics, to examine the execu-

tion of a program. Our architecture reduces the resulting slowdown by speculatively

executing the monitoring code in parallel with the main computation. To recover

from errors, programmers can define fine-grain transactions whose side effects are ei-

ther committed or aborted via program control. These transactions are implemented

efficiently through TLS hardware support.

Our experimental results suggest that monitored execution is well-suited to this

parallelization model. Applying thread-level speculation improves the running time of

monitored code by a factor of 1.5. Together with a 1.9-times speedup from exploiting

additional single-thread instruction-level parallelism (ILP), an overall speedup of 2.8

is obtained, effectively 6.6 instructions per cycle in performance. Through a number

of real-life examples, we also show how fine-grain transactional programming can be

v

used to detect and recover from buffer overflow exploits.

vi

vii

Acknowledgments

I would like to thank my advisor Monica Lam for her encouragement, guidance,

enthusiasm, and exceptional last-minute paper-writing skills. On more than one

occasion she has gone beyond the call of what one might normally expect from a

research supervisor. I would also like to thank the other members of my reading

committee, Kunle Olukotun and Mendel Rosenblum. Special thanks to Andrew Ng

who graciously agreed to chair my oral defense on very short notice.

My fellow students in the SUIF group have never failed to enlighten or entertain

(consciously or not) and I would like to thank all of them. I’ve greatly enjoyed all the

officemates I’ve had over the, ahem, number of years I’ve spent at Stanford: Shih-

Wei Liao, Amy Lim, Brian Schmidt, Brian Murphy, John Whaley, Costa Sapuntzakis,

Ramesh Chandra, and Joel Sandin. Special thanks to David Heine, who provided ex-

ceptional assistance with my early research and, as a contemporary Ph.D. candidate,

was a great person to commiserate with.

I also want to thank my friends: Pierre Louveaux, Chris Daley, Dennis Chiu, Ryan

Chiao, Raj Batra, Richard Bermudez amongst others. My parents, Jim, Joanne, and

Cindy, also provided an exceptional amount of support. I certainly wouldn’t have

completed my work without them.

This work was supported in part by DARPA contracts DABT63-95-C-0089 and

MDA904-98-C-A933.

viii

Contents

Abstract v

Acknowledgments viii

1 Introduction 1

1.1 Contributions . 2

1.2 Thesis Organization . 5

2 General Purpose Thread-level Speculation 6

2.1 Introduction . 6

2.2 The TLS Machine Model . 9

2.3 Simulation Methodology . 12

2.3.1 Simulation Tool . 12

2.3.2 Benchmarks . 16

2.4 Speculative Loop Parallelism . 17

2.4.1 Choices for Single-Level Loop Speculation 18

2.4.2 Single-Level Loop Speculation 20

2.4.3 Multi-Level Loop Speculation 22

2.4.4 Summary of Speculative Loop Level Parallelism 24

2.5 Procedure Level Speculation . 24

2.5.1 Predictability of Return Values 27

2.5.2 Evaluation of Procedural Speculation 28

2.6 Speculating at Both Procedural and Loop Boundaries 30

2.7 Experimenting with More Realistic Models 31

ix

2.7.1 A Finite Number of Processors 31

2.7.2 Machines with Rollbacks . 32

2.8 Related Work . 34

2.9 Summary and Conclusions . 41

3 The Monitor-and-Recover Paradigm 43

3.1 Execution Monitoring . 43

3.1.1 Uses of Execution Monitoring 43

3.1.2 Tools for Execution Monitoring 45

3.1.3 Speeding up Monitoring Functions 46

3.1.4 Summary . 47

3.2 Fine-Grain Transactional Programming 47

3.2.1 Examples of Transactional Programming 48

3.2.2 Programming Constructs . 51

3.2.3 Discussion . 52

4 Machine Architecture 54

4.1 Overview . 56

4.2 Procedural Speculation . 58

4.3 The Load-store Queues . 63

4.4 Value Prediction . 64

4.5 Calling Convention Optimization . 66

4.6 Speculative Transaction Implementation 70

4.6.1 Basic Transaction Functionality 70

4.6.2 Fallback Support for Larger Transactions 73

5 Monitor-and-Recover Evaluation 75

5.1 Baseline Monitoring Code Simulation Results 75

5.1.1 Monitoring Code Benchmarks 77

5.1.2 Baseline Performance of Monitoring Code 79

5.2 Design Decisions and Monitoring Performance 83

5.2.1 Effect of Calling Convention Optimization 83

x

5.2.2 Effect of Return Value Prediction 84

5.2.3 Effect of Thread Initiation Overheads 85

5.2.4 Effect of Nested Speculation 86

5.2.5 Effect of Front-end Pipeline Stages 87

5.2.6 Effect of Number of LSQ Entries 88

5.2.7 Effect of Interthread Load-store Queue Latency 90

5.2.8 Effect of Memory Port Design 91

5.2.9 Summary . 93

5.3 Fine-grained Transactions . 93

5.3.1 Example Programs . 93

5.3.2 Fine-grained Transaction Experimental Results 95

5.3.3 Summary . 97

5.4 Related Work . 98

6 Conclusions 101

Bibliography 104

xi

List of Tables

2.1 TLS Parallelization Schemes . 13

2.2 TLS Machine Model Parameters . 14

2.3 Benchmarks Executed . 16

2.4 Coverage and Maximum Theoretical Speedup for Single-Level Loops . 22

xii

List of Figures

2.1 Normal Sequential Execution and the TLS Counterpart 10

2.2 TLS Re-execution Following a Data Dependence Violation 11

2.3 Dependences Induced by Callee-Saved Register Operations 16

2.4 Optimal TLS Speculation on Single-Level Loops 20

2.5 Optimal TLS Speculation on Multi-Level Loops 23

2.6 Procedural Speculation . 25

2.7 Nested Procedural Speculation . 26

2.8 Predictability of Procedure Return Values 27

2.9 Optimal TLS Speculation on Procedures 29

2.10 Optimal TLS Speculation on Loops and Procedures 30

2.11 Loop and Procedure Speculation on 4-way and 8-way Optimal TLS

Machines . 33

2.12 Loop and Procedure Speculation on 4-way and 8-way TLS Machines

with Rollback . 33

2.13 Summary of the Harmonic Mean Speedups 40

3.1 Cleanup-code Error Example . 50

3.2 Transaction Syntax . 51

3.3 Transaction Machine-level Pseudocode 52

4.1 Machine Architecture . 56

4.2 Machine Pipeline . 57

4.3 Register File Organization . 60

4.4 Load Lookup Operation with Four Load-store Queues 64

xiii

4.5 ATLAS Hybrid Local/Global Predictor 65

4.6 Calling Convention Optimization . 67

5.1 Parameters of the Simulation . 76

5.2 Dynamic Instruction Count Overheads of Monitored Programs 77

5.3 Summary of Vortex and Perl Monitoring 78

5.4 Performance of Execution Monitoring on the Proposed Architectures 80

5.5 SMT4/t8 Statistics . 82

5.6 Effect of Calling Convention Optimization 83

5.7 Effect of L1/L2 Value Predictor Table Sizes 84

5.8 Effect of Thread Initiation Overheads 85

5.9 Effect of Allowing Nested Speculation 86

5.10 Effect of Additional (Fetch/Issue) Front-end Pipeline Stages 88

5.11 Effect of Number of LSQ Entries . 89

5.12 Effect of Number of LSQ Entries on IPC 89

5.13 Effect of Interthread LSQ Hit Latency 90

5.14 Effect of Memory Port Design . 91

5.15 Effect of Memory Port Design on IPC 92

5.16 Buffer Overrun Transactions . 97

5.17 Handling L1 Transaction Overflows for bftpd-inst, valid input 97

xiv

Chapter 1

Introduction

Developments in semiconductor technology and computer architecture over the past

years have led to tremendous increases in computing performance. Today’s high-

end microprocessors offer much more computing power than the vast majority of

existing software applications can fully utilize. On the other hand, non-performance

metrics such as security, availability, reliability, and usability have become much more

important. Errors and vulnerabilities in software programs have caused tremendous

losses of data and productivity in the workplace, catastrophic mission failures and

much more[39]. Researchers are beginning to look at how the abundance of computing

power that is available can be leveraged to address these “quality-of-life” computing

issues.

Despite much work in the past on code verification and error detection tools,

it remains the case that only small amounts of critical software can be proven to

be correct. As the old saying goes, “to err is human.” We believe that program

errors can never be fully eliminated from complex software. As a complement to

code verification techniques, we advocate introducing additional code into programs

to monitor whether they are behaving correctly and to recover from errors. Because

code monitoring can add significant overhead to a program’s execution time and error

recovery code can be complex, we propose the use of computer architecture support

to make this “monitor-and-recover” style of programming both more efficient and

easier to write.

1

2 CHAPTER 1. INTRODUCTION

1.1 Contributions

In this thesis, we identify two programming idioms that can be used to enhance soft-

ware reliability: the use of monitoring code to profile a program’s execution in order

to understand both its correct and incorrect behaviors, and the use of fine-grained

transactions to safely recover from detected errors. We propose an architectural de-

sign, based on thread-level speculation, to efficiently support both of these schemes.

Thread-level speculation, or TLS, was not initially proposed with software relia-

bility in mind; the first proposals shared a common goal of increasing the performance

of traditional sequential programs via speculative parallelization[1, 17, 42, 46, 51]. In

the TLS model a sequential program is divided up into threads, which may or may

not be dependent upon one another. The hardware executes the threads simultane-

ously, but monitors the read and write operations of each thread to detect any data

dependences that are violated due to the parallel execution. If a hazard is detected,

the hardware aborts the thread that is supposed to execute later in the original se-

quential execution, eliminating all its side effects. The advantage of this approach is

that the hardware can follow multiple threads of control at the same time, allowing

operations that are far apart to be executed simultaneously.

Indeed, our initial interest in TLS was motivated by a desire to speed up general-

purpose integer programs, but many researchers have found that broad goal to be

difficult to achieve. Our first contribution is a limit study on speculative parallelism

in the SPECint95 benchmarks, presented in Chapter 2. We show that single-level

loops do not possess enough parallelism or coverage, in general, to allow for decent

speedups. We broaden the scope of potential parallelism by considering procedure

continuations as an additional target. Still, the results on an infinite machine with

perfect synchronization are relatively limited.

There are still many different approaches one could take to improve the perfor-

mance, such as code transformations that may expose significant additional paral-

lelism, or the application of increasingly aggressive hardware structures. However, we

instead chose to look at using the TLS hardware to tackle issues specific to software

reliability, in particular by speeding up monitoring code and supporting fine-grain

1.1. CONTRIBUTIONS 3

transactions. This leads to our further contributions as follows:

Efficient fine-grain code monitoring. To monitor the execution of a program prop-

erly, it is often necessary to invoke monitoring functions at relatively fine gran-

ularity throughout the execution of a program. Monitoring may be performed

at procedural or basic block boundaries or even for all memory operations.

Unfortunately, monitoring can add many more operations to a program. The

run-time overhead has curbed the use of monitoring in production code, and to

some extent, even in the software development and debugging cycle.

Monitoring functions need to observe the main program’s state, but unless

anomalies are detected, they do not have any effect on the execution of the

main program. Thus, these functions can often be run in parallel with the

main program as well as with each other. To keep programming simple, we

propose that programmers simply identify these monitoring codes and assume

that they are executed sequentially like any other functions in the program.

The hardware, however, will execute these monitoring functions in parallel with

the original program speculatively.

Because monitoring functions may be of potentially fine granularity, we adopt an

architecture most similar to the proposed DMT machine[1]. Our proposed ma-

chine builds on the concept of simultaneous multi-threading (SMT)[55], where a

dynamic scheduler allows threads to share a common pool of hardware resources.

Data hazards between threads are handled by augmenting the functionality of

the load-store queues. We use value prediction to minimize rollbacks due to

typical data hazards found in monitoring code.

Fine-grain transactional programming. Writing error recovery code is difficult be-

cause the code must reverse any side effects that are no longer desired. Bor-

rowing the concept of transactions from databases, we propose that portions of

program execution be structured as transactions. Each transaction is a unit of

computation whose side effects, which include all changes made to registers and

memory, can be committed or discarded as a unit. Error detection and recovery

can be achieved by simply applying an end-to-end check of the integrity of the

4 CHAPTER 1. INTRODUCTION

computation after it is complete and rolling back the transaction to its initial

state if necessary.

To support transactional programming, we introduce a number of instructions

with which the software determines when to start a transaction and ultimately

whether to commit or abort. The TLS machine executes the transaction as a

speculative thread; the side effects are saved in the speculative buffers, which can

then be committed or discarded. The size of these buffers limits the amount

of side effects that can be allowed in a transaction, so we suggest using the

processor data cache to buffer larger amounts of transactional state. We also

present a fall-back software mechanism than can be used should the limited size

or associativity of the cache prevent a transaction from completing.

Empirical validation. We have evaluated our proposed architecture through a num-

ber of case studies. Our experiments with four different examples of execution

monitoring show that the hardware reduces the overhead of monitoring overall

by a factor of 2.8, and even provides a respectable factor of 1.5 speedup once

single-thread instruction-level parallelism (ILP) benefits are factored out. We

also show that the concept of fine-grain transactional programming is useful in

catching buffer overrun exploits through a number of real-life examples.

Evolution of new programming paradigms. This thesis tries to look ahead to the fu-

ture and proposes architectural concepts that promote new and more effective

programming paradigms that are considered impractical on today’s architec-

tures. The more traditional approach to computer architecture research has

been to tune our architectures according to the characteristics of existing ap-

plications. If we only optimize for today’s applications, the machines will be

ill-suited to new programming paradigms; on the other hand, without an effi-

cient implementation, new paradigms are hard to get established. Our approach

represents an attempt to break this cyclic dependency; we hope this will lead to

better combinations of programming paradigms and architectures that together

improves our ability to create reliable software.

1.2. THESIS ORGANIZATION 5

In the past, so much energy has been devoted to squeezing the last drops of per-

formance out of existing applications that we are seeing diminishing returns from new

architectural features that are proposed. Programs written in new paradigms have

different characteristics, and thus provide opportunities for new architectural develop-

ment. In particular, achieving significant performance gains by applying thread-level

speculation to existing general-purpose programs has proven difficult. We show

in this research that the self-monitoring programs are quite suitable for thread-level

speculation.

1.2 Thesis Organization

First, we examine some of the limits of applying thread-level speculation to general-

purpose integer code, as well as related work by other researchers, in Chapter 2.

Chapter 3 describes our Monitor-and-Recover paradigm, with Section 3.1 discussing

the concept of execution monitoring: its uses, associated programming tools, and

the characteristics of the monitoring functions. Section 3.2 then motivates the need

for transactional programming and proposes some concrete high-level syntax for ex-

pressing transactions. Chapter 4 describes our machine architecture. We present

experimental evaluations of the Monitor-and-Recover paradigm, as well as related

work, in Chapter 5. Finally we conclude with Chapter 6.

Chapter 2

General Purpose Thread-level

Speculation

2.1 Introduction

This chapter describes the basics of thread-level speculation and investigates how

much speculative thread-level parallelism can be found in integer programs depend-

ing on where those threads are created. Our studies show that speculating only on

loops does not yield much parallelism. We evaluate the use of speculative procedure

execution as a means to increase the available parallelism beyond that available in

loops, as well as the potential for data value prediction improve the performance of

speculative execution.

For a number of years, researchers have been exploring the use of speculative

threads to harness more of the parallelism in general-purpose programs [1, 17, 24, 31,

35, 46, 51]. In these proposed architectures, threads are extracted from a sequential

program and are run in parallel. If a speculative thread executes incorrectly, a recov-

ery mechanism is used to restore the machine state. While a superscalar processor can

only extract parallelism from a group of adjacent instructions fitting in a single hard-

ware instruction window, a thread-based machine can find parallelism among many

larger, non-sequential regions of a program’s execution. Speculative threads can also

exploit more parallelism than is possible with conventional multiprocessors that lack

6

2.1. INTRODUCTION 7

a recovery mechanism. Speculative threads are thus not limited by the programmer’s

or the compiler’s ability to find guaranteed parallel threads. Furthermore, specula-

tive threads have the potential to outperform even perfect static parallelization by

exploiting dynamic parallelism, unlike a multiprocessor which requires conservative

synchronization to preserve correct program semantics.

Several hardware designs have been proposed for this thread-level speculation

(TLS) model, but many of the speedups reported for large, general-purpose integer

code have been limited[1, 17, 24, 31, 35, 46, 51]. However, it is important to note

that these experiments evaluated not only the proposed hardware, but also the choices

made by the researcher or the compiler as to where to apply speculative execution.

The decision on where to speculate can make a large difference in the resulting per-

formance. If the performance is poor, we gain little insight on why it does not work,

or whether it is the parallelization scheme or machine model (or both) that should

be improved. As a consequence, poor results may not reflect any inherent limitations

of the TLS model, but rather the way it was applied.

The goal of this chapter is to evaluate different sources of speculative parallelism

running on the same machine configuration to see how they compare. To search

through a large space of parallelization schemes effectively, we work with simple ma-

chine models and a relatively simple trace-driven simulation tool.

We define an optimal TLS machine that incurs no overhead in executing the

parallel threads and can delay the computation of a thread perfectly to avoid the need

to rollback any of the computation. To keep the experiments simple and relatively

fast, we assume a base in-order machine that executes one instruction per cycle.

Many different synchronization schemes have previously been proposed to minimize

rollbacks, such as adding synchronization operations to the code statically or inserting

them dynamically as rollbacks are detected, for example[10, 33]. We can use the

optimal machine to derive an upper bound on the performance achievable using any

possible synchronization optimizations. The optimal machine serves as an effective

tool for filtering out inadequate parallelization techniques, since techniques that do

not work well on this machine will not work well on a real machine of a similar design.

We vary the resources available on our optimal TLS machine in the experiment,

8 CHAPTER 2. GENERAL PURPOSE THREAD-LEVEL SPECULATION

supporting 4, 8, or an infinite number of concurrent threads.

We also define a base TLS machine that is similar to the optimal version but makes

no attempt to eliminate rollbacks through synchronization. The machine simply

executes the instructions of each thread in sequence; if the data used is found to be

stale, and the value was not correctly predicted, the machine restarts the thread.

The performance of a particular synchronization scheme should thus fall between the

bounds established by the optimal and base machines.

To explore the potential of various parallelization schemes in an efficient manner,

we have created a trace-driven simulation tool that can simultaneously evaluate mul-

tiple parallelization choices. We also use this tool to collect statistical data describing

the parallel behavior of the program.

Our experiments have led to the following contributions:

• We found that it is inadequate to exploit only loop-level parallelism, the form

of parallelism that is used almost exclusively in many prior studies. Our tool

simultaneously evaluates all possible choices of which level in a loop nest to

speculate on. Even with optimal loop-level choices for speculation and optimal

data dependence synchronization, the speedup obtained is low. This is due to

a combination of the limited parallelism of loops in non-numeric code and the

time spent in sequentially executed code found outside of the parallelized loops.

• We found that procedures can provide a useful source of speculative parallelism.

In procedural speculation, another thread speculatively executes the code fol-

lowing the return of the procedure at the same time the procedure body is itself

being executed. Procedure boundaries often separate fairly independent com-

putations, and there are many of them in most programs. Thus, procedure calls

provide important opportunities for parallelism and can complement loops as a

source of thread-level parallelism.

• We also evaluated the potential of using simple value prediction to improve

speculative parallelism. In particular, predicting the value returned by a proce-

dure (return value prediction) can greatly reduce the data dependences between

the procedure execution and the following computation. Value prediction can

2.2. THE TLS MACHINE MODEL 9

also eliminate important data dependence constraints across iterations of spec-

ulatively executed loops.

This work shows some of the limitations of certain parallelization schemes, such as

parallelizing only loops, and evaluates the potential benefits of procedural speculation

and value prediction. As the related work in Section 2.8 discusses, further TLS

proposals have investigated additional sources of parallelism from more arbitrary

code regions as well as the benefits of more aggressive value prediction. Many of these

schemes require significant additional hardware in order to be successful, however.

The rest of the chapter is organized as follows. In Section 2.2 we describe the TLS

machine model in more detail, followed by the simulation methodology in Section 2.3.

In Section 2.4 we present results on using the optimal TLS model to exploit loop-

level parallelism. We investigate the use of procedural speculation in Section 2.5.

Section 2.6 contains the results of combining loop-level and procedure-level specu-

lation. In Section 2.7 we present the performance results of both the optimal and

base machines with finite resources. Related work is discussed in Section 2.8 and we

conclude in Section 2.9.

2.2 The TLS Machine Model

In the TLS machine model, a normally sequential execution is explicitly divided into

multiple threads which are run in parallel. This process is shown in Figure 2.1, where

the sequential execution in (A) is divided into four threads for concurrent execution in

(B). Note that the first thread in the machine, thread 1, comes earliest in the original

sequential execution. It is not dependent on any other thread in the machine, so we

know its execution will be correct and thus it does not execute speculatively. There is

always just one such thread in the machine at a time, so we refer to such a thread as

the sequential or head thread. Threads 2, 3, and 4 in the example are each executing

speculatively. As the current head thread retires, each will successively become the

new head thread in turn, as long as their execution is validated.

To preserve correct sequential execution semantics, the side effects of each specu-

lative thread are saved in a separate speculative state. Each thread observes all write

10 CHAPTER 2. GENERAL PURPOSE THREAD-LEVEL SPECULATION

fork

2

. . .

2

4

1

3

fork

3

. . .

4

fork

1(A) (B)

Figure 2.1: Normal Sequential Execution and the TLS Counterpart

operations from threads that occur earlier in the sequential execution sequence, using

the most recent values seen at each point, and detects dependence violations once

they occur. There are two forms of dependence violation:

• (true) data dependence. A thread detects a dependence violation if it discovers

that an earlier thread has generated a value that it needs after it has already

speculatively computed with an outdated value. A memory data dependence

violation is shown in Figure 2.2(A). Conflicts due to true dependences are the

only form of data dependence violation observed. Anti-dependences (or storage

dependences) do not cause a violation. That is, write operations by a later

thread do not affect the values read by an earlier thread, and therefore these

operations need not be ordered. Similarly, actions of earlier threads have no

effect on a later thread that first writes then reads the same location.

• control dependence. A thread detects a control dependence violation if the

control flow of an earlier thread causes the subsequent thread not to be executed

at all. For example, an early exit taken by an iteration of a loop would render

2.2. THE TLS MACHINE MODEL 11

. . .

fork

4

xx
3

fork fork fork

ST
xx

11

fork fork

. . .

fork

ST

LD1

4

1

(A)

(B)

Figure 2.2: TLS Re-execution Following a Data Dependence Violation

the speculative execution of all subsequent iterations invalid.

If a violation occurs, the processor throws away the speculative state and, in the

case of a data dependence violation, restarts the thread, as shown in Figure 2.2(B).

If there are no violations, the speculative state is committed when all threads repre-

senting earlier segments of the sequential execution have committed.

Based on this ordering of the threads by their expected occurrence in the sequential

execution, we sometimes refer to the threads as more- or less-speculative, or lower-

or higher-priority. Referring to the preceding figures, thread 1 would be considered

least-speculative (it is in fact non-speculative) and highest-priority as well, as its

execution is guaranteed to be correct. Thread 4 represents speculation furthest out

in the execution stream from what we know to be correct; it may be forced to restart

12 CHAPTER 2. GENERAL PURPOSE THREAD-LEVEL SPECULATION

due to a data or control dependence violation with any of the other threads. Thus

we would refer to thread 4 as the most-speculative or lowest-priority thread in the

machine.

Clearly data dependences can significantly limit the thread-level parallelism that

is available. Value prediction is particularly relevant to TLS as it enables a program

to run faster than the dataflow limit determined by data dependences[27]. We exam-

ine two simple schemes of value prediction. The last-value prediction (LVP) scheme

predicts that the loaded value will be the same as the value obtained from the last

execution of that load instruction. The stride-value prediction (SVP) scheme predicts

that the loaded value will be the same as the last loaded value plus the difference be-

tween the last two loaded values. By using value prediction, a speculative thread need

not be rolled back upon detecting a true data dependence violation if the predicted

value matches the newly produced value. To find the upper bound of the impact

of value prediction on TLS, we assume that the machine automatically uses value

prediction whenever it attempts to read a value that has not yet been produced. As

this is a limit study, we also assume that the machine has a buffer large enough to

hold all predicted values needed by any thread.

2.3 Simulation Methodology

In this section we describe our experimental setup, specifically the simulation tool that

was developed as well as the benchmarks used to evaluate thread-level speculation.

2.3.1 Simulation Tool

We use a trace-driven simulation tool to evaluate the performance of different specu-

lative execution schemes under different machine models. For the sake of simplicity,

we assume that each processor takes one cycle to execute each instruction. Also, to

focus on the potential of the different parallelization schemes, we assume that the

system has a perfect memory hierarchy. All memory accesses can be performed in a

single clock and stored data is immediately available to all processing elements in the

2.3. SIMULATION METHODOLOGY 13

Region(s) Description

loops a single loop in each nest is chosen for speculation
multi-level loops all loops in each nest are chosen for speculation
procedures procedure bodies execute in parallel with the code

following them
loops and procedures speculation on a single loop in each nest as well as

on procedures

Table 2.1: TLS Parallelization Schemes

next cycle. There is no overhead in the creation of threads and no additional cycles

are needed to restart a thread once a violation is detected.

To explore the TLS design space, we vary our simulations based upon the types

of regions speculation is applied to (single-level loops, multi-level loops, procedures,

loops and procedures), whether or not dependence synchronization is employed, the

maximum number of concurrent threads allowed to execute, and the value prediction

policy for memory loads and register reads. The parameters to our simulator are

summarized in Table 2.1 and Table 2.2.

We use the ATOM tool[48] to augment the optimized program binaries and gen-

erate a user-level trace that includes events of interest: loads and stores, procedure

entries and exits, and loop entries, exits, and iteration advances. (System calls are

not captured in the trace.) The simulation clock normally advances one cycle per

instruction. Procedure and loop entries signal the potential forking of a speculative

thread, depending on the parallelization scheme used. When a speculative thread fork

is encountered, the simulation time is stored and the first thread executes. When the

later thread(s) from the fork begin to execute, the simulation time is set back to the

time of the fork. When a store or register write occurs, the current simulation time is

recorded for that memory/register location. Execution continues as normal, except

threads are delayed or squashed if they try to read a value that was written at a time

greater than the current simulation time. Delays are avoided in the models employing

value prediction whenever the values are correctly predicted. Value prediction is im-

plemented by keeping an array of the last two loaded values for each load and register

use in the program, and by keeping another array of the last two returned values for

14 CHAPTER 2. GENERAL PURPOSE THREAD-LEVEL SPECULATION

Parameter Description

Synchronization Policy
optimal all operations delayed optimally to avoid rollback
base no operations are ever delayed, threads are rolled back

as soon as a violation is detected

Resources
Infinite no limit on the number of concurrent threads
8-way resources to execute 8 concurrent threads
4-way resources to execute 4 concurrent threads

Return Value Prediction
none no return value prediction
LRVP last value prediction of return values whenever procedu-

ral speculation is used
LVP last value prediction of return values whenever procedu-

ral speculation is used
SVP stride value prediction of return values whenever proce-

dural speculation is used

Value Prediction for Memory Loads and Register Reads
none no value prediction
LRVP no value prediction (except for return values as above)
LVP last value prediction
SVP stride value prediction

Table 2.2: TLS Machine Model Parameters

each procedure in the program. The value prediction employed is rather idealistic,

in that we presume perfect “confidence estimation”–when the prediction is incorrect,

the machine simply behaves as if prediction were not employed at all, so mispredic-

tion never causes any performance penalty. Additionally, because the simulation is

based on the sequential program trace, there is no notion of the value predictor being

updated “out of order” as would undoubtedly happen in a real speculative machine.

A prediction is always based on the last one or two instances of that instruction in the

sequential trace. Thus the performance results with prediction should be considered

as an upper bound on the benefit that prediction could provide.

In simulations of finite-processor models, a resource table is used to track usage

of the individual processors. A thread must obtain execution cycles from a resource

2.3. SIMULATION METHODOLOGY 15

table before it is allowed to execute. Threads closer to the sequential execution are

given priority and may preempt lower priority threads in progress if resources are

exhausted. Preempted threads are delayed until the next available cycle and are

re-executed from the start.

When the actual number of loop iterations is not known a priori, a real TLS ma-

chine would end up wasting some resources executing beyond the end of the loop. To

account for the wasted cycles on mispredicted iterations, which do not show up in our

sequential trace, our simulator treats the end of a loop as a barrier to parallelization

in simulations of finite machines. That is, the machine is not allowed to speculatively

execute computation that logically follows the loop in the original sequential execu-

tion. No such barrier exists in the procedural case because only one new thread is

created at each procedure call.

One final consideration is that the code generated by the compiler for a unipro-

cessor machine includes many “artificial” dependences. For example, the multiple

threads in a TLS machine operate on multiple stack frames at the same time, so

they need not obey the dependences due to global and stack pointer updates in the

sequential program. Similarly, since the threads have separate register files, they need

not be constrained by the dependences introduced by a called function’s register save

and restore operations. Figure 2.3 shows a pseudocode example, where the “ <- ” no-

tation represents assignment. The original uniprocessor code representing a register

write, procedure call, and subsequent register read, together with the definition of the

called procedure, is shown in the leftmost column. In the two right columns, we show

a sample two-thread execution utilizing procedural speculation, which is described in

Section 2.5. Here, thread 2 speculatively executes the code that comes after the call

to foo(). In a true TLS machine, thread 2 would have it’s own copy of the r0 register

from before the call to foo(). Thus, our simulator ignores dependences originating

from a register restore operation (e.g. the dashed arrow in Figure 2.3), and instead

observes only the true dataflow dependence (e.g. the solid arrow in Figure 2.3) that

the save/restore code is designed to preserve in a uniprocessor execution.

16 CHAPTER 2. GENERAL PURPOSE THREAD-LEVEL SPECULATION

Thread 1

r0 <- ...

foo() {

 /* callee save */
 stack <- r0

 ...

 /* callee restore */
 r0 <- stack

}

Thread 2

... <- r0

Original Code

r0 <- ...

foo();

... <- r0

void foo() {

 /* callee save */
 stack <- r0

 ...

 /* callee restore */
 r0 <- stack

}

Figure 2.3: Dependences Induced by Callee-Saved Register Operations

2.3.2 Benchmarks

We evaluate the performance of our various speculative thread models using the 8

benchmarks from the SPECint95 benchmark suite. Table 2.3 lists the programs, input

sets, and execution characteristics. Throughout the chapter, speedups are calculated

relative to a single cycle per instruction sequential execution of the program.

All the programs were compiled using the HP/Compaq Alpha cc compiler with

Program Lines of Code Input Set Dynamic Instr Description

compress 1K train 47M File compression
gcc 192K train 286M The GNU compiler
go 29K train 54M Game of go
ijpeg 28K train 183M Image compression
li 7K train 136M Lisp interpreter
m88ksim 18K test 134M Processor simulator
perl 23K train 5M Perl language interpreter
vortex 52K train 963M Database

Table 2.3: Benchmarks Executed

2.4. SPECULATIVE LOOP PARALLELISM 17

optimizations using the -O2 flag. To perform the simulation, we use ATOM to an-

notate the binaries with information such as the entry and exit points of loops as

well as locations for setjmp and longjmp calls. The annotation tool analyzes the

binary code directly, extracts control flow graphs from the code and calculates the

singly entry and potentially multiple exits of the loops using standard compiler algo-

rithms. Recognizing all induction variables in the binary, however, would require an

interprocedural analysis that we have not implemented, so induction variables are not

recognized. Note that machines employing stride value prediction will effectively rec-

ognize the induction variables and ignore most of their dependences.1 For machines

with last value or no value prediction, the loop iteration counting code generated by

a typical uniprocessor compiler will result in at least one data dependence across iter-

ations that needs to be synchronized, even if the loop is otherwise parallel. Thus the

performance that one might obtain by using a compiler that better handled induction

variables should be roughly bounded by the results utilizing stride value prediction

and the results without value prediction.

2.4 Speculative Loop Parallelism

Loop iterations are the traditional target of parallelization and an obvious candidate

for thread-level speculation. Each iteration of a loop can be turned into a speculative

thread that runs in parallel with the other iterations of that loop. The only form

of control dependences shared between iterations are loop termination conditions,

and the outcomes are highly skewed in favor of continuation. The remainder of the

control flow in each iteration is independent; thus failure to predict a branch within an

iteration does not affect other threads. The degree of parallelism available in a loop is

governed by the presence of data dependences that cross loop iteration boundaries. If

the iterations operate on disjoint sets of data, the degree of parallelism can be equal

to the number of iterations of the loop. In the following, we first focus on the common

model of applying speculation to one loop at a time, beginning with a discussion of

1The stride predictor we use requires two iterations in most cases to learn a new stride value, but
after that all predictions will be correct if the stride amount does not change.

18 CHAPTER 2. GENERAL PURPOSE THREAD-LEVEL SPECULATION

how we select such loops. We then look at the performance and hardware implications

of allowing multiple loops to speculatively execute in parallel.

2.4.1 Choices for Single-Level Loop Speculation

When we restrict speculation to a single loop in a nest, the critical decision is which

loop in the nest to speculate on. There are two factors that need to be considered

when selecting the best loop.

• Degree of Parallelism : there must be sufficient data independence between the

iterations to achieve parallelism. If the iterations are totally independent (a

DoAll loop), then the potential degree of parallelism is equal to that of the

number of iterations. If there are dependences across iterations (a DoAcross

loop), the degree of parallelism is dependent upon the ratio of the length of the

recurrence cycle to the length of the iteration.

• Parallelism Coverage : If we parallelize an inner loop, then all the code outside

will run sequentially. Thus, it may be desirable to choose an outer DoAcross

loop with less parallelism over an inner DoAll loop if speculation can only be

applied to one loop at a time. We refer to the percentage of code executed

under speculative execution as the parallelism coverage. By Amdahl’s Law, low

parallelism coverage necessarily results in poor performance.

To select the best loop, we developed a separate trace-driven tool called

MemDeps[35]. This tool is quite similar to our main simulator, described in

Section 2.3, configured to speculate on loops and using optimal synchronization.

MemDeps, however, simultaneously evaluates all loop levels in a given dynamic loop

nest to determine which single level is best to speculatively parallelize.2 The complex-

ity of the simulation algorithm lies in evaluating these loop choices to while utilizing

just a single run through a program execution trace. The MemDeps tool keeps sep-

arate simulation times for each currently active loop as if that were the only loop

to be speculating. For each loop that an executed instruction is dynamically nested

2Note that loops in a dynamic nest need not be defined in the same procedure.

2.4. SPECULATIVE LOOP PARALLELISM 19

in, the algorithm tracks the current iteration number and individual simulation time

assuming that only that single loop was executing speculatively. This per-currently-

active-loop information is recorded for each location stored to in the simulation. When

a load operation is encountered, the tool compares the current iteration counts with

those of the last store to that location. The loop level that carries the dependence

is the first common loop level where the iteration counts differ between the load

and store. If the time of the store in that loop level is later than the current time,

we advance the simulation time of the current iteration in that loop (containing the

load) by the minimum execution delay. Note that a dependence can only be carried

by one loop level, and only restricts single-level TLS execution for that specific loop

in the nest. If we were to speculate only on a non-carrying level of loop, the read

in question would automatically be executed after the relevant store operation even

without synchronization.

When an innermost loop terminates, it passes to its surrounding loop the length

of its computation and the degree of parallelism it would have achieved had it been

speculatively executed. By collecting all such information from its inner loops, an

outer loop can determine whether it is more profitable for it speculate or to instead

suppress speculation in order to allow its inner loops to speculate. It chooses the

option providing the best performance and, upon termination, informs its surrounding

loop of the best performance available had speculation been applied to either itself or

its inner loops. Eventually this information propagates back to the outermost loop

level and determines the best overall loop selection for single-level speculation. Our

algorithm handles recursion by assuming that speculation can be applied only to the

outermost execution of a loop that recursively invokes itself again.

Note that different dynamic executions of a certain loop nest may result in different

runtime loop choices by MemDeps. At the end of the MemDeps simulation, we

calculate the overall frequency with which each loop was dynamically chosen as the

best loop. These overall frequencies are then used to make static choices for loops in

our simulations of the TLS machine models employing single-level loop speculation.

20 CHAPTER 2. GENERAL PURPOSE THREAD-LEVEL SPECULATION

0

1

2

3

4

5

6

compress gcc go
ijpeg li

m88ksim perl
vorte

x

HMEAN

Benchmark

S
pe

ed
up

Optimal Optimal-LVP Optimal-SVP

Figure 2.4: Optimal TLS Speculation on Single-Level Loops

2.4.2 Single-Level Loop Speculation

We evaluate the performance of the one-level loop speculation model, using loops

selected as in the previous section, on several variants of the optimal TLS machine

using the SPECint95 benchmark suite. Figure 2.4 presents the experimental results

of this study. Machines are denoted by their synchronization policy and memory load

prediction scheme, if any, as described in Table 2.2.

The largest speedup of 5.2 is achieved by ijpeg, an image compression program,

with stride prediction enabled (Optimal-SVP). The significant performance improve-

ment seen with stride prediction is due to the elimination of induction variable depen-

dences across iterations. (Last-value prediction has no effect on these variables.) Had

the code been compiled for a TLS machine explicitly, the compiler would recognize

many of these induction variables and would eliminate their dependences from the

program. If a TLS machine used induction variable recognition but not general value

prediction, its performance would be bounded by the Optimal and Optimal-SVP

results.

2.4. SPECULATIVE LOOP PARALLELISM 21

It is not surprising that ijpeg performs well as its algorithm is very parallel.

M88ksim and vortex are the only other programs with speedups over 2, with the rest

of the benchmarks performing only between 1 and 1.6 times better than sequential

execution. Note that li and perl are relatively unaffected by value prediction.

Despite the optimal TLS machine’s ability to speculate loops perfectly, the overall

harmonic mean of speedup achieved across the benchmark suite is only 1.6. With the

exception of ijpeg, the results are rather disappointing especially when considering

that the optimal TLS machine uses an unbounded number of processors, delays every

operation optimally, and has zero-communication cost. Moreover, the loop choices are

made by analyzing the execution of the program with the same input set. Unless large

changes are made to the code, speculating at only one level in each loop nesting will

not yield significant speedup on a realistic TLS machine. Different code generation

or instruction scheduling could provide a potentially higher limit, however.

To gain more insight into the performance results, we instrumented the code

and the simulator to collect various characteristics of the individually speculatively

parallelized loops[35]. We determine the computation time of the loops speculated on,

whether the loops are innermost or outer loops, and whether the loops are DoAcross

or DoAll loops. We summarize the findings of those experiments here.

• Poor overall performance due to poor parallelism coverage. Many of the pro-

grams have loops that show fairly impressive speedups when speculatively ex-

ecuted. However, the lack of parallel coverage, shown in Table 2.4, results in

overall performance that is much lower. For example, m88ksim with stride pre-

diction achieves an impressive 34.4-times speedup on 71% of the program, but

the serialization in the other 29% of the computation drags down the overall

performance. To illustrate the importance of coverage, we also present the Am-

dahl’s Law limit on the overall speedups in Table 2.4, which assumes infinite

speedup of the covered portions of the programs and sequential execution else-

where. Even if all the parallelized code was executed in a single cycle, most

programs would still show relatively modest overall speedups.

• Trade-off between speedup and coverage. In many cases, choosing the best loops

22 CHAPTER 2. GENERAL PURPOSE THREAD-LEVEL SPECULATION

% Amdahl’s Law
Program Parallelized Max Speedup

compress 27% 1.4
gcc 77% 4.4
go 67% 3.0
ijpeg 99% 100.0
li 45% 1.8
m88ksim 71% 3.5
perl 85% 6.7
vortex 93% 14.3

Table 2.4: Coverage and Maximum Theoretical Speedup for Single-Level Loops

for overall program speedup presented a distinct trade-off. Inner loops tended

to have higher speedups but lower parallel coverage, while outer loops covered

more of the program but had lower speedups.

• Lack of DoAll loops. Only the two best performing programs (ijpeg and

m88ksim) spend more than 10% of their execution time in DoAll loops. Most

of the integer programs have only DoAcross loops, which tend to have a lower

degree of parallelism.

The analysis of the above suggests that large performance gains will require ad-

ditional sources of speculative parallelism. More sources will not only increase paral-

lelism coverage, but will also enable the machine to exploit parallel inner loops more

effectively.

2.4.3 Multi-Level Loop Speculation

Speculatively executing multiple loops in a nest seems to be an obvious approach to

improving single-level loop performance, but there are many difficulties in practice.

First, the relatively small number of processors we are targeting (4 or 8 in our later

experiments) make it difficult to assign them to multiple loops at a time. In addition,

because the number of iterations in a loop is not always known a priori, some loops

would occupy the entire machine with “potential” iterations. Finally, our thread

2.4. SPECULATIVE LOOP PARALLELISM 23

0

1

2

3

4

5

6

7

8

9

1 0

compress gcc go
ijpeg li

m88ksim perl
vorte

x

HMEAN

Benchmark

S
pe

ed
up

Optimal Optimal-LVP Optimal-SVP

Figure 2.5: Optimal TLS Speculation on Multi-Level Loops

prioritization favors speculative threads that are closest to the current head thread

in the original sequential execution. Thus, inner loop threads (closer to the head

thread) would tend to force outer loop threads out of the machine. Some researchers

have in fact implemented multi-level loop speculation in specific cases where an inner

loop is only occasionally (conditionally) executed[4][40]. Despite the feasibility issues

with multi-level loop speculation, we wish to find a bound for this approach. In this

experiment, we consider the extreme case where the optimal TLS machine uses an

unbounded number of processors to simultaneously execute all the iterations of each

loop in a nest that it encounters. The results are shown in Figure 2.5.

Even with all its idealistic characteristics and its use of a very aggressive spec-

ulation model, the optimal TLS machine’s performance is still relatively poor. The

harmonic mean improves only modestly from 1.6 to 2.6 (with stride prediction) when

speculatively executing all loops simultaneously, while the machine design becomes

much more difficult. Algorithms based on nested-loop computations, such as the

two-dimensional image processing in ijpeg or the processor simulation that spans

24 CHAPTER 2. GENERAL PURPOSE THREAD-LEVEL SPECULATION

both time (processor cycles) and space (arrays of hardware structures) in m88ksim

lead them to benefit most from the nested speculation opportunities. The less loop-

oriented and more arbitrary computations in gcc and perl show relatively little

improvement.

2.4.4 Summary of Speculative Loop Level Parallelism

Our results show that speculatively executing one loop at a time will not yield sig-

nificant speedup under the TLS model. Moreover the performance is highly sensitive

to the way the code is written. Most integer codes have DoAcross loops which have

limited parallelism. The ability to speculate on just one loop in each nest limits

the parallel coverage which produces a lower overall speedup. Parallelizing multiple

loops simultaneously increases the coverage and the overall performance, but would

be very difficult to effectively support in a real machine. Overall, the performance on

a very idealistic system is still modest. This result strongly suggests that loop-level

speculation needs to be complemented with other sources of parallelism.

2.5 Procedure Level Speculation

Procedures are the programmer’s abstraction tool for creating loosely-coupled units

of computation. This suggests that it may be possible to overlap the execution of

a procedure with the code normally executed upon the return of the procedure. A

characteristic that makes speculative procedure execution particularly attractive is

the lack of control dependence between the sequential and speculative threads. Pro-

cedures are expected to return under normal execution, and thus it is seldom necessary

to discard the speculative work because of control flow. The only exceptions are when

the procedure raises an exception or uses unconventional control flow operations such

as longjmp. These unusual circumstances can easily be handled by simply aborting

the speculative threads and discarding their speculative states.

2.5. PROCEDURE LEVEL SPECULATION 25

S1;
proc_A();
S2;
proc_B();
S3;

proc_A() {
 A;
}

proc_B() {
 B;
} . . .

fork

fork

S1

A
S2

B S3

Figure 2.6: Procedural Speculation

Unlike loops, procedures have not traditionally been a popular target of paral-

lelization. They have generally been used in more functional programming environ-

ments where there are fewer memory side effects in procedures and recursion is more

common[16, 23]. In typical imperative programming environments, procedures tend

to share more data dependences with their callees. Also, as recursion is less pre-

dominant in imperative programs, the available parallelism is not scalable. These

limitations, however, are much less important to the TLS model. The speculative

execution hardware can handle memory dependences that might exist across proce-

dures. Furthermore, a real TLS machine is likely to have hardware support for only

a small number of concurrent threads. The prevalence of procedure calls throughout

programs provides a potentially effective source of parallelism that might complement

loop-level parallelism.

To speculate at the procedure level in the TLS model, we concurrently execute

the called procedure with the code following the return of the procedure, as shown

in Figure 2.6. Notice that it is the latter that executes speculatively. A data de-

pendence violation occurs if the code following the return reads a location before the

callee thread writes to that location. The same mechanism that is used for loop-

level parallelism can be used to ensure that the data dependences are satisfied. By

customizing the procedure calling convention to support speculation, the overhead

26 CHAPTER 2. GENERAL PURPOSE THREAD-LEVEL SPECULATION

S1;
proc_A();
S2;

proc_A() {
 A1;
 proc_B();
 A2;
}

proc_B() {
 B1;
}

fork

A1 S2

. . .

fork

fork
S1

A2

S2
A1

S1

B1

.

(A)

(B)

Figure 2.7: Nested Procedural Speculation

of creating a new thread could be minimized. For example, if threads have their

own private registers, then register saves and restores at procedure boundaries could

potentially be eliminated. This limit study does not take advantage of this optimiza-

tion opportunity, but we do investigate it for monitoring code optimization as later

described in Section 4.5.

While loop level speculation can occupy an arbitrarily large number of processors

by assigning a new iteration to each processor, each instance of procedural specula-

tion creates work for only one additional thread. To create more opportunities for

parallelism, these speculative threads from procedure calls can be created in a nested

fashion. This is shown in Figure 2.7. When we first encounter the call to proc A, we

fork the computation as shown in (A). When we arrive at the nested call to proc B,

we create another new thread that is inserted in the thread ordering shown in (B).

Thus the order of thread creation is not the same as the sequential order that the

threads will retire in. The sequential ordering of the recursively created threads is

determined as follows. If thread Ti creates a speculative thread Tj at a call site, then

Tj comes after Ti in the ordering, and inherits from Ti all of its sequential ordering

relationships with existing threads.

2.5. PROCEDURE LEVEL SPECULATION 27

0%

20%

40%

60%

80%

100%

co
m

pr
es

s
L S

gc
c

L S
go

 L S

ijp
eg

 L S
li

L S

m
88

ks
im

 L S

pe
rl

 L S

vo
rte

x
L S

Benchmark, (S)tride or (L)ast Value Prediction

S
pe

ed
up

Mispredicted Correctly Predicted Unused Return Value

Figure 2.8: Predictability of Procedure Return Values

Because the return value is often used immediately upon the return of a procedure,

speculatively executing the code following the procedure body could result in a large

number of rollbacks. To avoid these rollbacks, we propose predicting the value that

will be returned. Return value prediction is implemented by keeping a cache of past

values returned by each procedure, if they exist. The caller thread continues to

execute the code following the procedure call using the predicted return value. When

the callee thread returns, the actual return value is compared to the predicted value.

If the values are different, the machine would generate a data violation signal, discard

the speculative state, and restart the thread.

2.5.1 Predictability of Return Values

To verify that speculation with return value prediction has potential, we first look

at the predictability of those values. We experimented with two simple schemes of

prediction: last-value prediction and stride-value prediction. The results are shown

28 CHAPTER 2. GENERAL PURPOSE THREAD-LEVEL SPECULATION

in Figure 2.8. We classify procedure returns into three categories: (1) those that have

either no return values or whose return values are not used, (2) those whose return

values are used and are correctly predicted, (3) those whose return values are used

and are mispredicted. For each program, we show two sets of data, one that uses

last-value prediction labeled “L” and one that uses stride-value prediction labeled

“S”.

First, we observe that both last-value and stride-value prediction give similar re-

sults, with those of last-value prediction being slightly better for half of the programs.

Misprediction of return values occurs less than 50% of the time for all programs, with

vortex and m88ksim having almost no mispredictions. The benchmarks where return

value prediction most often fails typically return pointers or other memory/storage

related values. For example, compress makes many calls to a hash function whose

results are highly unpredictable. Those that are extremely predictable tend to return

quantities like status/error conditions, as in vortex for example. Finally, note that

just because a return value is correctly predicted does not imply that much of the

callee and caller computation will be overlapped; if the procedure modifies global

variables or reference parameters after the caller has speculatively read such data,

and the values read are not predictable, then the caller thread will be rolled back.

2.5.2 Evaluation of Procedural Speculation

Our next experiment evaluates the speedups of the procedural speculation model on

optimal TLS machines with different value prediction policies.

The results are shown in Figure 2.9. First, by comparing the performance of

Optimal and Optimal-LRVP we observe that result value prediction has a significant

positive effect on the performance of procedural speculation. As expected, programs

with highest numbers of used and correctly predicted return values (vortex, m88ksim,

as well as go and gcc to a lesser extent) benefit significantly. Conversely, compress,

whose return values are not predictable, shows almost no improvement. ijpeg shows

essentially no improvement with return value prediction because its most frequent

routines (discrete cosine transforms) do not return any values.

2.5. PROCEDURE LEVEL SPECULATION 29

0

2

4

6

8

10

compress gcc go
ijpeg li

m88ksim perl
vorte

x

HMEAN

Benchmark

S
pe

ed
up

Optimal Optimal-LRVP Optimal-LVP Optimal-SVP

40
.2

41
.5

Figure 2.9: Optimal TLS Speculation on Procedures

Value prediction on regular data accesses is useful for almost all the programs,

and can sometimes make a dramatic difference to the performance as in the case of

vortex and to a lesser extent m88ksim and gcc. To gain some insight on this issue, we

analyzed the code for m88ksim, a program that simulates a microprocessor. We found

that the load instruction that benefits most from stride value prediction is a load of

the simulation’s program counter (at the beginning of the datapath() procedure).

Since the program counter typically increments by 4 each time datapath() is called,

stride value prediction is quite effective in eliminating this dependence.

We also investigated the behavior of vortex, which has abundant parallelism

when prediction is enabled. The dominant procedure in vortex, Chunk ChkGetChunk,

accounts for about 18% of the total execution time. The procedure verifies that a

memory chunk access was valid and sets a call-by-reference parameter, status, to

indicate the type of error if any. The return value is a boolean version of status. Given

that the error conditions rarely occur, this is an excellent procedure for speculation.

Note that prediction of both the return value and the call-by-reference out parameter

30 CHAPTER 2. GENERAL PURPOSE THREAD-LEVEL SPECULATION

0

2

4

6

8

10

12

14

16

18

20

22

compress gcc go
ijpeg li

m88ksim perl
vorte

x

HMEAN

Benchmark

S
pe

ed
up

Optimal-LRVP Optimal-LVP Optimal-SVP

43
.0

42
.5

48
.3

Figure 2.10: Optimal TLS Speculation on Loops and Procedures

is needed to make the threads completely parallel.

Overall, the experiments suggest that procedures are a reasonable source of spec-

ulative parallelism in many programs. With the use of return value prediction, spec-

ulating at procedural boundaries delivers a performance comparable to that of exe-

cuting all loops speculatively on the various Optimal TLS models. Value prediction

of regular memory accesses improves the overall speedup for almost all programs and

has a major impact on specific programs.

2.6 Speculating at Both Procedural and Loop

Boundaries

We next investigate the effect of combining both procedure and loop-level speculation.

The experimental results for the various optimal TLS models are shown in Figure 2.10,

and they are much more encouraging. Most of the programs improve significantly

2.7. EXPERIMENTING WITH MORE REALISTIC MODELS 31

over speculation on loops or procedures only, showing benefits from both forms of

speculation. All but compress and perl have at least a 4.5-times speedup under

the Optimal-SVP model. This includes programs, such as gcc, which have been

very difficult to parallelize previously. As noted before, value prediction can have a

significant effect on specific programs.

2.7 Experimenting with More Realistic Models

Having shown that speculation at all loop and procedure boundaries exposes a rea-

sonable amount of parallelism in an optimal TLS machine, we now experiment with

this software model on more realistic machine models. In the following sections, we

first evaluate the speculative scheme on an optimal TLS machine with a finite number

of processors, and then on the base TLS machines that may require rollbacks.

2.7.1 A Finite Number of Processors

An optimal TLS machine with an unbounded number of processors favors the creation

of as many threads as possible. In the degenerate case where every single instruction is

a thread of its own, the results would be identical to those reported by previous oracle

studies where each operation is issued as soon as its operands become available[58]

. Speculating at all procedure and loop boundaries can easily generate more threads

than a reasonable implementation could maintain.

On a machine with support for only a finite number of threads, we must have

a strategy to prioritize among the available threads. We adopt the simple strategy

of prioritizing the threads according to their sequential execution order; a thread

earlier in the sequential execution order has a higher likelihood of success and is thus

given higher priority. In the presence of recursive procedural speculation, a newer

thread may have a higher priority than an existing thread. When that happens, the

machine frees up a processor for this thread by terminating the speculative execution

of the thread with the lowest priority and discarding its speculative state. When the

machine has some free resources, it will (re)start the execution of the thread with

32 CHAPTER 2. GENERAL PURPOSE THREAD-LEVEL SPECULATION

the highest priority. With this strategy, speculation on inner loops can occupy all

available resources and thus prevent any speculative execution progress in the outer

loops–effectively resulting in single-level innermost loop speculation. In cases where

the coverage or parallelism of an outer loop is more compelling, allowing inner loop

speculation to “preempt” outer loop speculation would not be desirable. To address

this, we suppress the speculation of any inner loop if an outer enclosing loop was

determined by the MemDeps simulator described in Section 2.4.2 to provide a better

overall speedup under single-level speculation.

Figure 2.11 shows the performance achieved with 4-way and 8-way TLS ma-

chines. As expected, the speedups are lower than those found with infinite processors.

M88ksim, vortex, and ijpeg perform quite well, delivering over a 5-times speedup

on an 8-way machine and roughly 3-times speedup on a 4-way machine (both with

stride prediction). Value prediction continues to benefit the same programs that saw

improvement in the infinite processor case, but the gains are much more realistic and

limited. The program compress suffers little degradation, but its performance with

infinite processors was quite low to begin with. Overall, the harmonic mean of the

speedups is 3.2 for 8 processors, and 2.3 for 4 processors.

2.7.2 Machines with Rollbacks

The most unrealistic aspect of the optimal TLS machine is that it automatically delays

every operation by the optimal amount, guaranteeing that there are no dependence

violations to cause rollbacks. In this section, we present an experiment where we

remove this fundamental assumption. We evaluate 4-way and 8-way machines that

insert no delays into their executions, and upon detection of a dependence violation,

must squash the thread and roll back the computation. This causes a performance

degradation when the machine speculates on threads that try to read data before it

is written and are unable to predict the value correctly.

In Figure 2.12, we show the results for 4-way and 8-way Base TLS machines. As

expected, the performance of each Base machine is lower than that of the correspond-

ing Optimal machine. Harmonic mean speedups range from 1.7 to 2.1 for a 4-way

2.7. EXPERIMENTING WITH MORE REALISTIC MODELS 33

0

1

2

3

4

5

6

compress gcc go
ijpeg li

m88ksim perl
vorte

x

HMEAN

Benchmark

S
pe

ed
up

Optimal-LRVP Optimal-LVP Optimal-SVP

0

1

2

3

4

5

6

compress gcc go
ijpeg li

m88ksim perl
vorte

x

HMEAN

Benchmark

S
pe

ed
up

Optimal-LRVP Optimal-LVP Optimal-SVP

4-way 8-way

Figure 2.11: Loop and Procedure Speculation on 4-way and 8-way Optimal TLS
Machines

0

1

2

3

4

5

6

compress gcc go
ijpeg li

m88ksim perl
vorte

x

HMEAN

Benchmark

S
pe

ed
up

Base-LRVP Base-LVP Base-SVP

0

1

2

3

4

5

6

compress gcc go
ijpeg li

m88ksim perl
vorte

x

HMEAN

Benchmark

S
pe

ed
up

Base-LRVP Base-LVP Base-SVP

4-way 8-way

Figure 2.12: Loop and Procedure Speculation on 4-way and 8-way TLS Machines
with Rollback

34 CHAPTER 2. GENERAL PURPOSE THREAD-LEVEL SPECULATION

base machine depending on the value prediction employed.

The finite-processor Base TLS machines are obviously still quite idealized. For

example, the communication between threads incurs no overhead and thread creation

and rollback is instantaneous. These investigations were largely intended to quickly

evaluate the amount of inherent loop or procedural speculative parallelism in off-the-

shelf integer code. In the following section, we describe both prior and further work

that has been done on general-purpose thread-level speculation.

2.8 Related Work

The TLS model is based on the Multiscalar paradigm which was the first speculative

thread architecture[14, 46]. The Multiscalar has a number of processing units orga-

nized in a ring-based topology for executing speculative threads. It has register and

memory forwarding mechanisms and a mechanism for detecting memory data depen-

dence violations called the address resolution buffer (ARB). The Multiscalar research

group has evaluated the base processor and extensions to the processor that avoid

unnecessary thread restarts using a number of integer applications, showing mod-

erate speedups[33]. The Multiscalar group and other researchers have augmented

the cache-coherency mechanisms of a single chip multiprocessor to support specula-

tive threads [15, 33, 46]. The goal of these approaches is to achieve lower hardware

overheads and more flexibility than the ARB approach originally proposed in the

Multiscalar processor. To select tasks for the Multiscalar, a compiler pass examines

the control-flow graph of the program and uses heuristics to partition the basic blocks

into threads[57]. Speculative tasks are supposed to immediately follow the spawning

task, so there is no nested task creation, but prediction of successor tasks is more

difficult.

Steffan and Mowry evaluated the performance potential of a multiprocessor-based

approach and showed reasonably good performance on a sampling of integer ap-

plications.3 The reported performance was quite dependent upon rather idealistic

3Benchmarks included compress, gcc, espresso, and sc from SPECint92, m88ksim, ijpeg, perl
and go from SPECint95, as well as buk from the NAS Parallel benchmark suite.

2.8. RELATED WORK 35

(and potentially unrealizable) dynamic instruction scheduling however; an average

speedup of 1.5 dropped to 1.2 without such scheduling[51].4 Later work by Steffan

used a practical scheduling implementation, and evaluated potential benefits of value

prediction, silent store elimination, hardware dependence synchronization, and mod-

ifications to the instruction issue logic to prioritize instructions on critical paths[50].

Results were mixed, with the authors concluding that their implementations of dy-

namic synchronization and issue logic prioritization were not helpful overall. Further

work by Zhai et al. presented a complex compiler algorithm for aggressive scalar

value communication between threads, allowing scheduling across potential control

and data dependences[60]. Unfortunately, all these optimizations operate within a

single-level loop speculation paradigm; thus parallel coverage, which averaged 51%

via hand-selection in Steffan’s work, is only 20% in Zhai’s evaluation after poor re-

gions are manually pruned out from the 35% of the program that was automatically

targeted by the compiler. As a result, overall program speedup averages about 1.1.

The lack parallelism coverage severely limits the utility of these optimizations.

The Trace processor is a concrete machine proposal that can exploit similar par-

allelism found in multiple flows of control[42]. In the Trace processor the program is

dynamically broken into a sequence of instructions, each of which can be executed

speculatively as a separate thread by an individual processing element (or PE). If

an instruction violates a data dependence, only that instruction and the instructions

dependent on it will be re-executed. The ability to selectively re-execute only those

instructions that are affected mimics the ability of an oracle that can execute every

instruction optimally whenever its operands are ready. Unfortunately, this ability

comes with an implementation costs that increases greatly with trace length, as the

processor must keep track of enough information to recover from all combinations

of mispredictions. This constrains the size of each thread–the proposed maximum

thread length is sixteen instructions. This limitation prevents the system from ex-

ploiting parallelism with a larger granularity. In comparison, the TLS machine model

can realistically allow longer speculative threads than that of the Trace processor

4Code was scheduled using perfect runtime data dependence information in order to minimize
cross-iteration dependence lengths.

36 CHAPTER 2. GENERAL PURPOSE THREAD-LEVEL SPECULATION

because there is only one speculative state per thread. It can exploit parallelism be-

tween instructions that are farther apart, and can follow more independent flows of

control because threads are explicit. However, our TLS thread restarts discard much

more work than the Trace processor’s selective recovery, so it is more important to

minimize dependence violations.

To compare the performance of a Trace processor to an “equivalent” superscalar,

the authors suggest evaluating machines of similar issue complexity5 They evaluate a

four-way issue superscalar with a sixteen instruction window versus a 4-, 8-, or 16-PE

Trace processor with that same base superscalar as the processing element, arguing

that since each element has identical and independent issue complexity, chip cycle

time should be roughly similar. As the authors state, in this case “the only penalty

for having more than one PE is the extra cycle to bypass values between PEs.” In

this scenario, they achieve speedups of 1.6, 1.8 and 2.0, for four, eight, and sixteen

PEs, respectively, on gcc. However, this equivalence measure is a bit extreme. The

Trace processor has many more functional units and instruction buffers distributed

across the multiple PEs, and also utilizes a 64K-entry trace predictor in order to

execute effectively. Also consider that the superscalar in this example has only two

cache buses, while the trace processors use four, four, and eight buses for the four,

eight, and sixteen PE configurations, respectively. If we compare those same Trace

processors against a 4-way superscalar with a 64-instruction window, or an 8-way

superscalar with a 32-instruction window, the performance gains are more modest:

in both cases, roughly 1.1, 1.3, and 1.4 for Trace processors with four, eight, and

sixteen PEs respectively.

The Dynamic Multithreading (DMT) processor[1] combines features of the Simul-

taneous Multithreading machine[55] and the Trace processor while also supporting

procedural and some loop speculation. It executes threads in a tightly-coupled SMT-

based environment. Selective recovery is performed from a trace buffer like the trace

processor, but the machine does not compact normally executed code into traces.

The speculative thread size is limited by the need to keep all of the thread’s dynamic

5Superscalar issue complexity is generally equal to the product of instruction window size and
instruction issue width.

2.8. RELATED WORK 37

instructions in the trace buffer; in their simulations, threads can be at most 500 in-

structions long. They chose loop and procedure continuations as their targets for

speculative execution. Inner loop speculation is not supported in order to work with

unmodified, preexisting binaries.6 While our studies suggest that speculating only

on single-level (mostly inner) loops in integer codes is insufficient, inner loops are

still a valuable contributor to performance in certain programs. The DMT machine

also does not perform explicit return value prediction. The only prediction employed

is for registers, and it is limited to predicting that the initial register values for a

child thread are the same as the parent thread’s register values at the time the child

is spawned. The DMT processor does have a fast forwarding mechanism for when

register prediction fails, though there is no facility for memory load prediction or

synchronization. Overall, the DMT achieves an average 1.5-times speedup on integer

programs when executing with eight threads.

Hammond, Willey, and Olukotun presented a sample machine design implement-

ing many of the ideas suggested in this paper and elsewhere, but the results reported

initially were not encouraging[17]. In order to lessen the impact of TLS support on

the base chip-multiprocessor hardware design, thread management is done largely

in software by handlers that take significant time to operate. For example, starting

a loop, committing a loop iteration, and ending a loop all take on the order of 70

to 80 instructions, which is fairly close to the average thread size that we observed.

Additionally, while return value prediction is implemented for procedures, neither

value prediction nor synchronization is implemented to help cope with the other data

dependences across speculative threads. A subsequent paper by the group showed

improved results when overheads were reduced and software was manually updated

to introduce synchronization and better code scheduling[34]. The reduced overheads

were achieved by eliminating support for procedural speculation in favor of more ef-

ficient support for loops, however. Overall, they achieved a 1.7x speedup a number

of general purpose integer programs as a result of the lower-overhead handlers and

6Hardware only detects the end of a loop (when it sees a backwards branch instruction) as opposed
to being alerted to the start of a loop. Thus DMT parallelizes the code coming after a loop body
(“loop continuations”) which would include any enclosing outer loop iterations.

38 CHAPTER 2. GENERAL PURPOSE THREAD-LEVEL SPECULATION

software optimizations.7 Performance increased to 1.8x when hardware checkpointing

was added to reduce the number of instructions that needed to be re-executed when

a thread is squashed.

Further work by Chen presented an effective system for speculation in Java pro-

grams using the Hydra CMP[4]. Thanks in part to the dynamic nature of Java,

a profiler was developed to analyze loops at runtime to determine the amount and

lengths of dependences between loop iterations, as well as the amount of speculative

buffering needed. The runtime system then selects appropriate loops for speculation

and generates optimized code. Chen did find that some of the integer programs bene-

fited further from hand optimizations that could not be automated. Overall speedups

reported ranged from 1.5x to 2.5x for integer programs, 2x to 3x on multimedia codes,

and 3x to 4x for floating-point applications.8

Prabhu found that manual transformations by the programmer could significantly

improve TLS performance on the Hydra CMP[40]. The transformations included com-

plex value prediction, targeting non-loop parallelism via “speculative pipelining”, and

various algorithm changes to expose parallelism. An average of eighty programmer

hours was applied to three integer and four floating-point benchmarks, achieving an

average 1.7x integer speedup and 2.1x floating-point speedup.

Other researchers have also examined the performance of various choices for thread

boundaries. Codrescu compared the performance of loops, procedures, fixed-sized

blocks of sixteen instructions (like the Trace processor), and finally a scheme de-

vised by the author (called MEM-slicing) where memory instructions are picked as

thread boundaries, subject to a minimum thread length of sixteen instructions[6]. The

speedups for these four schemes were 1.7, 1.9, 2.5 and 3.4 respectively, executing on

eight in-order CMP processors. The machine had some rather aggressive hardware,

however, such as trace buffers for selective recovery of dependence violations, as well

as a 128KB combined value/control predictor. Codrescu noted that procedures or

loops alone did not seem to have sufficient coverage or load balance to provide good

7General-purpose integer programs evaluated were compress and m88ksim from SPECint95,
eqntott from SPECint92, and the UNIX utilities grep and wc.

8Integer benchmarks included an assortment of Java programs from SPECjvm98, Java Grande,
as well as Java applications publicly available on the Internet.

2.8. RELATED WORK 39

performance, though loops and procedures were not evaluated together. The MEM-

slicing proposal yields great coverage and load balance; however, it must use a large

predictor to “learn” the locations of thread boundaries, as well as provide needed

value predictions. In addition, without selective thread recovery the performance

with MEM-slicing drops from 3.4x to 1.8x.

Studies by Marcuello and González also evaluated thread-spawning schemes on

a tightly-coupled multiprocessor with 4-way out-of-order cores[29]. Initial studies

compared loop iterations, loop continuations, and procedure continuations (but not

combinations thereof). They found that when the machine is limited to in-order

thread creation (as opposed to the nested creation described in Section 2.5), the best

performing scheme is loop iterations, with a 1.7x speedup on 16 processors. Note that

this includes perfect value prediction of all register and memory dependences. When

nested thread creation is allowed, a speedup of 5.7x is obtained, again with perfect

prediction. They also investigate a realistic register value predictor, but one with an

idealistic value misprediction penalty of a single-cycle over perfect synchronization,

as well as perfect synchronization for memory. The best performance is again with

loop iterations, an average 2.8x speedup.

In later work, Marcuello and González suggested a more general source of threads–

simple sequences of basic blocks[30]. A profiler is used to determine which sequences

are relatively control independent, sufficiently long, and do not have many external

data dependences. With a 16KB register value predictor, the profiled basic block

scheme performs 13% better than the combined loop and procedure speculation that

they also implemented.

Finally, one of the most recent TLS machine proposals, the Implicitly-

Multithreaded processor (IMT) has been proposed by Park[37]. This is an eight-wide

SMT-based design, using the Multiscalar task selection compiler described previously,

but with an execution preference for loop iterations. Squashed threads must fully re-

execute (no selective recovery) and there is no value prediction. Dynamic dependence

synchronization hardware is included in the design, however. Overall, Park found that

an eight-thread TLS execution typically slowed down most integer benchmarks. He

40 CHAPTER 2. GENERAL PURPOSE THREAD-LEVEL SPECULATION

0

1

2

3

4

5

6

8 way 4 way 8 way 4 way

Software Model (above), Machine Model (below)

S
pe

ed
up

Hmean (LRVP) Hmean (LVP) Hmean (SVP)

Single
Level
Loops

Multi
Level
Loops

Procedures Loops + Procedures

Optimal Base

Figure 2.13: Summary of the Harmonic Mean Speedups

implemented additional optimizations, such as context multiplexing to allow adja-

cent threads to share a single execution context, a resource-aware thread fetch policy,

and lower-overhead thread creation. With these additional optimizations, speedups

averaging 1.2 for integer programs and 1.3 for floating-point applications are obtained.

General motivation for using multiple flows of control to increase sequential appli-

cation performance was presented by Lam and Wilson[25]. While the value prediction

we employ could result in performance beyond the dataflow limit observed in Lam and

Wilson’s experiments, our multiple flows of control (loop iterations and procedures)

are much more restricted in nature.

2.9. SUMMARY AND CONCLUSIONS 41

2.9 Summary and Conclusions

We summarize our study of speculative parallelism with Figure 2.13, which shows

the harmonic means of the performance results of the different experiments we per-

formed. We started our exploration by assuming an optimal TLS machine with an

infinite number of processors that completely avoids rollbacks. We experimented with

different speculation schemes: speculating only one loop at a time, speculating at all

loop levels, speculating at all procedural boundaries, and finally to speculating at

both loop and procedure boundaries. We found that the last scheme delivers decent

performance on the optimal TLS machine. Having found such a scheme, we then con-

sidered more realistic machine models. We first refined the parallelization scheme to

reduce the number of threads created, and evaluated the performance of the programs

on optimal TLS machines with 8 and 4 processors. Finally, we experimented with

base machines that roll back speculative threads whenever dependence violations are

detected.

The methodology used in this paper enabled us to analyze programs effectively

and find potential sources of speculative parallelism. The relaxed machine model

(Optimal) allowed us to quickly identify the fundamental limitations of loop level

speculation. We were able to develop a variety of analysis and simulation tools that

isolated parallelism coverage as an important factor in the lack of performance. This

result led us to locate alternative sources of speculative parallelism, namely proce-

dural speculation. The gradual refinement of the machine models from the optimal

TLS machine, first with an infinite number of processors, then to a finite number of

processors, and finally to machines with rollbacks increased our understanding of the

different factors that affect performance.

Still, the results are for a relatively idealistic machine that does not account for

the additional demands that speculation puts on memory bandwidth, for example,

nor does the study address the impacts of thread operation overheads. Conversely,

we do not address the potential performance improvements that could come from

instruction and dependence scheduling, or beneficial thread selection or suppression

42 CHAPTER 2. GENERAL PURPOSE THREAD-LEVEL SPECULATION

criteria (in the finite processor models only). Given the complexities of thread se-

lection, wide variety of potential hardware support options, and number of different

software optimizations that could be applied, it is difficult if not impossible to provide

a meaningful bound on the potential general-purpose TLS performance. However, we

feel our study does show that single-level loop speculation will not provide signif-

icant speedups across a broad array of integer programs, and suggests that good

TLS performance will be difficult to achieve, particularly without value prediction or

significant changes to the code.

Devising an hardware-efficient scheme where thread-level speculation can be ef-

fective for a wide variety of general-purpose programs has proven to be a very chal-

lenging task for many researchers. As discussed in Section 2.8, recent TLS proposals

have had significantly narrower focuses, such as scientific or multimedia codes, Java

programs, or code that is made more suitable for TLS by manual programmer trans-

formations. We have identified another class of programs that can significantly benefit

from TLS–programs with verification or analysis code that can be parallelized, as well

as programs where the fine-grained recovery available with TLS can be used directly

by the programmer. By allowing a choice in how TLS is employed, one could use it

to target pure performance via traditional thread-level speculation if the application

was suitable, or TLS could be used to provide enhanced reliability if those qualities

were deemed more important by the user.

Having explored some of the limits of general-purpose TLS, we now turn to look

at these “reliability-based” programming paradigms that TLS can help support ef-

fectively.

Chapter 3

The Monitor-and-Recover

Paradigm

In this chapter, we look at the two components of our proposed programming

paradigm: monitoring program execution and recovery via fine-grain transactions.

3.1 Execution Monitoring

The concept of execution monitoring has been used in the past for a variety of pur-

poses: architectural evaluations, off-line performance tuning, on-line optimization,

program debugging tools, and dynamic program verification. Execution monitoring

is so common that new programming languages as well as binary and bytecode rewrite

tools have been developed to facilitate adding instrumentation to programs. Here,

we advocate additional support for execution monitoring at the architectural level in

order to make this paradigm more efficient.

3.1.1 Uses of Execution Monitoring

Practitioners often use profiling to understand the bottlenecks in their system and

tune the performance of programs. Dynamic languages like Java have been shown

to benefit greatly from dynamic optimizations. These optimizations rely on profile

43

44 CHAPTER 3. THE MONITOR-AND-RECOVER PARADIGM

data gathered by instrumenting the program to identify the frequently executed code

regions or frequently used parameters. Execution monitoring is also widely used in

computer architecture research to determine how programs behave under different

architectural models.

Apart from performance analysis and optimization, execution monitoring has also

been used in a variety of ways to improve software reliability. Application-specific

assertions are added to the code by programmers, and safe languages add checks to

ensure, for example, that there are no null dereferences or out-of-bound array accesses

during execution.

A number of execution monitoring tools have been developed to watch for com-

mon errors in programs. StackGuard is an example of a tool that stops buffer overrun

attacks, which have been a major cause of recent software vulnerabilities[9]. Stack-

Guard inserts checks into the code to ensure that the run-time stack has not been

inappropriately tampered with. Execution monitoring tools that help find memory

management errors are widely used. For example, Purify monitors memory accesses

to detect memory leaks, duplicate frees and illegal access errors such as reading past

the end of heap-allocated objects or from uninitialized memory[19].

While StackGuard and Purify are designed to find specific types of programming

errors, DIDUCE is a more general tool that helps programmers find all kinds of

application-specific bugs[18]. DIDUCE instruments Java bytecode to watch the data

values accessed at various code points in the program. It creates a model of the

correct behavior as the program runs, reports a potential error whenever it encoun-

ters a violation of the model extracted and then relaxes the model. By doing so,

DIDUCE usually alerts the programmers of errors as they first appear, rather than

waiting for the corrupted data to cause program exceptions or failure. This technique

has been demonstrated to help programmers quickly diagnose bugs that result from

algorithmic errors in handling corner cases, errors in expected inputs, and developers’

misconceptions about the APIs of software components they use. DIDUCE also helps

programmers find hidden errors, errors that can silently compromise the integrity of

the result and cause even greater damage than obvious errors that crash a program.

Today, these execution monitoring tools are used mainly during the debugging

3.1. EXECUTION MONITORING 45

phase of software development. In fact, there are also many advantages to including

execution monitoring codes in production software. By detecting run time errors in

the software, execution monitoring can prevent errors from silently compromising the

integrity of the system and data. In addition, it may be possible for software to

capture error information and send it back to the developers for analysis, alert the

user to take precautions before a harder failure occurs, or even attempt to recover

from errors. However, the large overhead introduced by execution monitoring has not

only made execution monitoring infeasible in production software, but also limited

its usage in software development.

3.1.2 Tools for Execution Monitoring

Extensive monitoring code is usually inserted automatically by a program. For ex-

ample, a compiler might insert relevant safety checks at all appropriate code points.

ATOM[48] and EEL[26] are examples of binary rewrite tools that help programmers

instrument binaries. BCEL is an example of a Java bytecode rewrite tool[11]. These

tools allow users to insert calls to user-supplied routines at specified code points, such

as before or after basic blocks, procedure calls, or data accesses.

Support for execution monitoring is one of the motivations behind the develop-

ment of aspect-oriented programming[22]. To enhance modularity of software, aspect-

oriented programming allows programmers to create an aspect that groups together

behavior that cuts across typical divisions of responsibility in a given program. For

example, monitoring code to be inserted at the beginning and at the end of every

function would be organized as an aspect. The aspect compiler would automatically

weave these functions into the main computation. In this way, all the source code

related to monitoring is written in one place, making it easy for the programmer to

write and maintain the software.

46 CHAPTER 3. THE MONITOR-AND-RECOVER PARADIGM

3.1.3 Speeding up Monitoring Functions

Monitoring functions represent pure overhead if the program is correct. In the rare

event that an error is caught, it is important that the monitoring function commu-

nicate the failed check to the original program. This is usually achieved via a raised

exception, an error return code, or by just terminating the main program. Produc-

tion software programs, especially server programs where availability is paramount,

often check for unexpected inputs or conditions and then needs to recover without

terminating the program.

To enhance the performance of these checks, we propose that the software, typ-

ically an instrumentation tool, convey to the architecture which functions are mon-

itoring functions. The programmer writes code following the simple semantics that

the monitoring functions and the normal computation are executing sequentially. In

fact, on a TLS machine, each call of a monitoring function may spawn a new thread;

the original thread executes the monitoring function and the new thread executes the

code after the call speculatively in parallel. The TLS architecture ensures that the

sequential semantics are preserved. The monitoring function only sees the program

state at the beginning of the call and the subsequent changes that it itself makes; the

state of the speculative computation is buffered and not observed. If a data or control

hazard is detected, that is if the speculative thread uses data that is later produced by

the monitoring function call, or if the speculative thread was not supposed to execute

at all, it is rolled back and not allowed to commit.

Typically the monitoring function reads the state of the main computation and

operates on its own data structures. It may communicate with the main function by

returning an error code that indicates success or failure. These kinds of results can

be very accurately predicted because the program is expected to be correct. Thus,

the speculative thread should not typically need to be rolled back.

It is possible that multiple monitoring functions might be invoked in rapid succes-

sion. If they are pure functions that simply return a predictable result, then parallel

execution is possible. However, some of these monitoring codes may update internal

data structures that are then read by later monitor calls. The TLS hardware will

guarantee the sequential semantics even if data hazards occur between the calls. We

3.2. FINE-GRAIN TRANSACTIONAL PROGRAMMING 47

expect these dependences to be rather sparse, especially if the monitoring routines

are spaced out with the main computation.

3.1.4 Summary

In our proposed model, programmers can create monitoring functions simply by as-

suming that these functions will be called and executed sequentially. A code instru-

mentation tool inserts calls to the monitoring functions and marks these routines

as speculative. The machine then exploits the fact that monitoring functions are

mostly independent from the main computation and uses thread-level speculation to

overlap their execution. When the program is correct, the monitoring functions run

faster because they are overlapped with the main computation; if the monitoring

functions find an error, the hardware allows the error be processed as if the program

had executed sequentially.

3.2 Fine-Grain Transactional Programming

Once an error is detected, it is important for many programs to recover from the

error and not just terminate the computation. For example, the software may be

providing services that cannot be interrupted, or the program may have some volatile

state that is difficult or impossible to reconstruct. Even for software that can easily

be restarted, the overhead involved in restarting a process may represent a denial-of-

service vulnerability.

Clearly, it is preferable that software check its inputs and not make any erroneous

updates to its state. However, despite all precautions, programmers still make mis-

takes. It is often easier to introduce end-to-end checks that examine the integrity

of a computational state, but that means the program must now recover from a

compromised state.

Transactions are a powerful abstraction that can be used to address this difficulty.

We envision that programs in the future be built as a composition of transactions.

Each transaction is a unit of computation whose side effects, which include all changes

48 CHAPTER 3. THE MONITOR-AND-RECOVER PARADIGM

to registers and memory, can be committed or discarded as a unit. If checking code

detects a problem, the transaction is aborted and the pre-transaction state restored.

This provides the programmer with an extremely simple approach to error recovery.

Transactions have been extensively used in database applications; these are rather

heavy-weight transactions that typically involve writing to permanent storage. The

concept of transactions has also been applied at the operating system level, where

changes of virtual memories and even system calls can be “undone”[20, 28, 43].

Transactions used for the sake of error containment and recovery can be very fine-

grained, on the order of tens and hundreds of instructions. As such, we must reduce

the overheads involved in implementing these transactions. By keeping transaction

state in the speculative buffers of a TLS machine, we can provide extremely low-

overhead transaction support.

3.2.1 Examples of Transactional Programming

Let us motivate the use of end-to-end checks with the single most common source

of security vulnerabilities: buffer overruns. Despite the large number of man-years

devoted to solving this problem, additional security holes based on overruns continue

to be discovered. Many vulnerable programs are written in C; because C is unsafe,

these programs can often be manipulated with carefully crafted inputs to write past

the intended buffers. Manual inspection has proven to be inadequate, because vul-

nerabilities have been found even in codes that have already been audited for security

holes[9]. It is in general impossible to determine if a program may overrun its buffer

statically. And dynamic techniques that insert array bound checks into C are too

slow to use in practice[21].

The need for end-to-end checks has prompted the development of tools like

StackGuard[9], which verifies that portions of the C run-time stack have not been

improperly overwritten. Unfortunately, by the time a problem is detected, damage

has already been done.

Using transactional programming, the programmer only has to identify routines

that are potentially problematic, as opposed to finding the exact errors. For example,

3.2. FINE-GRAIN TRANSACTIONAL PROGRAMMING 49

many servers have been found with security vulnerabilities in input parsing functions.

One approach is to make the input handling routine a transaction and monitor its

computation. If any errors are found, the entire transaction is aborted and that

particular input can be skipped. The input handling routines can create necessary

data structures as normal, knowing that all side effects will be wiped out cleanly,

without any corruption of data structures, if the transaction is eventually aborted.

Transactional programming also makes it convenient to write programs that may

need to “undo” portions of the computation. An example can be found in network

protocol processing code. In the implementation of HTTP proxy caches, for exam-

ple, there can be a considerable amount of effort dedicated to ensuring that HTTP

inputs are reasonable. Unreasonable requests can result in crashes or the allocation

of excessive or unauthorized resources. When an unreasonable request is detected,

perhaps midway through processing, any partially constructed data structures that

have been created must be cleaned up. By treating the processing of the request as

a separate thread with its own private memory state, the model for such validation

is simplified considerably. Input validation is considered a separate transaction that

can be aborted, and when aborted the resources are reclaimed. This compares favor-

ably to the conventional model of error handling “cleanup” code that is infrequently

exercised or tested, and can contain subtle bugs or resource leaks.

To emphasize this point, we found a concrete example of problematic “cleanup”

code in the first open-source reference release of the User Direct Access Programming

Library (or uDAPL) by the DAT Collaborative[8]. The library is designed to pro-

vide a common API for programmers to easily use a variety of underlying networking

protocols that each supports remote direct memory access or RDMA. The bug is con-

tained in the dapls evd alloc() function that allocates an event descriptor (EVD);

a distillation of that code is shown in Figure 3.1. The EVD is a structure that queues

networking events for a consumer, so it has a number of private fields, as well as two

circular buffers to hold free events and pending events. There are numerous alloca-

tions and initializations made in this allocation routine, and if an error is detected

at certain points along the way, the routine jumps to a “bail” label. Unfortunately,

that code simply calls dapls evd dealloc(), a routine that expects a fully initialized

50 CHAPTER 3. THE MONITOR-AND-RECOVER PARADIGM

dapls_evd_alloc(...) {

/* Allocate EVD */

evd_ptr = dapl_os_alloc(...);

if (!evd_ptr) goto bail;

/* Initialize */

evd_ptr->header.provider = ...

...

/* Allocate EVENTs */

evd_ptr->events = dapl_os_alloc(...);

if (!evd_ptr->events) goto bail;

/* allocate free event queue */

dat_status = dapls_rbuf_alloc(&evd_ptr->free_event_queue, ...);

if (dat_status != DAT_SUCCESS) goto bail;

/* allocate pending event queue */

dat_status = dapls_rbuf_alloc(&evd_ptr->pending_event_queue, ...);

if (dat_status != DAT_SUCCESS) goto bail;

/* add events to free event queue */

for (i = 0; i < evd_ptr->qlen; i++)

dapls_rbuf_add(&evd_ptr->free_event_queue, ...);

return(evd_ptr);

bail:

if (evd_ptr) dapls_evd_dealloc(evd_ptr);

return(NULL);

}

dapls_evd_dealloc(...) {

...

// FIXME-there is a problem here if rbufs failed during alloc

dapls_rbuf_destroy (&evd_ptr->free_event_queue);

dapls_rbuf_destroy (&evd_ptr->pending_event_queue);

...

}

Figure 3.1: Cleanup-code Error Example

3.2. FINE-GRAIN TRANSACTIONAL PROGRAMMING 51

TRY {

... the original code ...

if (error-detected())

ABORT;

} CATCH {

return an error code;

}

return ok;

Figure 3.2: Transaction Syntax

and consistent EVD structure to deallocate. The programmer seems to have noted

this problem in the comments, but perhaps for reasons of expediency, or a belief that

the error-handling code is unlikely to be executed in any case, this corner-case error

has been left in. It should be noted that this incorrect cleanup code was fixed in later

code revisions to the library, but certainly there are similar situations that remain

uncorrected in code that is widely distributed and used. We feel this is an excel-

lent example of where a simple, fine-grained transaction could be used to effectively

clean up data structures in situations where programmers might be tempted to defer

writing complicated manual recovery with a “FIXME” note placeholder instead.

3.2.2 Programming Constructs

To make the concept of transactional programming more concrete, we propose that

the programmer writes transactions using the syntax shown in Figure 3.2.

Although the try..catch syntax we have adopted above resembles that of tra-

ditionally exception handling constructs, the semantics is quite different. In conven-

tional exception handling, the stack is unwound and the control flow returns to the

catch block when an exception is signaled, but side effects made to all other data

structures are not removed. The exception handler must be careful in restoring all

the data structures to a clean state. In our case, the hardware automatically buffers

up all the memory writes and discards them when an abort is issued, guaranteeing

52 CHAPTER 3. THE MONITOR-AND-RECOVER PARADIGM

TRY <L1>;

... the original code ...

if (error-detected())

ABORT;

COMMIT;

return ok;

L1: return an error code;

Figure 3.3: Transaction Machine-level Pseudocode

that the memory is restored to its state just before the try statement. It is this abil-

ity that allows the program to recover from attacks that overwrite data structures

beyond those expected.

To support this operation, we propose three machine instructions:

try 〈addr〉. This instruction indicates the start of a transaction. In TLS termi-

nology, the thread at the point becomes speculative and all the side effects are

buffered. If the transaction is aborted, the speculative state is discarded and

the flow of control branches to the given 〈addr〉 address.

abort. This instruction indicates that the transaction is to be aborted. The hard-

ware discards the speculative state, and the program counter is set to the address

specified by the last try instruction.

commit. This instruction indicates that the transaction is to be committed. The

machine commits the speculative state, and the execution continues as usual.

Compiling the high-level construct discussed above to machine instructions yields

the pseudocode shown in Figure 3.3.

3.2.3 Discussion

Different granularities of transactions require different implementation techniques.

Architectural support is necessary to minimize the overhead of transactions of the

finest granularity. Conversely, hardware support is unsuitable for implementing

3.2. FINE-GRAIN TRANSACTIONAL PROGRAMMING 53

coarser-grain transactions. Statements nested under these architectural-supported

transactions cannot execute any system calls unless operating system support is pro-

vided. If the code is run in a multi-threaded environment, threads can read shared

state, but if a thread wishes to write into any shared state, then locks must be held

until the speculative state is committed.

Ideally, we want to provide the programmer a system that automatically adapts

and chooses a combination of architectural and operating system techniques to im-

plement transactions of any granularity. One possibility is for the machine to raise

an exception when the state of the transaction overflows the available hardware, and

have the system switch to an operating-system based technique to support the coarse

granularity.

Chapter 4

Machine Architecture

There have been quite a number of architectures proposed for thread-level speculation.

They all provide three basic functions:

• multiple simultaneous threads of control,

• buffering of speculative state so that side effects can be discarded and false

dependences can be eliminated, and

• detection of true data dependence violations between threads and the ability to

discard or commit the speculative state to maintain sequential semantics.

The various architectural proposals vary widely in the degree of coupling between

the threads in the system. At one extreme, speculative thread parallelism has been

proposed for large-scale shared memory multiprocessors[5, 13, 49]. More common

proposals, such as those based upon chip multiprocessors, are fairly loosely coupled

and typically provide inter-thread communication through the second-level cache[7,

17, 51]. Some propose relatively novel architectures, such as the ring of processing

elements found in the Multiscalar[46]. The most tightly-coupled implementations

include the DMT machine[1], which adds speculative thread support to a simultaneous

multithreaded (SMT)[55] version of a traditional superscalar processor. In the DMT,

threads communicate through forwarded registers and an expanded load-store queue.

Our objective is to support the speculative execution of both execution monitoring

code as well as fine-grained transactions. Both of these scenarios generate relatively

54

55

fine-grained threads, which are likely to perform poorly on a loosely-coupled TLS

machine where thread operations (like creation and commit) would have higher over-

heads. Thus, our proposed architecture is based on a tightly-coupled SMT machine,

and is quite similar to the DMT machine proposal.

TLS machine proposals also vary in the way they divide the computation up into

speculative threads. Parallelizing loop iterations is the most common technique[17,

51, 54]. Some researchers have proposed speculating on procedure continuations,

that is, the codes that immediately follow a procedure call[1, 36]. Other techniques

include using a compiler analysis to divide the static program into threads[57], using

fixed-interval chunks of instruction traces[42], or applying a predetermined heuristic

to dynamically partition the program[6].

While our architecture can support all the above options, the work presented here

focuses on support for execution monitoring and transactions. The TLS scheme

we propose for execution monitoring is a special case of speculative procedure

continuations–the main difference is that the software is responsible for selecting

which procedure continuations to execute speculatively. We can exploit higher-level

program knowledge to restrict TLS to a set of functions, in this case monitoring calls,

where speculation is more likely to succeed. Support for transactions, as discussed in

Section 3.2, requires the addition of a few instructions so that at run time the software

can control whether transactions are committed or aborted. These relatively small

additions give the software the necessary hooks to make better use of the basic TLS

hardware.

We now give an overview of the architecture, followed by the details of how the

speculative threads are controlled, and the addition of value prediction to the scheme.

Next, we describe an optimization to the calling convention that makes procedural

speculation more efficient. Finally, we discuss how fine-grained transactions are sup-

ported.

56 CHAPTER 4. MACHINE ARCHITECTURE

4.1 Overview

Our architecture is an extension of a simultaneous multi-threaded machine (SMT)[55],

which in turn is based on a superscalar architecture. Figure 4.1 shows a block diagram

of our machine. The main features of our base superscalar machine include a standard

5-stage pipeline:

1. Fetch instructions from the instruction cache into the instruction queues.

2. Decode the instruction and rename registers.

3. Issue ready instructions and execute.

4. Write back register results.

5. Commit instructions in the original program order.

PC
FETCH

INST QUEUE

DECODE
thread
control RENAME

PHYS
REGSRESERVATION

STATIONS

value
predictor

FUs

LD/ST
QUEUES

D$

Figure 4.1: Machine Architecture

Simultaneous multi-threading extends the superscalar processor by allowing the

machine to execute instructions from multiple threads on the same set of functional

units, using primarily the same hardware scheduling mechanism as the superscalar.

To store the contexts associated with the multiple threads, architectural registers

(including program counters), the register renaming table, and the branch predictor’s

return-address stack are all duplicated for each thread. The fetch unit is modified to

arbitrate instruction fetch between the threads, while branch misprediction recovery

as well as instruction retirement are modified to operate on a per-thread basis. Having

4.1. OVERVIEW 57

FETCH DECODE /�
RENAME

EXECUTE WRITE�
BACK

COMMIT FINAL�
COMMIT

Figure 4.2: Machine Pipeline

a common pool of physical registers and functional units, SMT allows the threads to

share the hardware resources in a more fluid manner.

The following is a high-level description of the features added to support thread-

level speculation. More details are provided in Sections 4.2 through 4.6.

Thread control logic. This unit initiates threads, detects when threads stop,

and either validates the speculation or restarts the speculative thread. It keeps

track of the priorities of speculative threads, with higher priorities being given to

those that would have occurred earlier had the code been executed sequentially.

Our base proposal allows for an arbitrary ordering between threads, though we

discuss the performance impact of a simpler implementation in Section 5.2.4.

Speculative memory state and data hazard detection. The load-store queue

(LSQ) is replicated per thread to buffer the speculative memory state. This fine-

grain support allows stores by a thread be observed by a later thread within

two clocks. The queues are augmented with address comparators and snooping

logic to detect memory data dependence violations between the threads. This

expanded snooping logic will likely require a longer latency than traditional

LSQ operation, a consequence we evaluate in Section 5.2.7. The original five-

stage pipeline is augmented with a final commit stage, shown in Figure 4.2,

that issues the buffered speculative stores buffered to memory when the thread

commits.

Additional architectural register sets per thread. We add a set of “input”

registers per thread, representing the starting state of each thread. We refer to

the per-thread architectural registers that are updated during thread execution

58 CHAPTER 4. MACHINE ARCHITECTURE

(known as the “retirement” register file in a superscalar) as the “output” regis-

ters. We presume a register file organization very similar to the DMT’s, where

single-cycle copies of the registers from thread to thread are possible. Note that

in TLS, the output registers are no longer known to be correct and final, as the

speculative thread could potentially be restarted. A single “final” register set

is updated when threads commit and are no longer speculative; no recovery is

possible once final registers are updated.

Modified arbitration policies. As in typical SMT implementations[56], our ma-

chine can fetch from a maximum of 2 threads per cycle. With TLS, however,

all threads are not created equal. Only the sequential thread is guaranteed to

make forward progress, while all the other threads are speculative and may be

rolled back. Thus our policy is to fetch from the two highest priority threads

whose fetches are not blocked. We also prioritize the arbitration for shared

resources each cycle to favor the higher-priority threads.

A value predictor. To improve the success of speculation, a value predictor is

used to predict the results of procedure return values that would otherwise

cause thread squashes.

Buffered transaction state in the cache. To support coarser-grain transactions,

each cache line is augmented with a single bit to mark whether the data is

speculative and must be held in the cache, or is nonspeculative and free to be

stored further out in the memory hierarchy.

4.2 Procedural Speculation

Procedural speculation is supported with a design very similar to that in the DMT

architecture. The design supports nested procedural speculation as well as exception

handling.

In procedural speculation, it is the code following the procedure that is being

executed speculatively, since the called function executes first according to the original

4.2. PROCEDURAL SPECULATION 59

sequential semantics. A thread’s current context is used to execute the called function,

and a new thread context speculatively executes the computation after the call.

A speculative thread may encounter three kinds of potential hazards: memory

data hazards, register data hazards, and control hazards. Memory data hazards

are detected as a thread runs, whereas register data hazards are checked only when

a thread is ready to commit. A thread is rolled back whenever a data hazard is

detected; when that happens, all the lower-priority threads that have read from other

speculative threads must also be rolled back. A control hazard occurs if the procedure

call preceding a speculative thread generates an exception and never returns to the

call site. In that case the speculative thread stays in the system until it is evicted

from the machine.

The lowest-priority thread is evicted whenever a higher-priority thread wishes to

spawn but there are no thread resources available. This ensures that resources are

applied to the most important and least speculative threads. Useless threads wind

up being evicted from the machine, but poor load balance or control mispredictions

can cause useful threads to be evicted as well.

A thread executes until it reaches the end of the program, or it meets the spec-

ulative thread started on its behalf, or it gets evicted from the system. Its state

is committed when it becomes the head thread, that is, the thread with the highest

priority in the system.

To facilitate the fast creation and validation of threads, we propose a register

file design, shown in Figure 4.3, that is essentially the same as the one proposed for

the DMT processor[1]. All copies of a particular architectural register are kept close

together to facilitate fast copying during thread creation, and fast validation during

thread meet.

We describe each of the thread operations in more detail below.

Creating a new thread. To create a new thread, an empty thread context is

selected if available. If all contexts are full, a new context is made available by

discarding the lowest-priority thread. This requires invalidating all its state in

the reservation stations, execution units, load-store queues, rename tables and

fetch structures.

60 CHAPTER 4. MACHINE ARCHITECTURE

T1 OUTPUT REG

T2 OUTPUT REG

Tn OUTPUT REG

T1 INPUT REG /�
COMPARATOR

T2 INPUT REG /�
COMPARATOR

Tn INPUT REG /�
COMPARATOR

FINAL REG

Writeback�
Bus

Flash-�
Copy�
BusFinal�

Commit�
Bus

(nonspeculative�
 writeback)

...

...

Figure 4.3: Register File Organization

The “output” register state of the current thread is flash-copied in a single cycle

into the “input” register set of the new thread. If the output register has a tag

indicating that an in-flight instruction has an update of that register pending,

the tag representing that write will be copied into the input register in lieu of a

register value. When the in-flight instruction completes, the input register will

be set with the register value arriving on the writeback bus. In the fetch unit, the

new thread’s program counter is set to the instruction after the call (the return

address) and it begins fetching from there. In addition, the return address stack

of the current thread is copied to the new thread. Our system allows only one

new thread to be created per cycle, again favoring higher-priority threads, and

4.2. PROCEDURAL SPECULATION 61

there is no additional cost to starting a thread, apart from the pipeline startup

delays associated with redirecting fetch.

Stopping a thread. During the execution of a thread, the thread control logic

watches the fetch addresses of all the threads. If any thread Ti attempts to

fetch from the same address as the start PC of the next speculative thread

Ti+1 in the priority list, instruction fetch for thread Ti is blocked and Ti waits

to become highest priority. We refer to this as a thread meet. Note that a

stopped thread may be restarted if data hazards arise before the thread can be

committed.

Committing a thread. When a speculative thread becomes the head thread T1,

the thread is no longer speculative and the final commit stage becomes active.

In that stage, any buffered speculative stores are issued to memory, up to the

commit width of the machine and subject to the availability of store ports. T1’s

speculatively written output registers are also committed to the final register

file, again subject to the commit width.

Note that T1 can continue to fetch and execute while the thread is committing,

as long as fetch has not been stopped by a meet with the next thread T2. If

T1 finishes committing and has not met with T2, it continues executing as the

sequential thread and thus does not buffer any speculative state. The store

addresses produced by T1 will still be snooped by lower-priority threads to

detect potential hazards.

Memory data hazards. A lower-priority thread must watch the writes of higher-

priority threads to ensure that there are no data hazards. These hazards are

detected in the load-store queues. All loads and stores of a speculative thread

are buffered in program order in a single queue, and these queue entries are not

released until the speculative thread commits. Store entries contain both the

address and the data for the store. Load entries contain the address as well as

a bit indicating whether the load was satisfied by an earlier store entry in the

same queue.

62 CHAPTER 4. MACHINE ARCHITECTURE

When the address of a store in the LSQ resolves, it is checked against all loads

with resolved addresses in the queues of lower-priority threads. The following

two conditions are checked:

1. Do the addresses match or overlap?

2. Was the load satisfied within its own thread by a earlier store in the same

queue?

If condition 1 is true and condition 2 is false, then there is in fact a data hazard,

and the lower-priority thread (with the load) is restarted (using its saved “input”

register state) so that the memory dependence will be observed. In addition,

any other lower-priority threads that have read any speculative data from other

threads are restarted as well, as they may have read corrupt data from the

thread we are restarting. Note that we do not restart when both conditions 1

and 2 are met. This policy, together with the prioritized load access described

in Section 4.3, effectively implements “memory renaming” between the threads

and prevents unnecessary restarts due to false dependences.

Register data hazards. Register validation takes place as the head thread T1

goes through its commit process, writing back modified output register values

to the final register file. We must ensure that any input register of T2 (the

second-highest priority thread that immediately follows T1) matches the final

value coming from T1 if that value was in fact used by T2. This is accomplished

by having T2’s input registers watch the register values that T1 commits to the

final registers and then verifying that they are the same. If no output register

value is committed by T1 for a particular register, then T2’s input register must

be compared with the final register value instead.

When all of T1’s stores have been issued to memory and all modified output

registers have been committed, we know that any memory dependence violations

would have been detected and handled. In addition, any incorrect input register

values used by T2 would be detected by this point. If one or more of T2’s input

registers indicate that T2 used an incorrect input value, T2 is restarted with

4.3. THE LOAD-STORE QUEUES 63

correct values from the final register file. If the input registers all used correct

values, T1’s context is freed, T2 becomes the head thread, and then begins its

own commit process.

Performance optimizations. If a thread is restarted due to a data hazard, any

threads it has created in the past are now unneeded orphan threads, as the

restarted thread will create any desired child threads again as it re-executes.

Because of nested thread creation, however, there may be valid threads, repre-

senting speculation at outer procedure levels, that are lower in the priority list

than these orphans. Because of that lower priority, they would be targeted for

eviction sooner than the orphaned threads. To prevent this, the control logic

for each thread watches the status of its parent thread. If a parent is restarted

or deleted, the newly orphaned thread will stop execution as soon as access to

the thread priority list is available. Transitively, any children of the orphaned

threads will be deleted in later cycles.

4.3 The Load-store Queues

As described in the previous section, the replicated load-store queues are modified

to watch store addresses of previous threads to detect data dependence violations

and signal the need for a restart. In addition, we must modify the lookup procedure

when a load instruction is issued. Figure 4.4 shows how load lookups are performed

in an example with four threads. The load address is sent to all load-store queues,

which determine whether they contain a store entry with a matching address. If so,

a hit is signaled, and the data from the latest matching store is forwarded. We then

must use the ordering of the threads in the sequential program execution to select

the most recent store value from among all lower-priority threads with hits. This

thread ordering is provided by the thread control logic, and combined with the hit

information selects the correct queue. If the load is satisfied by a store in its own

queue, we set a bit in the load entry noting that it is intrathread, so any subsequent

stores in higher-priority threads do not cause an unnecessary restart.

64 CHAPTER 4. MACHINE ARCHITECTURE

Hit in LSQ?

Priority�
Select

T1
LSQ

T2
LSQ

T3
LSQ

T4
LSQ

Load
Address

Most Recent
Store Data

Thread
Priorities

Figure 4.4: Load Lookup Operation with Four Load-store Queues

There is also the possibility that the most recent address-matching store may not

yet have its store data available. In this case, we put the load to “sleep” instead

of issuing it, as executing with any other data would most likely result in a data

dependence violation. In addition to suppressing the load for the time being, we

mark the matching store to indicate that it should issue a “wake” signal when its

data value is ready. Once such a wake signal is received by the sleeping load, it

attempts to reissue as usual.

4.4 Value Prediction

Whenever we create a new thread, it receives an initial copy of the spawning thread’s

register state at creation time as its predicted starting state. We refer to this primitive

form of value prediction as “spawn prediction”. For procedural speculation, this

prediction tends to work very well, with the exception of the return value register.

The speculative threads would have restored caller-saved registers before using them,

and callee-saved registers would be restored by the callee before it returns if it changes

4.4. VALUE PREDICTION 65

Tag Stride Last Value(s)

Level 1
Hash

Instruction
Address

Tag Value

LV ^ PC

Path History
Control Outcomes

Index

Index

Tag

Tag Match

Tag

Tag Match

Select Logic

Value Prediction

C
on

f

C
on

f

Adder

Index

Tag Match

C
on

f

Tag Value

Tag

C
or

Se
l

Hash
and
XOR

Figure 4.5: ATLAS Hybrid Local/Global Predictor

their values. Thus, no data hazards are expected to be observed for any of the register

values except for the return value. In addition, data hazards may exist through

updates to memory (e.g. pointer arguments or global variables).

To improve the success of speculation, we have implemented value prediction for

procedure return values only. The predictor can also be used to predict values for

load instructions that frequently cause thread restarts, but for the monitoring codes

we examined it did not prove to be necessary or helpful. Most instrumentations did

not need load value prediction as they experienced very few memory violations, while

the instrumentations that did have significant memory violations did not have enough

value locality to make load value prediction effective. Our description of the value

predictor thus focuses only on its use for return value prediction.

Entries in the value predictor are indexed by the thread-starting address. When a

thread is initiated, the predictor is checked for an entry. If there is a hit, the predicted

value will be installed in the return value register for procedure threads.

66 CHAPTER 4. MACHINE ARCHITECTURE

The value predictor used is the Atlas Hybrid Local/Global predictor that was

described and implemented by Codrescu[7]. We show a diagram of it in Figure 4.5.

It has a first-level table containing local value history that is used for last value and

stride value predictions; this table is also used to index into two second-level context

predictor tables as shown. One of the second-level tables is indexed in a shallow

fashion: using only the instruction address as well as the last predicted value. The

other second-level table combines a deeper value history together with recent branch

outcomes and the instruction address to form its index. Each predictor entry in the

three tables has a saturating confidence counter, so the predictor with the greatest

confidence at the time is chosen to provide the predicted value.

Value predictions are verified and updated as follows. When head thread T1 meets

with the next thread T2, and a return value prediction had been made for T2, the

standard register validation process (described in Section 4.2) is used to check the

values and restart T2 if necessary. In addition, the value predictor is accessed and

updated with the correct return value from T1. The saturating confidence counters

for the different predictor entries (in the first-level and two second-level tables) are

also updated in this process.

Entries in the value predictor are introduced on demand whenever a thread is

restarted due to an incorrect return value register, that is, after simple “spawn” value

prediction has failed.

4.5 Calling Convention Optimization

When examining the instrumentation code that we are targeting for TLS execution,

we saw that many of these routines spend significant time saving and restoring the

register state of the main computation. In the case of binary instrumentation, where

the instrumentation calls are directly inserted into the binary, the instrumentation

must preserve any temporary or argument registers that it may overwrite. (Under

normal calling conventions, it would be the responsibility of the caller to save these

registers.) Also, if the instrumentation routine is not a leaf procedure, the regis-

ter usage of its callees may not be known, so again the instrumentation must be

4.5. CALLING CONVENTION OPTIMIZATION 67

Thread 1

r0 <- ...

monitor() {

 /* callee save */

 stack <- r0

 ...

 /* callee restore */

 r0 <- stack

}

Thread 2

... <- r0

Original Code

r0 <- ...

monitor();

... <- r0

void monitor() {

 /* callee save */

 stack <- r0

 ...

 /* callee restore */

 r0 <- stack

}

XXX
 /* callee restore */ /* callee restore */

 r0 <- stack r0 <- stack

1

3

2

Figure 4.6: Calling Convention Optimization

conservative and preserve them.

When executing the instrumentation code using TLS, however, we already have

a copy of the register state at procedure call boundaries—in the input registers of

the next thread. Thus it is possible to eliminate the register restore operations if we

instead rely on the input registers to preserve the values. We show how this scheme

works in Figure 4.6, quite similar to the code in Figure 2.3, except here the procedure

being called is a monitoring function.

When the monitoring function is called, we fork a new thread (step 1 in the

figure) and copy the current register state into the input registers of the new thread.

As the new thread executes, it will the use input register values as needed (step 2).

Meanwhile, when the end of the monitoring function is reached, the register restore

operations we would normally execute are not necessary as long as we can guarantee

that the input register state of the next thread (thread 2) is correct. If we are confident

of that fact, we can simply suppress the restore operations (step 3), thread 1 then

retires, and thread 2 continues executing.

To take advantage of this opportunity, we have implemented an optimization

that dynamically suppresses the execution of these register restore operations when

68 CHAPTER 4. MACHINE ARCHITECTURE

possible. We use a simple static analysis to identify the register restore instructions

in the binary. These instructions are identified out-of-band to our simulator, but

in a real-world implementation the instructions would need to be marked. This

could be accomplished either with an annotation on the instruction itself, such as an

additional bit or special opcode, or the entire restore sequence could be demarked

by placing special instructions at the beginning and end of each sequence. We only

mark the restore operations inside of procedures that may execute with speculative

continuations; thus only restore operations inside monitoring functions are marked

for potential elimination.

Before performing this optimization, we need to be sure that the next thread

indeed holds correct register value. Typically it should, but there are a number

reasons why it may not, namely:

1. A thread fork operation may have been suppressed.1 If so, we obviously do not

want to eliminate restore operations, as no corresponding thread was created

with the needed register values.

2. Lower-priority threads may have been evicted from the machine after creation.

In the process, the input register state would also be discarded. Thus any oper-

ations restoring those values should in fact execute instead of being eliminated.

3. A longjmp operation may have executed. The location of the corresponding

setjmp indicates which thread, if it exists, now has the appropriate input reg-

ister values. This is too complicated to accurately track, so restore operations

should not be eliminated.

4. A thread may have been created under branch misprediction, i.e. during wrong-

path execution. A thread created during wrong-path execution does not have a

valid input register state; thus no restore operations can be eliminated if they

would rely on correct values being available in the input registers of that thread.

1In our scheme only a single new thread can be created (machine-wide) each cycle, so additional
requests to fork a thread that same cycle would be suppressed.

4.5. CALLING CONVENTION OPTIMIZATION 69

We handle most of these cases by maintaining a boolean value, OptimizeOK, in

each thread context indicating whether it is safe to eliminate any marked register

restore operations are encountered. This boolean is initialized to true in the parent

thread when a new speculative thread is spawned. To prevent incorrect execution in

the cases outlined above, we set OptimizeOK for thread Ti to false when any of the

following occur:

1. Ti attempts to fork a new thread but the operation is suppressed

2. Ti becomes the lowest-priority (“last”) thread in a full machine where all avail-

able thread contexts are occupied

3. Ti executes a longjmp operation

4. Upon branch misprediction recovery, Ti detects that it had forked a thread

during wrong-path execution

Thus, after any of these events occur, Ti will not be allowed to eliminate restore

operations. However, the situation changes if Ti subsequently forks a new child thread

Ti+1. Now we want to allow Ti to optimize restore operations with respect to the newly

forked procedure continuation, but any conditions that were previously preventing Ti

from optimizing should now restrict optimization in the newly-created child thread

instead. Thus, whenever thread Ti forks a new thread Ti+1, we set the values of

OptimizeOK for the two threads as follows:

1. OptimizeOK [Ti+1] = OptimizeOK [Ti]

2. OptimizeOK [Ti] = true

An additional safety concern arises when the machine is fully occupied with

threads and a new thread (of non-lowest priority) is to be created. We wish to

evict the last, most speculative thread Tn to make room the new thread, but the

second-to-last thread Tn−1 may have already optimized away some register restore

operations. If so, blindly discarding Tn’s state would lose the correct register values.

70 CHAPTER 4. MACHINE ARCHITECTURE

In this case we can simply squash and restart Tn−1 after evicting Tn so that it will

correctly execute the needed restore operations.

The register validation scheme described in Section 4.2 must also be modified to

handle this optimization. When threads T1 and T2 meet, and T1 had optimized some

restore operations away, the stale final register value from T1 may not match the

correct value in T2’s input register. These discrepancies are ignored in the validation

process; if all other “non-optimized” registers match, then T2 becomes the head thread

just as before. On the other hand, if any of the “non-optimized” register values

do not match, then the correct register state that T2 must start with consists of

“non-optimized” register values from the final register file together with “optimized”

register values in T2’s input registers.

4.6 Speculative Transaction Implementation

4.6.1 Basic Transaction Functionality

For transactions, all the important decisions are made by the software; programs

use the try〈addr〉 , commit, abort instructions to dictate when the speculation

starts, when to commit the speculative state, when to abort the speculation. Unlike

the case of procedural speculation, the hardware does not have to detect data hazards

nor initiate roll backs on its own.

Let us first consider the simple case when transactions cannot be nested. When a

try〈addr〉 instruction is issued, the machine does not need to start another thread,

it only needs to save the current state in case an abort instruction is issued. This

is achieved on our hardware by flash-copying the current register state into its input

register state. Register mappings are also flash-copied, and any outstanding register

writebacks (resulting from instructions issued before the transaction began) must

update both the current and the input registers. In addition, the address supplied in

the try statement is also stored as the target should an abort be issued. From this

point on, any stores that are issued are part of the speculative state.

If the program executes an abort instruction, the speculative memory state is

4.6. SPECULATIVE TRANSACTION IMPLEMENTATION 71

discarded, the registers are restored to the saved input register values, the program

counter is set to the address the user specified with try, and the thread proceeds with

normal non-speculative execution. If commit is executed instead, the speculative

memory state is committed, and the thread resumes normal execution.

While architecture-supported transactions are very efficient, they are limited by

the amount of speculative state that can be stored in the hardware. The load/store

queues, which hold the speculative state for procedural speculation, are expensive

because of the logic needed to support data hazard detection. (In our base architec-

ture, we assume that every thread has a load/store queue holding only 64 entries.)

With traditional TLS, we can always discard a speculative thread if the speculative

state storage is exhausted, or the thread can wait to become sequential at which point

its state no longer needs to be buffered. Full support for transactions, however, re-

quires that an arbitrary amount of state be buffered until the program or programmer

decides to commit or abort.

To support larger-sized transactions, it is highly desirable to increase the amount

of speculative buffering as much as is practical. We observe that data hazard detection

is not needed in general for the implementation of transactions in a single-threaded

environment. The only requirement is that speculative memory state must be pre-

vented from overwriting the sequential state. We can expand our speculative storage

with a simple extension to the first-level data cache.

All data written into the cache during speculative execution is labeled “specula-

tive”. If a transaction is commits, all the speculative bits in the cache are cleared and

the state is deemed permanent. If a transaction is aborted, however, all cache lines

marked speculative are invalidated. A single “speculative” bit per cache line is the

only additional storage that is required for single-threaded transactional programs.

Supporting transactions under multi-threaded execution, assuming the programmer

has ensured there is no sharing of transactional data between threads, would require

one additional bit per thread. Similarly, nesting of transactions within a single thread

could be supported by introducing more bits per thread.

The size and associativity limits of first-level caches obviously presents a problem

for buffering large transactions. A cache line that is marked speculative cannot be

72 CHAPTER 4. MACHINE ARCHITECTURE

written back to the memory hierarchy. If such a line must be evicted from the

cache due to conflict or capacity issues, the default behavior is to raise an exception

indicating that there are insufficient architectural resources to handle the transaction.

If the system does not handle the exception automatically and instead passes it to the

program, this places a burden on the programmer to determine how to appropriately

handle oversized transactions. Before we present our proposal for handling an overflow

exception, we first outline a few mechanisms that could be used to automatically

handle overflows:

Abort the transaction. To be safe, we could simply discard any transaction that

was too large. While perhaps appropriate in cases when an oversized transaction

might be a clue that an ABORT is desired (e.g. large buffer-overrun attacks),

this solution presents a denial-of-service opportunity for large but valid trans-

actions, or could result in an application being unable to make forward progress

if the transaction is essential.

Commit the transaction. If it is essential that all valid transactions be able to

proceed, we could simply commit transactions without validation when they

get too large. While such transactions could be noted in a log for later review,

a forced commit would negate much of the safety benefits gained by offering

transactions in the first place.

Increase the amount of cache buffering. Buffering could be extended by adding

speculative line bits to the second or third level caches, though this would result

in increased cache design complexity. The larger cache buffers would still be

insufficient for some transactions, of course, especially if associativity is limited.

Utilize coarser-granularity transactional support. If the operating system of-

fers coarser-granularity transactions (e.g. Recovery-Oriented Computing [2])

the system could be designed to fall back to this option when transactions are

too large.

We can see that the first three options each have significant limitations to their

4.6. SPECULATIVE TRANSACTION IMPLEMENTATION 73

effectiveness, while the last option simply shifts the burden to a different transac-

tional system. Because buffering in limited associativity caches presents significant

variability the amounts of transactional state that can be handled, and given that

our overall goal is to help make code more reliable, we feel that a robust overflow so-

lution, even if potentially slow, is necessary. The next section describes our proposal,

which utilizes an interrupt handler in the operating system to deal with transaction

overflows in the cache.

4.6.2 Fallback Support for Larger Transactions

Our proposed scheme for handling larger transactions utilizes a “copy-on-write” policy

whenever data overflows a particular set in the cache. The general idea of buffering is

to prevent speculative data from overwriting the nonspeculative versions of that same

data. When we have an overflow, however, what we can do is make a duplicate copy

of the valid, nonspeculative data and then allow the speculative data to overwrite

the original valid data and be stored in memory outside of the cache. Any valid,

nonspeculative data that is in danger of being overwritten by speculative overflow

will be preserved in a separate memory buffer, referred to as NS below.

We now outline the steps taken to preserve nonspeculative data from being over-

written. When a store of transactional data D occurs, and any candidate locations

where it could be placed in the L1 are already filled with speculative (“pinned”) trans-

action data, we invoke an operating system handler. Assume that A = [A1, ..., An]

represents the set of addresses of all the speculative data items in the n-way associa-

tive cache set that is currently full and where we would like to store D.

1. Copy the speculative data from the cache set into memory, if necessary.

2. Load the nonspeculative data from the addresses in A.

3. For each address a ∈ A, store a, as well as its nonspeculative data, in NS if a

has not previously been stored in NS.

74 CHAPTER 4. MACHINE ARCHITECTURE

4. Return the speculative data copied in Step 1 to the cache.

5. Clear the “speculative” bits in the cache set so the data is no longer “pinned”

in the cache.

Note that we must be careful not to destroy either the speculative or nonspecu-

lative versions of the data in this process. Thus steps 1 and 4 above are needed if

the architecture does not have a “non-cacheable” load instruction that would allow

the speculative data to remain in the cache while we load the nonspeculative ver-

sions of that data (in Step 2) directly into registers from memory, leaving the cache

untouched.

After we allow speculative data to spill into memory, we must restore such memory

if the transaction is not to commit. Thus the transaction abort procedure is modified

to restore all the nonspeculative data buffered in NS, taking care to ensure that any

speculative data in the cache is either overwritten with the correct values from NS

or is invalidated if data NS is written only to memory. The commit procedure can

operate much as usual, since the NS data is rendered stale after a transaction commit

and can simply be discarded.

We must also be careful how the handler is implemented in order to correctly

preserve the speculative and nonspeculative state–for example, the handler cannot

rely on the ability to bring arbitrary data into the L1 data cache in order to operate.

As such, the handler should exclusively use data pages that are mapped as non-

cacheable in the virtual memory system in order to execute correctly. The page(s)

that hold NS should neither be cached nor paged out to disk for the duration of

the transaction. Overall, this handler will obviously execute quite slowly, but it is

only designed as a fallback mechanism to allow for the correct completion of unusually

large transactions. If the handler is invoked frequently, there should be some feedback

path to the programmer suggesting that the transactions need to be modified to be

of finer granularity, or that coarser-granularity transaction support from a different

system would be more appropriate.

Chapter 5

Monitor-and-Recover Evaluation

This chapter presents an experimental evaluation of our proposals for using thread-

level speculation to speed up monitoring code execution and support fine-grained

transactions. Section 5.1 describes the baseline machines and evaluates the perfor-

mance of monitoring code examples. Section 5.2 goes further into detail regarding

the performance effects of various design decisions in the architecture. Finally, in

Section 5.3 we investigate the use of fine-grained transactions to recover from some

buffer-overrun examples.

5.1 Baseline Monitoring Code Simulation Results

We have implemented a simulator of our architecture based on the SimpleScalar 3.0c

out-of-order simulator for the Alpha instruction set[3]. We extended the simulator to

first support simultaneous multithreading and then to support thread-level specula-

tion as discussed in Chapter 4. The main functionality our simulator represents about

20,000 lines of code, compared to roughly 5,000 for SimpleScalar as it is distributed.

Validation functionality was also added to compare the final retirement instruction

stream with that of a reference uniprocessor simulator to ensure that both were iden-

tical.

As in the base SimpleScalar simulator, system calls are executed by trapping

through to the host operating system and cannot be executed speculatively. Thus

75

76 CHAPTER 5. MONITOR-AND-RECOVER EVALUATION

Parameter SMT1 SMT2 SMT4

fetch width 4 8 16
issue width 4 8 16
commit width 4 8 16
reservation
stations

128 256 512

lsq entries 64 p.t. 64 p.t. 64 p.t.
int ALUs 4 8 16
FP ALUs 4 8 16
mem. ports 2 2 4
lsq ports 2 4 8
fetch ports 2 ports, priority scheduled
branch 8k/8k entry gshare /
predictor bimodal, 8k meta predictor
value AMA[7], L1: 128 entry 2-way SA,
predictor L2 (each): 2048 entry 4-way SA
L1 Dcache 32K, 4-way SA (32B lines), 1 cycle latency
L1 Icache 32K, 2-way SA (32B lines), 1 cycle latency
L2 cache 4M, 4-way SA (64B lines), 6-cycle latency
memory 100 cycles latency

Figure 5.1: Parameters of the Simulation

speculative threads must be delayed until they become non-speculative if they attempt

to make a system call. System calls are not allowed inside transactions.

Figure 5.1 shows the simulator parameters. Parameters labeled “p.t.” represent

per-thread values for non-shared resources, so an SMT2 processor with four threads

would have 64 load-store queue entries per thread, or 64 × 4 = 256 entries across

the whole machine. We simulate three sample SMT configurations, with the larger

configurations typically having two or four times the overall base SMT1 resources.

Memory interfaces are more limited, however.

As discussed in Section 4.1, the fetch unit services a maximum of two threads per

cycle. For the data cache ports, we generally increase them more slowly than other

resources. For example, the SMT4 configuration still has four memory ports, but

we allow eight load-store queue (LSQ) ports to enable more loads to execute–either

5.1. BASELINE MONITORING CODE SIMULATION RESULTS 77

Base Program Monitoring Inst Count Inst Increase

Vortex (none) 3.1B
Pixie 19.5B 6.2x
Third 55.0B 17.4x
DIDUCE.1 10.8B 3.4x
DIDUCE 75.7B 24.0x

Perl (none) 2.9B
Pixie 18.4B 6.3x
Third 61.2B 21.0x
DIDUCE.1 7.6B 2.6x
DIDUCE 53.4B 18.3x

Figure 5.2: Dynamic Instruction Count Overheads of Monitored Programs

via store forwarding between threads or lookups for disambiguation. Note that in

the text, we use the shorthand SMTm/tn notation to refer to an SMTm machine

running with n thread contexts available.

Benchmarks we tested were all compiled using gcc 2.91.66 with -O2 optimization.

The version of ATOM used was 2.17d. Complete instruction counts were obtained us-

ing a fast functional simulator, while performance statistics were gathered by simulat-

ing one billion instructions of each execution after skipping well past the initialization

phases of the base programs[45].

5.1.1 Monitoring Code Benchmarks

Our first set of experiments evaluate the performance of applications after adding

instrumentation with the help of an automated tool. We experimented with three ex-

ecution monitoring tools. The first two, Pixie and Third Degree, come as prepackaged

tools with Compaq’s ATOM. Pixie counts basic block execution frequencies and can

be useful for profile-based optimizations. Third Degree, like Purify, finds potential

memory access errors in programs. The third tool we experimented with is a simple

version of DIDUCE. As discussed in Section 3.1.1, DIDUCE monitors data accessed

by instructions to look for anomalies in programs and help locate algorithmic errors.

1Uninstrumented base program IPCs (italicized) are not included in the harmonic mean figures

78 CHAPTER 5. MONITOR-AND-RECOVER EVALUATION

Program Monitoring Slowdown Speedups IPC

SMT1
/t1

SMT4
/t1

SMT4
/t8

4/1
vs.
1/1

4/8
vs.
1/1

4/8
vs.
4/1

SMT1
/t1

SMT4
/t1

SMT4
/t8

Vortex – – – – – – 2.3 4.0 –
Pixie 5.8 3.2 2.2 1.8 2.7 1.5 2.5 4.6 6.8
Third 18.3 10.2 6.4 1.8 2.8 1.6 2.3 4.1 6.5
DIDUCE.1 3.4 1.6 1.0 2.1 3.3 1.6 2.4 5.1 8.0
DIDUCE 24.4 12.0 7.2 2.0 3.4 1.7 2.3 4.8 7.9

Perl – – – – – – 2.1 2.9 –
Pixie 5.3 3.0 2.0 1.8 2.7 1.5 2.4 4.2 6.5
Third 18.5 12.6 8.8 1.5 2.1 1.4 2.3 3.4 4.8
DIDUCE.1 2.3 1.2 0.8 2.0 2.8 1.4 2.3 4.5 6.2
DIDUCE 15.8 7.6 4.6 2.1 3.4 1.6 2.3 4.8 8.0

Harmonic Mean1 1.9 2.8 1.5 2.3 4.4 6.6

Figure 5.3: Summary of Vortex and Perl Monitoring

DIDUCE was originally implemented for Java, but we created a simple version with

ATOM that tracks the values generated by load instructions. DIDUCE allows users to

adjust the level of instrumentation according to their needs. To simulate different de-

grees of instrumentation, we tested two configurations: a heavy-weight version where

every static load instruction in the program is instrumented, and a more lightweight

version where only every 10th static load in the binary is instrumented. We will refer

to the former experiment as DIDUCE and the latter as DIDUCE.1.

We applied these instrumentations to two base programs: Vortex, an object-

oriented database, and Perl, the PERL language interpreter, both from the SPECint

benchmark suite. We used the training sets from CINT95 (specifically jumble.pl for

Perl) for inputs. The dynamic instruction counts of the base programs as well as

their monitored executions are shown in Figure 5.2. The final column lists the factor

by which instruction count increased when instrumentation was added to the base

program. That factor ranged from 2.6x when DIDUCE.1 is applied to Perl up to 24x

when DIDUCE is applied to Vortex.

5.1. BASELINE MONITORING CODE SIMULATION RESULTS 79

5.1.2 Baseline Performance of Monitoring Code

Figure 5.3 shows an overview of how our monitoring examples performed. First

we ran the both the original base programs as well as the instrumented versions

on the SMT1/t1 machine in order to determine the slowdown factors2 caused by

monitored execution. These factors range from 2.3x to 24.4x—similar to the range of

factors by which dynamic instruction count increased. When we increase the resources

of the machine to the more generous 16-wide SMT configuration but still execute

with only one thread (SMT4/t1), the computations speed up by an average factor

of 1.9 due to the additional ILP exploited. But by adding TLS features supporting

eight thread contexts to the machine (SMT4/t8), we are able to obtain an additional

1.5x performance gain over the single-threaded SMT4 that has comparable resources.

Overall, performance goes up by an average of 2.8x relative to SMT1/t1.

The lightest instrumentation, DIDUCE.1, originally slows the program by factors

of 3.4 and 2.3 for Vortex and Perl, respectively. However, the SMT4/t8 configuration

is able to reduce the 3.4x slowdown to 1.02x—just a two percent overhead—and the

2.3x overhead is more than eliminated. In the latter case the monitored execution

actually runs faster than the original program thanks to exploiting both instruction-

level and thread-level parallelism. The heaviest instrumentation, DIDUCE on Vortex,

takes only 7.2 times as long with SMT4/t8, down from more than 24 times. Figure 5.3

also notes the committed IPC of the executions, which on average have gone up from

2.3 to 6.6.

Also of interest is how close we can get to SMT4/t8’s achieved IPC with fewer

SMT resources and a smaller number of thread contexts available. The overall IPCs

achieved with the SMT2 and SMT4 configurations executing with 1, 2, 4 or 8 threads

are shown in Figure 5.4. The base IPC with SMT1/t1 is also plotted as a single data

point. While many of the programs show significant performance improvement going

from four to eight available threads, the Pixie instrumentations benefit particularly

in this case, as the threads are relatively short and can utilize more contexts. Overall,

providing eight thread seems worthwhile—for both SMT2 and SMT4, only about 75%

2Slowdown factor is calculated by dividing the execution time of the instrumented program by
the execution time of the uninstrumented (base) program

80 CHAPTER 5. MONITOR-AND-RECOVER EVALUATION

Pixie

2.5

4.2 4.2
4.6

4.94.6
5.1

5.8

6.8

0

1

2

3

4

5

6

7

8

1 2 4 8
Number of Threads

IPC

SMT SMT2 SMT4

Vortex

2.4

3.8 4.0
4.4 4.64.2

4.7
5.5

6.5

0

1

2

3

4

5

6

7

8

1 2 4 8
Number of Threads

IPC

SMT SMT2 SMT4

Perl

Third Degree

2.3

3.3
3.8

4.4
4.84.1

4.9

5.8

6.5

0

1

2

3

4

5

6

7

8

1 2 4 8
Number of Threads

IPC

SMT SMT2 SMT4

Vortex

2.3

3.1 3.3
3.9 4.13.4 3.6

4.6 4.8

0

1

2

3

4

5

6

7

8

1 2 4 8
Number of Threads

IPC

SMT SMT2 SMT4

Perl

DIDUCE.1

2.4

4.0
4.4

5.1 5.3
5.1

6.3

7.8 8.0

0

1

2

3

4

5

6

7

8

1 2 4 8
Number of Threads

IPC

SMT SMT2 SMT4

Vortex

2.3

3.7
4.0

4.5 4.5
4.5

5.3

6.2 6.2

0

1

2

3

4

5

6

7

8

1 2 4 8
Number of Threads

IPC

SMT SMT2 SMT4

Perl

DIDUCE

2.3

4.0
4.4

5.1
5.54.8

5.9

7.0

7.9

0

1

2

3

4

5

6

7

8

1 2 4 8
Number of Threads

IPC

SMT SMT2 SMT4

Vortex

2.3

3.9
4.5

5.1
5.44.8

6.0

7.4
8.0

0

1

2

3

4

5

6

7

8

1 2 4 8
Number of Threads

IPC

SMT SMT2 SMT4

Perl

Figure 5.4: Performance of Execution Monitoring on the Proposed Architectures

5.1. BASELINE MONITORING CODE SIMULATION RESULTS 81

of the IPC that is gained by using eight threads can be achieved when a maximum

of four threads is allowed.

To further understand the performance of programs on our proposed architecture,

we show in Figure 5.5 some internal statistics from the SMT4/t8 runs. At the top, the

speedup from TLS execution is included for reference. We show the average number

of threads active each cycle, as well as what ultimately becomes of those threads:

whether they are committed, evicted to make room for higher priority threads, or

orphaned and deleted. Of the threads that do retire, we show what percentage had

been restarted due to memory or register data violations before commit, as well as the

number of instructions they executed and committed. For the cycle-based metrics,

we distinguish between machine cycles and “thread cycles”, where n threads active

during one machine cycle represents n thread cycles. Thus the LSQ full percentage

expresses a likelihood that an active thread will find its own load-store queues full in

any given cycle.

Programs that achieved the best TLS speedups, such the full DIDUCE instru-

mentations of both Vortex and Perl, tend to have low violation rates and threads of

consistent and moderate length. Third Degree applied to Perl, on the other hand,

results in widely varying thread lengths. Because threads must wait to commit in

program order, large variations in thread lengths can leave short threads sitting idle

while waiting for longer (higher-priority) threads to commit first. In addition, widely

varying thread lengths generally indicate rather “bursty” thread creation. In some

periods there may be an excessive number of very short threads created, which are

inefficient on their own in terms of relatively constant per-thread overheads (like vali-

dating registers) but may also be evicting longer, more suitable outer-level threads. At

the other extreme, long-running sections of code without thread creation would tend

to lower the number of threads occupying the machine, limiting the parallel speedup

that could be achieved. We refer to these overall difficulties caused by widely-varying

thread lengths as “load imbalance”. As an example of the difficulties with Third

Degree applied to Perl experiences, we note that this execution ultimately commits

just 51% of the threads that are forked. Relatively poor branch prediction in this

benchmark also contributes to the number of orphaned and deleted threads. Third

82 CHAPTER 5. MONITOR-AND-RECOVER EVALUATION

Statistics Pixie Third DIDUCE.1 DIDUCE
Vortex Perl Vortex Perl Vortex Perl Vortex Perl

TLS speedup 1.5 1.5 1.6 1.4 1.6 1.4 1.7 1.6

average # of active threads 4.2 4.3 3.2 4.7 2.5 2.1 3.4 3.2

% of threads

committed 99 91 80 51 98 83 99 93
evicted 0 0 1 10 0 0 0 0
deleted 1 9 19 39 2 17 1 7

% of committed threads with

memory violation 0.0 0.0 5.5 1.7 0.3 0.5 0.1 0.0
register violation 0.0 0.0 0.4 8.3 0.0 0.0 0.0 0.0

% of committed threads with

0-10 instructions 0 0 9 12 0 0 0 0
11-25 instructions 10 8 1 11 0 0 0 0
26-50 instructions 89 91 9 15 0 0 0 0
51-100 instructions 1 1 55 26 68 62 96 97
101-200 instructions 0 0 17 7 32 30 3 2
201-500 instructions 0 0 9 29 1 8 1 1
500+ instructions 0 0 1 0 0 0 0 0

% of thread cycles with

LSQ full 0 0 3 2 1 2 1 0

% of machine cycles with

0 fetches 30 28 20 12 21 17 28 26
1 fetch 28 30 28 24 31 44 25 23
2 fetches 42 43 52 64 48 40 46 51

% Icache miss rate 0.64 0.50 0.59 0.10 0.41 0.19 0.64 0.54
% Dcache miss rate 0.21 0.23 0.40 2.26 0.24 0.11 0.19 0.20
% L2 miss rate 0.27 0.89 0.23 4.21 1.44 4.36 0.25 0.42
% Branch misprediction rate 0.14 0.51 5.53 7.06 0.45 1.66 0.90 0.95

Figure 5.5: SMT4/t8 Statistics

Degree applied to Perl also has a significant number of register violations, the bulk

of which are return values that were not correctly predicted.

The statistics also indicate that this rather demanding instrumentation, Third

Degree applied to Perl, motivates the substantial 4-megabyte level-two cache that we

assume. All other benchmarks performed about the same with a significantly smaller

level-two cache.

5.2. DESIGN DECISIONS AND MONITORING PERFORMANCE 83

0

0.5

1

1.5

2

Pix
ie (
V)

Pix
ie (
P)

Thi
rd
(V)

Thi
rd
(P)

DID
UC
E.1
 (V
)

DID
UC
E.1
 (P
)

DID
UC
E (
V)

DID
UC
E (
P)
HM
EAN

Benchmark

TL
S
Sp
ee
du
p

With Optimization
No Optimization

Figure 5.6: Effect of Calling Convention Optimization

5.2 Design Decisions and Monitoring Performance

The previous section showed how our monitoring code examples performed based on

the overall size of the machine and number of threads available. In this section we

explore how different microarchitectural design decisions and optimizations affect the

speedup we obtain from thread-level speculation. The graphs in this section show

changes to the baseline SMT4/t8 versus SMT4/t1 (or TLS) speedup resulting from

different design decisions. If the change made to the machine is equally applicable to

both single-threaded and TLS execution, then the change is of course made to both

machines before the new TLS speedup is determined.

5.2.1 Effect of Calling Convention Optimization

In Section 4.5, we described a calling convention optimization that dynamically skips

unneeded register restore operations in monitoring code procedures. The effects of

84 CHAPTER 5. MONITOR-AND-RECOVER EVALUATION

0

0.5

1

1.5

2

Pix
ie (
V)

Pix
ie (
P)

Thi
rd
(V)

Thi
rd
(P)

DID
UC
E.1
 (V
)

DID
UC
E.1
 (P
)

DID
UC
E (
V)

DID
UC
E (
P)
HM
EAN

Benchmark

TL
S
Sp
ee
du
p

1024/65536
128/2048
128/1024
No VP

Figure 5.7: Effect of L1/L2 Value Predictor Table Sizes

this optimization are included in the baseline results presented in Section 5.1. Fig-

ure 5.6 shows just how much this optimization improved our TLS performance. On

average, the TLS speedup is about 9% better than it would have been without the

optimization.

5.2.2 Effect of Return Value Prediction

Here we examine the effect that return value prediction has on the performance of our

benchmarks. Section 4.4 describes the two-level value predictor we use, and Figure 5.7

shows the performance results for predictors of various sizes. Of the benchmarks we

examined, only Third Degree benefited from return value prediction. In fact, Third

Degree applied to Perl requires value prediction to achieve any speedup at all. The

results show that a 128-entry first-level predictor table and 1024-entry second level

tables achieve most of the speedup. Doubling the sizes of the two second-level tables

to the default configuration of 2048 entries increases the performance modestly, while

an extremely large predictor provides almost no further benefit.

5.2. DESIGN DECISIONS AND MONITORING PERFORMANCE 85

0

0.5

1

1.5

2

Pix
ie (
V)

Pix
ie (
P)

Thi
rd
(V)

Thi
rd
(P)

DID
UC
E.1
 (V
)

DID
UC
E.1
 (P
)

DID
UC
E (
V)

DID
UC
E (
P)
HM
EAN

Benchmark

TL
S
Sp
ee
du
p

No overhead
4cyc to Dispatch
4cyc to Fetch

Figure 5.8: Effect of Thread Initiation Overheads

We should note that simple last-value or stride-value predictors were insufficient

for the value predictions needed by Third Degree.

5.2.3 Effect of Thread Initiation Overheads

In our base design for thread speculation, we assume single-cycle flash copy of register

resulting in no overheads in starting new speculative threads. Here we look at the

performance achievable with less aggressive implementations. First, we assume a

four cycle delay from the time a new thread is created until it is allowed to begin

fetching. This reduces performance significantly, especially for Pixie monitoring, as

the monitoring routine is so small (on the order of ten to twenty instructions) that

any substantial thread creation overhead negates the benefits of TLS.

A second implementation option is made possible by recognizing that copying

the register state is the most costly part of creating a new thread. The starting fetch

address for the new thread is just a single value that is known immediately at creation

time, so a new thread could actually begin fetching while its input register state is

86 CHAPTER 5. MONITOR-AND-RECOVER EVALUATION

0

0.5

1

1.5

2

Pix
ie (
V)

Pix
ie (
P)

Thi
rd
(V)

Thi
rd
(P)

DID
UC
E.1
 (V
)

DID
UC
E.1
 (P
)

DID
UC
E (
V)

DID
UC
E (
P)
HM
EAN

Benchmark

TL
S
Sp
ee
du
p

Nested
Flat/Kill
Flat/Suppress

Figure 5.9: Effect of Allowing Nested Speculation

being copied. Thus the “4cyc to dispatch” bar in Figure 5.8 shows the performance

assuming a new thread can begin fetching in the cycle immediately after creation,

but still must wait four cycles before its dispatch/rename pipeline stage is allowed

execute. This design is still not sufficient to execute Pixie well, but the DIDUCE

instrumentation in particular benefits from not needlessly delaying fetch.

5.2.4 Effect of Nested Speculation

General-purpose procedural speculation typically allows threads to be created in a

nested fashion, out of program order, as described in Section 2.5. However, some of the

more practical TLS proposals have found that the richer support for nested procedural

speculation can result in significant overheads for thread operations, particularly if

those operations are implemented in software[34]. In addition, support for nested

speculation requires that some per-thread hardware structures, such as the load-store

queues in our proposal, be able to reflect the dynamic thread ordering created at

runtime. This implies full connectivity between the per-thread elements, as a crossbar

5.2. DESIGN DECISIONS AND MONITORING PERFORMANCE 87

or bus-based connection topology would provide. Out-of-order nested thread creation

would not be compatible with a static and linear hardware-based ordering that a ring-

based topology, for example, would give.

Speculating on procedures can still be supported with simpler hardware and/or

simpler software if we restrict nested speculation at runtime. Figure 5.9 shows perfor-

mance results of two variations on this approach. With the first, labeled “Flat/Kill”,

threads speculating on outer procedure calls are automatically killed when a higher-

priority (less speculative) thread wishes to fork. The second, labeled “Flat/Suppress”

only allows forking by the most speculative thread currently in the machine; any at-

tempted forks by higher-priority threads are suppressed. Of course, a single executing

thread is both highest and lowest priority, so it would be able to fork in both varia-

tions.

The Pixie, DIDUCE, and DIDUCE.1 instrumentations show no change in per-

formance because the speculated instrumentation routines are leaf procedures; no

nested thread creation is even attempted. Third Degree does create nested threads,

and while performance degrades in all cases, neither of the two schemes is preferable

across the board. An analysis of thread priority at the time of attempted forks sug-

gests why. In the baseline case where we allow nesting, 52% of threads created with

Perl are nested (not of lowest priority when created), while with Vortex the figure

is only 19%. Thus the programs have an overall preference as to where they create

threads. Still, the overall point to be made is that our performance results are not

highly dependent on full support for nested thread creation.

5.2.5 Effect of Front-end Pipeline Stages

Figure 5.10 shows the effects of adding extra pipeline stages to the front-end of the six-

stage pipeline shown in Figure 4.2. The graph labels are of the form (+m/+n), where

m is the number of extra stages inserted between fetch and decode/rename (“fetch

stages”), while n is the number of extra stages inserted between decode/rename and

issue (“issue stages”). Only additional fetch stages effectively delay the creation of

new threads, while both types lengthen the overall pipeline and increasing the branch

88 CHAPTER 5. MONITOR-AND-RECOVER EVALUATION

0

0.5

1

1.5

2

Pix
ie (
V)

Pix
ie (
P)

Thi
rd
(V)

Thi
rd
(P)

DID
UC
E.1
 (V
)

DID
UC
E.1
 (P
)

DID
UC
E (
V)

DID
UC
E (
P)
HM
EAN

Benchmark

TL
S
Sp
ee
du
p

+0/+0
+3/+0
+2/+3

Figure 5.10: Effect of Additional (Fetch/Issue) Front-end Pipeline Stages

misprediction recovery time. First we examine adding three additional fetch stages

only. This makes our TLS execution of the Pixie instrumentation impractical, as the

monitoring routine is quite small (about fifteen instructions). The other benchmarks

also suffer significant performance loss; the mean TLS speedup for them is only 1.2.

Some of the performance could potentially be gained back by initiating new thread

fetch at an earlier stage, much as was described with thread overheads in Section 5.2.3.

As we see with the next set of bars, performance is significantly less sensitive to extra

issue stages. If we instead add just two fetch stages but then add three extra stages

before issue, the results are almost uniformly better than we obtained with three fetch

stages, particularly for the Pixie instrumentations. Clearly these threads need to be

started early in a long pipeline if they are to be effective.

5.2.6 Effect of Number of LSQ Entries

Figure 5.11 shows the TLS performance when each thread is given a load-store queue

with 32, 64 (the default), or 128 entries. The effects are fairly minimal and somewhat

5.2. DESIGN DECISIONS AND MONITORING PERFORMANCE 89

0

0.5

1

1.5

2

Pix
ie (
V)

Pix
ie (
P)

Thi
rd
(V)

Thi
rd
(P)

DID
UC
E.1
 (V
)

DID
UC
E.1
 (P
)

DID
UC
E (
V)

DID
UC
E (
P)
HM
EAN

Benchmark

TL
S
Sp
ee
du
p

32 LSQ entries
64 LSQ entries
128 LSQ entries

Figure 5.11: Effect of Number of LSQ Entries

0

1

2

3

4

5

6

7

8

9

Pix
ie (
V)

Pix
ie (
P)

Thi
rd
(V)

Thi
rd
(P)

DID
UC
E.1
 (V
)

DID
UC
E.1
 (P
)

DID
UC
E (
V)

DID
UC
E (
P)
HM
EAN

Benchmark

IP
C

32 LSQ entries
64 LSQ entries
128 LSQ entries

Figure 5.12: Effect of Number of LSQ Entries on IPC

90 CHAPTER 5. MONITOR-AND-RECOVER EVALUATION

0

0.5

1

1.5

2

Pix
ie (
V)

Pix
ie (
P)

Thi
rd
(V)

Thi
rd
(P)

DID
UC
E.1
 (V
)

DID
UC
E.1
 (P
)

DID
UC
E (
V)

DID
UC
E (
P)
HM
EAN

Benchmark

TL
S
Sp
ee
du
p

2 cycles
3 cycles
4 cycles

Figure 5.13: Effect of Interthread LSQ Hit Latency

variable, largely because the additional queue entries help the baseline single-threaded

performance that the TLS performance is measured against. The raw IPC perfor-

mance of SMT4/t8, shown in Figure 5.12, increases from 5.46 to 6.67 when moving

from 32 to 64 entries per queue, and again increases slightly to 6.72 with 128 en-

tries. Thus a queue size of 64 entries seems to provide the most of the achievable

performance.

5.2.7 Effect of Interthread Load-store Queue Latency

Using the load-store queues to buffer the speculative state as well as detect data

dependence violations does significantly complicate their design. Our base design

assumes a one-cycle hit time if a matching store is contained in a thread’s own load-

store queue, but a two-cycle hit time if instead the only match (or matches) are found

in the queues of of other, higher priority threads. This two-cycle latency includes the

time needed to do a priority selection of the multiple hits that may be found in other

threads’ queues as described in Section 4.3. Figure 5.13 shows how performance is

5.2. DESIGN DECISIONS AND MONITORING PERFORMANCE 91

0

0.5

1

1.5

2

Pix
ie (
V)

Pix
ie (
P)

Thi
rd
(V)

Thi
rd
(P)

DID
UC
E.1
 (V
)

DID
UC
E.1
 (P
)

DID
UC
E (
V)

DID
UC
E (
P)
HM
EAN

Benchmark

TL
S
Sp
ee
du
p

Banked Banked+RC Ideal Ideal+RC

Figure 5.14: Effect of Memory Port Design

affected if the interthread latency requirements are relaxed and we instead assume

a 3-cycle or 4-cycle latency for interthread queue hits. We see that Pixie is the

instrumentation that is most sensitive to this latency; the other benchmarks are

relatively insensitive to modest increases in the interthread hit latency.

5.2.8 Effect of Memory Port Design

Figure 5.14 shows how TLS performance changes based on how the memory interface

and ports are designed. First off, all the configurations we examine utilize write-

combining, meaning that stores attempting to write to the same cache line in the

same cycle are able to share a single cache port. This is particularly important to

expedite the bursts of writes that occur when a thread commits.

Our base SMT4 design, whose performance is shown with the black bars,‘ uses

ideal memory ports; that is, each port can be used to access any location. When we

move to a banked cache organization, where the first-level data cache is four-way line

92 CHAPTER 5. MONITOR-AND-RECOVER EVALUATION

0
1
2
3
4
5
6
7
8
9

Pix
ie (
V)

Pix
ie (
P)

Thi
rd
(V)

Thi
rd
(P)

DID
UC
E.1
 (V
)

DID
UC
E.1
 (P
)

DID
UC
E (
V)

DID
UC
E (
P)
HM
EAN

Benchmark

IP
C

Banked Banked+RC Ideal Ideal+RC

Figure 5.15: Effect of Memory Port Design on IPC

interleaved for the four memory ports, the performance impact is relatively modest.

For both the banked and ideal implementations, we examined an additional read-

combining optimization, where multiple loads can be satisfied by a single port access

if they are accessing the same cache line, much like the “load all wide” optimiza-

tion described by Wilson[59]. This optimization significantly helps with the banked

configuration, but with ideal ports the TLS performance gain is reduced when read-

combining is added. This is because we also add read-combining to the baseline

single-threaded performance (SMT4/t1) before calculating TLS speedup, and read-

combining actually provides more benefit to a single thread than overall to multiple

threads. For load instructions to be combined into a single cache access, each load

must still separately access an LSQ port to ensure that no matching stores are present.

In the single-threaded case, lower contention for the LSQ-only ports allows more ex-

tensive use of read-combining. If we look at the overall IPC numbers for SMT4/t8

in Figure 5.15, we see that the IPC achieved for the configurations is pretty similar,

apart from the reduced performance of banked memory without read-combining.

5.3. FINE-GRAINED TRANSACTIONS 93

Overall read-combining appears to be a useful optimization when memory ports

are limited (banked or interleaved) but does not appear very beneficial when the

memory port organization is already fairly aggressive.

5.2.9 Summary

Our experiments show that thread-level speculation is a useful mechanism for re-

ducing the runtime overheads associated with monitoring code and instrumentation.

A wide, simultaneous multithreading-based machine is able to exploit quite a bit of

instruction-level parallelism in the code, but adding thread-level speculation support

provides a substantial boost to overall performance. While the overheads are by no

means eliminated, we believe that instrumented programs represent another class of

programs for which thread-level speculation is quite appropriate.

5.3 Fine-grained Transactions

We now turn to the second part of the monitor-and-recover proposal–the use of fine-

grained transactions for recovery. In Section 5.3.1, we describe some sample programs

that could benefit from fine-grained transactional recovery, as well as the error detec-

tion mechanism that are used. Next, we evaluate whether the buffering capabilities

of our machine are sufficient for these examples in Section 5.3.2.

5.3.1 Example Programs

To demonstrate the ability of our proposed machine to monitor for buffer overruns

and recover from them using transactions, we examined some sample vulnerabilities

in common UNIX programs. We use detection methods based on two tools designed

to catch these types of errors: Libsafe[53] and StackGuard[9]. Libsafe is a library

of replacement versions for unsafe C string library functions, while StackGuard in-

struments the run-time stack to check if the return addresses have been tampered

with.

94 CHAPTER 5. MONITOR-AND-RECOVER EVALUATION

Our first example is an ftp daemon implementation bftpd, version 1.0.22. The

program has a vulnerability when processing an ftp chown command, due to a call to

sscanf() from the cmd chown() routine. We wrap the cmd chown() routine into a

transaction and return a failure code if the transaction aborts. The monitoring code

we use to detect this error is a modified version of sscanf() from Libsafe. Before

executing the potentially dangerous code, it does a backwards traversal of the stack

and copies frame pointer and return address values into its own private storage. It

then executes the sscanf() and traverses the stack again to see if any frame pointers

or return address were overwritten. If so, the transaction is aborted.

The second example is imapd, the IMAP daemon from the Pine 4.00 distribution.

It contains a call to strcpy() from the mail auth() function that can potentially

cause an overflow. We wrap the mail auth() function to create our transaction, and

in case of an abort we return NULL. The detection code we use is again from Libsafe,

but in this case the stack traversal only needs to be done once. Before executing the

real strcpy(), the monitoring code locates which particular stack frame contains the

destination buffer. If the length of the source string is greater than the size of that

frame, an error is signaled and we abort the transaction.

Our final example is ntpd, the network time protocol daemon, version 3.1.1. In

the ctl getitem() routine, which processes user input strings, there is a bug in the

string manipulation code that can result in an overrun of a static buffer. We detect

this error using a process much like StackGuard instrumentation. We manually add

guard locations around the static variables of the procedure, and initialize them to

known values at the beginning of the call. After the body of the procedure has

executed, but before it returns, we check these guard locations to see if the values

have been overwritten. If so, we abort and return NULL. If the values are correct,

we commit the transaction before returning.

We should note that the stack traversal code necessary for our Libsafe implemen-

tation (used in the imapd and bftpd examples) is complicated by the standard Alpha

calling conventions. In these conventions, the frame pointer is not stored at a con-

stant position in the frame. Because of this, we implemented a static analysis which

examines the program binary and outputs, for each call site, the offset at which the

5.3. FINE-GRAINED TRANSACTIONS 95

frame pointer is stored in the callee’s frame. This information is saved to a file, then

read into a hash table at the beginning of program execution. During runtime, when

we wish to follow a frame pointer back to its parent frame, we dereference the frame

pointer to obtain the return address, which is then used to index into the hash table

to yield the frame pointer offset. This offset is added to the current frame pointer

and the result is dereferenced to yield the location of the parent frame.

Note that if a callee could not be determined statically (due to an indirect call

through a function pointer, for example), a heavyweight system library call can be

used to determine the parent frame pointer, though this did not occur in our examples.

5.3.2 Fine-grained Transaction Experimental Results

We have validated our implementation on our simulator, and measured the amount of

state that was buffered in each transaction, as shown in Figure 5.16. First we show the

natural amount of data generated by the original code that is wrapped by executing

it with native C library functions and no instrumentation. The next two experiments,

suffixed with inst, show the amount of state generated in the monitor-and-recover

version of the benchmarks for both valid inputs that allow the transaction to commit,

as well as an exploit input that causes a buffer overrun and aborts the transaction.

The sample transactions we looked at all fit into our default 4-way set associative

32K L1 data cache. Of course, larger transactions or smaller, less associative caches

would present a problem. A 2-way 16K L1, or a 1-way 32K L1, for example, cannot

buffer our largest transaction: bftpd-inst running with exploit inputs. In fact, even

with valid data inputs, bftpd-inst’s transaction is too large for a 16K direct-mapped

cache or a 4K 2-way associative cache. For cases such as these, we examined how

often the operating system handler described in Section 4.6 would need to be invoked.

We distinguish between two possible modes of operation. First, the handler could

only be invoked on store operations. If we have a load miss and the target cache set is

full of speculative data, could just fetch the missing line, provide the needed data to

the CPU, and then immediately discard the line instead of saving it in the L1 cache.

This policy minimizes the number of handler invocations but reduces the effectiveness

96 CHAPTER 5. MONITOR-AND-RECOVER EVALUATION

of the cache in minimizing load latency–effectively speculative stores would have

priority over loads in occupying the cache. In the second mode of operation, the

handler executes for any load or store that wishes to allocate an entry in a cache

set that is already full with speculative data. The choice of operation should be

made based upon the relative overheads of executing the handler more often vs. the

increased memory access time if loads are not able to bring data into the L1 for

repeated access. Given the expected overheads, invoking the handler only for stores

seems it would typically be the best choice.

Figure 5.17 shows how often the operating system handler must be invoked when

the bftpd-inst example is executed with valid inputs on our machine with smaller,

less associative L1 data caches. Any L1 caches larger or more associative than the

configurations listed have sufficient buffering to not require the handler. The worst

case in this example for the store handler requires roughly 3.5% of stores in the

transaction to invoke the handler (23 invocations out of 658 stores).

We determine the overall L1 miss rate of the transaction by executing it repeatedly

in a tight loop until the miss rate stabilizes. The “native” L1 data cache miss rate

for the instrumented transaction is shown in the third column; this is the natural

miss rate obtained for the transaction if no transactional buffering (and therefore no

“pinning” of data) was done in the L1. We see that the store-only handler does indeed

require significantly fewer invocations, though it does cause a 14% increase in cache

misses with a 4K direct-mapped cache. Keep in mind that most of these transaction-

induced level-one cache misses will at least wind up hitting in the second-level cache,

however.

The larger bftpd-inst execution with exploit inputs does require more handler

executions–up to 176 when executing with a direct-mapped 4K L1. Still, the handler

is only executing for 1.7% of the 10,371 stores performed in the transaction. This

seems like an acceptable response to such an aberrational data input.

5.3. FINE-GRAINED TRANSACTIONS 97

Application Input Transactional State
bytes cache lines # of stores

ntpd valid 92 5 15
ntpd-inst valid 132 8 26
ntpd-inst exploit 312 13 227
bftpd valid 796 34 353
bftpd-inst valid 1,180 49 658
bftpd-inst exploit 2,072 74 10,371
imapd valid 40 2 10
imapd-inst valid 248 10 82
imapd-inst exploit 368 15 110

Figure 5.16: Buffer Overrun Transactions

Store Handler only Loads and Stores
Cache Miss Handler Miss Handler Miss
Size Assoc Rate Invocations Rate Invocations Rate

8K 2 1.25% 1 1.55% 2 1.29%
4K 2 3.28% 1 3.60% 2 3.35%
16K 1 1.58% 6 1.93% 8 1.58%
8K 1 4.32% 13 4.96% 22 4.32%
4K 1 6.56% 14 7.50% 23 6.56%

Figure 5.17: Handling L1 Transaction Overflows for bftpd-inst, valid input

5.3.3 Summary

Our buffer-overflow examples show how fine-grained transactions can be a useful

tool in helping programmers write more reliable code. Certainly the fine-grained

transaction support we propose is not suited for all programming situations, but we

feel that the more tools the programmer has available, the better. We also evaluate

how a fall-back handler-based solution can be used to allow transactions to complete,

albeit slowly, when limited hardware buffering is exhausted.

98 CHAPTER 5. MONITOR-AND-RECOVER EVALUATION

5.4 Related Work

Speculative thread-level parallelism has been proposed by many different researchers,

typically for the purposes of speeding up sequential integer programs. We discuss a

number of these proposals at length in Section 2.8.

While many of the proposed machines could support the programming models we

have described, our base architecture most closely resembles the DMT[1] and IMT[37]

processors, which are both extensions of the Simultaneous Multithreading machine

proposal[55]. The DMT and IMT are described in general in Section 2.8, so here

we will only outline the main differences between the machines and our proposed

machine.

The DMT does not have a mechanism for predicting return values, so we add a

small value predictor for monitoring instrumentations that may communicate occa-

sionally with the main computation, or complicated instrumentations that are de-

composed into multiple functions. The DMT speculates on procedure continuations

and loop continuations (the code after a loop), while we discuss only procedures here.

Loop speculation is not relevant to the instrumentation code and transactions that

we wish to support. The most significant difference between the machines is that

the DMT does trace buffering of the speculative thread execution; this allows for

selective recovery of only those instructions which must be re-executed due to data

dependences. While this is obviously preferable, performance wise, to our scheme

where all instructions in a thread must be re-executed, the implementation costs of

this trace re-execution ability appear to be quite high.

The IMT is more like our machine in that it does not have trace buffers for

selective thread recovery. Threads, however, are chosen using compiler heuristics,

with preference given to loop iterations. As general TLS performance on the base IMT

was initially slower than single-thread performance, a number of optimizations were

added, such as thread-context multiplexing, resulting in an overall integer speedup of

1.2.

Transactional memory implementations have been proposed using a variety of

implementations: hardware[20, 47], software[44], and combinations thereof[28]. The

5.4. RELATED WORK 99

hardware implementation proposed by Herlihy is closest to ours[20]. The intention is

to provide lock-free execution when shared data is used by multiple processors. Soft-

ware can issue a direct instruction to abort a transaction, but the commit instruction

is only a request, as the transactional may have already been invalidated by another

processor.

Herlihy’s proposal utilizes a separate, fully associative transaction cache to lessen

overflows caused by set conflicts. The transaction cache proposed is smaller than

the primary cache by a factor of thirty-two, however. This suggests that the trans-

actional (shared) data is expected to be small, and that non-shared variables will

not be transactional–even though they may be used and updated concurrently with

transactional variables. Thus it is the programmer’s responsibility to determine which

memory accesses need to be transactional and which do not. In our scheme, all me-

mory accesses are transactional, as we focus on providing single-threaded “undo”

functionality as opposed to lock-free synchronization.

Rollback and recovery in large-scale distributed systems have been studied

extensively[12]. The Recovery-Oriented Computing proposal includes a conceptual

extension of “undo” functionality (common in desktop applications) to more compli-

cated system administration tasks, such as configuring a mail server[2]. They have

implemented a mail server that uses logging and checkpointing to, for example, “roll

back” a virus infected or misconfigured server, allow for the correction of the error,

and then “replay” logged external interactions so that those valid transactions are

not lost. Additional research looks at reducing the time it takes to reboot or restart

a service in order to increase availability.

Our goal is to support fine-grained transactions with little or no overhead so they

can become prevalent in everyday code. Speculative thread-level parallelism is being

considered by many microprocessor designers, and chips utilizing it have already been

released[52]. If chips implementing TLS become widely deployed, we feel it would be

an excellent opportunity to leverage that functionality to deliver additional usability

and reliability without much additional cost.

Executing “subordinate” code (such as prefetching code or exception handlers) in

100 CHAPTER 5. MONITOR-AND-RECOVER EVALUATION

separate threads has been suggested by a number of researchers to improve perfor-

mance, but those threads never create any committed side effects[61].

Patil and Fischer have proposed Shadow Processing to hide the overheads of run-

time checking by executing the checks in a separate program on another processor[38].

This shadow program is generated by a source-to-source tool which slices the original

program into a reduced form containing only the instructions needed for checking.

Any non-reproducible computations, such as user inputs or system calls, are forwarded

from the original to the shadow. They find that the resulting overheads in the original

program are typically below 10%, but the shadow process can take up to ten times

longer to complete. Of course, the continued execution of the main program is not

recoverable. Thus, unlike our scheme, it is not generally possible for the checker to

interact with or even stop the main process before serious errors or data corruption

have occurred. For non-interactive “passive” instrumentation, however, there is a

clear performance benefit from the user’s perspective.

There have been proposals to use speculation to provide efficient support for lock-

ing. Martinez and Torellas propose buffering the states of critical sections in the

processor cache to allow that code to execute while waiting in the background for

the lock to be made available[32]. This can bring usability benefits to the program

writer in that they can use coarser-granularity locks without suffering the usual per-

formance degradation that results. Rajwar and Goodman suggest speculative lock

elision, where lock operations are speculatively eliminated[41]. The on-chip write

buffers are made part of the coherent state in order to allow for effectively atomic

updates.

Chapter 6

Conclusions

Thread-level speculation has been the subject of intense research interest, but as of

yet has not been found to provide substantial performance improvements to general-

purpose uniprocessor code without rather costly hardware assumptions. A stronger

case for TLS has been made in various programming subdomains: Java programs,

multimedia programs, irregular scientific codes, and programs modified via manual

transformations, for example. We believe TLS can also be used to decrease the

overheads associated with runtime instrumentation, as well as provide new software

capabilities to the program writer.

In summary, we advocate the use of a monitor-and-recover programming paradigm

to create more reliable software, and propose an architectural design that allows the

software and hardware to cooperate in making this paradigm more efficient and easier

to use.

Programmers simply write monitoring functions assuming the normal sequen-

tial execution semantics. For recovery, routines that may not complete properly are

wrapped as “transactions” whose side effects can be discarded or committed as a

whole. Our proposed try...abort...catch syntax for transactions is similar to that

of an exception-handling construct, but it is much easier for programmers to deal

with because all side effects, including register and memory updates, are discarded

after an abort operation.

101

102 CHAPTER 6. CONCLUSIONS

To support this monitor-and-recover paradigm efficiently, our proposed architec-

ture gives software the control over the basic hardware mechanisms originally designed

for thread-level speculation. We let the software specify that procedural speculation

should be applied to specific monitoring functions. Because of the relative indepen-

dence between the original code and the instrumentation, speculative parallelism is

likely to be effective, thus hiding much of the costs of monitoring. The machine still

guarantees sequential programming semantics, so exceptions or corrective actions can

be handled accurately and safely should the monitoring function fail. We also show

how our transaction construct can be translated directly into machine instructions

that control when speculation begins and when to abort or commit the speculative

state.

Our experiments with four different examples of execution monitoring suggest that

TLS hardware can significantly reduce the overhead of monitoring–by a factor of 1.5

over a very wide superscalar with similar execution resources. Our average IPC of

6.6 is significantly greater than typical results obtained when thread-level speculation

is applied to arbitrary sequential programs. As such, monitored execution represents

an additional class of programs where TLS execution can be quite effective. We also

show how the concept of fine-grain transactional programming is potentially useful

in catching and recovering from buffer overrun exploit examples.

There is obviously more work to be done to justify the expense of adding thread-

level speculation support to general-purpose processors. Achieving good general-

purpose TLS performance has proven very challenging and costly from a hardware

perspective. Recent trends in computer architecture have been more reflective of

computing environments where superb single-threaded program performance may

not be the solitary goal, so mainstream CPUs are increasingly being designed with

multiple cores and multiple threads available. Still, TLS could represent an attractive

way to harness these multiple threads for specific single-threaded programs that are

suitable, and as we’ve shown can provide qualitative benefits to the user as well.

Apart from hardware trends, the reliability of software (or lack thereof) looks as

if it is becoming a larger problem every day. With the abundance of computation

resources available and the rather sorry state of software reliability in general, we

103

feel confident that some forms of hardware support for more reliable and trustworthy

code are certain to be deployed in the future.

Bibliography

[1] H. Akkary and M. A. Driscoll. A dynamic multithreading processor. In Proceed-

ings of the 31st Annual International Symposium on Microarchitecture, pages

226–236, November 1998.

[2] A. Brown and D. A. Patterson. Undo for operators: Building an undoable e-mail

store. In Proceedings of the 2003 USENIX Annual Technical Conference, June

2003.

[3] D. Burger, T. M. Austin, and S. Bennett. Evaluating future microprocessors: The

SimpleScalar tool set. Technical Report CS-TR-1996-1308, Computer Sciences

Department, University of Wisconsin-Madison, 1996.

[4] M. Chen and K. Olukotun. The Jrpm system for dynamically parallelizing java

programs. In Proceedings of the 30th Annual International Symposium on Com-

puter Architecture, 2003.

[5] M. Cintra, J. F. Mart́ınez, and J. Torrellas. Architectural support for scalable

speculative parallelization in shared-memory multiprocessors. In Proceedings of

the 27th Annual International Symposium on Computer Architecture, pages 13–

24, June 2000.

[6] L. Codrescu and D. S. Wills. On dynamic speculative thread partitioning and

the MEM-slicing algorithm. In Proceedings of the International Conference on

Parallel Architectures and Compilation Techniques, pages 40–46, October 1999.

104

BIBLIOGRAPHY 105

[7] L. Codrescu, D. S. Wills, and J. D. Meindl. Architecture of the Atlas chip-

multiprocessor: Dynamically parallelizing irregular applications. IEEE Transac-

tions on Computers, 50(1):67–82, 2001.

[8] DAT Collaborative. uDAPL: User direct access programming library, 2003.

Available at http://www.datcollaborative.org/.

[9] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier, Q. Zhang

P. Wagle, and H. Hinton. StackGuard: Automatic adaptive detection and pre-

vention of buffer-overflow attacks. In Proceedings of the 7th USENIX Security

Conference, pages 63–78, January 1998.

[10] R. Cytron. Doacross: Beyond vectorization for multiprocessors. In Proceedings

of the International Conference on Parallel Processing, pages 836–844, August

1986.

[11] M. Dahm. Byte code engineering with the BCEL API. Technical Report B-17-98,

Freie Universität Berlin, Institut für Informatik, April 2001.

[12] M. Elnozahy, L. Alvisi, Y. M. Wang, and D. B. Johnson. A survey of rollback-

recovery protocols in message passing systems. Technical Report CMU-CS-96-

181, School of Computer Science, Carnegie Mellon University, October 1996.

[13] R. J. Figueiredo and J. Fortes. Hardware support for extracting coarse-grain

speculative parallelism in distributed shared-memory multiprocessors. In Pro-

ceedings of the International Conference on Parallel Processing, September 2001.

[14] M. Franklin and G. S. Sohi. The expandable split window paradigm for exploit-

ing fine-grained parallelism. In Proceedings of the 19th Annual International

Symposium on Computer Architecture, pages 58–67, May 19–21, 1992.

[15] S. Gopal, T. N. Vijaykumar, J. E. Smith, and G. S. Sohi. Speculative ver-

sioning cache. In Proceedings of the Fourth International Symposium on High-

Performance Computer Architecture, pages 195–205, January 31–February 4,

1998.

106 BIBLIOGRAPHY

[16] R. H. Halstead. Multilisp: A language for concurrent symbolic computation.

ACM Transactions on Programming Languages and Systems, 7(4):501–538, Oc-

tober 1985.

[17] L. Hammond, M. Willey, and K. Olukotun. Data speculation support for a chip

multiprocessor. In Proceedings of the Eighth International Conference Conference

on Architectural Support for Programming Languages and Operating Systems,

pages 58–69, October 1998.

[18] S. Hangal and M. S. Lam. Tracking down software bugs using automatic anomaly

detection. In Proceedings of the International Conference on Software Engineer-

ing, pages 291–301, May 2002.

[19] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks and access

errors. In Proceedings of the Winter USENIX Conference, December 1992.

[20] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural support

for lock-free data structures. In Proceedings of the 20th Annual International

Symposium on Computer Architecture, pages 289–300, May 1993.

[21] R. W. M. Jones and P. H. J. Kelly. Backwards-compatible bounds checking for

arrays and pointers in C programs. In Automated and Algorithmic Debugging,

pages 13–26, 1997.

[22] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier,

and J. Irwin. Aspect-oriented programming. In Proceedings of the European

Conference on Object-Oriented Programming, pages 220–242, 1997.

[23] T. Knight. An architecture for mostly functional languages. In Proceedings of

the 1986 ACM conference on LISP and functional programming, pages 105–112,

1986.

[24] V. Krishnan and J. Torrellas. Hardware and software support for speculative

execution of sequential binaries on a chip-multiprocessor. In Conference Pro-

ceedings of the 1998 International Conference on Supercomputing, pages 85–92,

July 13–17, 1998.

BIBLIOGRAPHY 107

[25] M. S. Lam and R. P. Wilson. Limits of control flow on parallelism. In Proceedings

of the 19th Annual International Symposium on Computer Architecture, pages

46–57, May 19–21, 1992.

[26] J. R. Larus and E. Schnarr. EEL: Machine-independent executable editing. In

Proceedings of the ACM SIGPLAN’95 Conference on Programming Language

Design and Implementation, pages 291–300, June 1995.

[27] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen. Value locality and load value pre-

diction. In Proceedings of the Seventh International Conference on Architectural

Support for Programming Languages and Operating Systems, pages 138–147, Oc-

tober 1–5, 1996.

[28] D. E. Lowell and P. M. Chen. Free transactions with Rio Vista. In Proceedings

of the 16th ACM Symposium on Operating Systems Principles, October 1997.

[29] P. Marcuello and A. González. A quantitative assessment of thread-level spec-

ulation techniques. In 14th International Parallel and Distributed Processing

Symposium, pages 595–604, May 2000.

[30] P. Marcuello and A. González. Thread-spawning schemes for speculative mul-

tithreading. In Proceedings of the 8th International Symposium on High-

Performance Computer Architecture, pages 55–64, February 2002.

[31] P. Marcuello, A. González, and J. Tubella. Speculative multithreaded processors.

In Conference Proceedings of the 1998 International Conference on Supercomput-

ing, pages 77–84, July 13–17, 1998.

[32] J. F. Mart́ınez and J. Torrellas. Speculative locks for concurrent execution of crit-

ical sections in shared-memory multiprocessors. In Proceedings of the Workshop

on Memory Performance Issues at the 28th Annual International Symposium on

Computer Architecture, June 2001.

[33] A. Moshovos, S. E. Breach, T. N. Vijaykumar, and G. S. Sohi. Dynamic specula-

tion and synchronization of data dependences. In Proceedings of the 24th Annual

108 BIBLIOGRAPHY

International Symposium on Computer Architecture, pages 181–193, June 2–4,

1997.

[34] K. Olukotun, L. Hammond, and M. Willey. Improving the performance of spec-

ulatively parallel applications on the Hydra CMP. In Proceedings of the 1999

Conference on Supercomputing, pages 21–30, June 1999.

[35] J. Oplinger, D. Heine, S.-W. Liao, B. A. Nayfeh, M. S. Lam, and K. Olukotun.

Software and hardware for exploiting speculative parallelism with a multiproces-

sor. Technical Report CSL-TR-97-715, Computer Systems Laboratory, Stanford

University, 1997.

[36] J. T. Oplinger, D. L. Heine, and M. S. Lam. In search of speculative thread-

level parallelism. In Proceedings of the International Conference on Parallel

Architectures and Compilation Techniques, pages 303–313, October 1999.

[37] I. Park, B. Falsafi, and T. N. Vijaykumar. Implicitly-multithreaded processors.

In Proceedings of the 30th Annual International Symposium on Computer Archi-

tecture, pages 39–51, 2003.

[38] H. Patil and C. N. Fischer. Efficient run-time monitoring using shadow pro-

cessing. In Proceedings of the 2nd International Workshop on Automated and

Algorithmic Debugging (AADEBUG’95), 1995.

[39] K. Poulsen. Software bug contributed to blackout. Security Focus, February

2004. Available as http://www.securityfocus.com/news/8016.

[40] M. Prabhu and K. Olukotun. Using thread-level speculation to simplify man-

ual parallelization. In Proceedings of the ACM/SIGPLAN 2003 Symposium on

Principles and Practice of Parallel Programming, 2003.

[41] R. Rajwar and J. R. Goodman. Speculative lock elision: Enabling highly concur-

rent multithreaded execution. In Proceedings of the 34th Annual International

Symposium on Microarchitecture, December 2001.

BIBLIOGRAPHY 109

[42] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith. Trace processors. In

Proceedings of the 30th Annual International Symposium on Microarchitecture,

pages 138–148, November 1997.

[43] Y. Saito and B. Bershad. A transactional memory service in an extensible op-

erating system. In Proceedings of the 7th USENIX Security Conference, pages

53–64, January 1998.

[44] N. Shavit and D. Touitou. Software transactional memory. In Proceeedings of

the Symposium on Principles of Distributed Computing, pages 204–213, August

1995.

[45] T. Sherwood and B. Calder. Time varying behavior of programs. Technical Re-

port UCSD-CS99-630, Department of Computer Science and Engineering, Uni-

versity of California, San Diego, August 1999.

[46] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar processors. In Pro-

ceedings of the 22nd Annual International Symposium on Computer Architecture,

pages 415–425, June 1995.

[47] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood. Fast check-

point/recovery to support kilo-instruction speculation and hardware fault tol-

erance. Dept. of Computer Sciences Technical Report CS-TR-2000-1420, Uni-

versity of Wisconsin-Madison, October 2000.

[48] A. Srivastava and A. Eustace. Atom: A system for building customized program

analysis tools. In Proceedings of the SIGPLAN’94 Conference on Programming

Language Design and Implementation, pages 196–205, June 1994.

[49] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. A scalable approach

to thread-level speculation. In Proceedings of the 27th Annual International

Symposium on Computer Architecture, pages 1–24, June 2000.

[50] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. Improving value com-

munication for thread-level speculation. In Proceedings of the 8th International

Symposium on High-Performance Computer Architecture, February 2002.

110 BIBLIOGRAPHY

[51] J. G. Steffan and T. C. Mowry. The potential for using thread-level data specula-

tion to facilitate automatic parallelization. In Proceedings of the 4th International

Conference on High-Performance Computer Architecture, pages 2–13, January

1998.

[52] Sun. MAJC architecture tutorial. Technical report, Sun Microsystems Inc., 1999.

[53] T. Tsai and N. Singh. Libsafe 2.0: Detection of format string vulnerability

exploits. White paper, Avaya Labs, February 2001.

[54] J. Tubella and A. Gonzalez. Control speculation in multithreaded processors

through dynamic loop detection. In Proceedings of the 4th International Confer-

ence on High-Performance Computer Architecture, pages 14–23, January 1998.

[55] D. M. Tullsen, S. Eggers, and H. M. Levy. Simultaneous multithreading: Max-

imizing on-chip parallelism. In Proceedings of the 22nd Annual International

Symposium on Computer Architecture, pages 392–403, June 1995.

[56] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, and R. L. Stamm.

Exploiting choice: Instruction fetch and issue on an implementable simultane-

ous multithreading processor. In Proceedings of the 23rd Annual International

Symposium on Computer Architecture, pages 191–202, May 1996.

[57] T. N. Vijaykumar and G. S. Sohi. Task selection for a multiscalar processor. In

Proceedings of the 31st Annual International Symposium on Microarchitecture,

pages 81–92, November 1998.

[58] D. W. Wall. Limits of instruction-level parallelism. In Proceedings of the Fourth

International Conference on Architectural Support for Programming Languages

and Operating Systems, pages 176–188, April 8–11, 1991.

[59] K. M. Wilson, K. Olukotun, and M. Rosenblum. Increasing cache port efficiency

for dynamic superscalar microprocessors. In Proceedings of the 23rd Annual

International Symposium on Computer Architecture, pages 147–157, May 1996.

BIBLIOGRAPHY 111

[60] A. Zhai, C. B. Colohan, J. G., and T. C. Mowry. Compiler optimization of

scalar value communication between speculative threads. In Proceedings of the

10th international conference on architectural support for programming languages

and operating systems, pages 171–183, October 2002.

[61] C. B. Zilles, J. S. Emer, and G. S. Sohi. The use of multithreading for excep-

tion handling. In Proceedings of the 32nd Annual International Symposium on

Microarchitecture, pages 219–229, November 1999.

