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ABSTRACT
Automated localization of software bugs is one of the es-
sential issues in debugging aids. Previous studies indicated
that the evaluation history of program predicates may dis-
close important clues about underlying bugs. In this paper,
we propose a new statistical model-based approach, called
SOBER, which localizes software bugs without any prior
knowledge of program semantics. Unlike existing statisti-
cal debugging approaches that select predicates correlated
with program failures, SOBER models evaluation patterns
of predicates in both correct and incorrect runs respectively
and regards a predicate as bug-relevant if its evaluation pat-
tern in incorrect runs differs significantly from that in correct
ones. SOBER features a principled quantification of the pat-
tern difference that measures the bug-relevance of program
predicates.

We systematically evaluated our approach under the same
setting as previous studies. The result demonstrated the
power of our approach in bug localization: SOBER can help
programmers locate 68 out of 130 bugs in the Siemens suite
when programmers are expected to examine no more than
10% of the code, whereas the best previously reported is 52
out of 130. Moreover, with the assistance of SOBER, we
found two bugs in bc 1.06 (an arbitrary precision calcula-
tor on UNIX/Linux), one of which has never been reported
before.
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1. INTRODUCTION
Despite great advances in software development and test-

ing, software is still far from bug-free. In order to relieve
programmers from laborious debugging work, automated
bug localization has been extensively studied. Static anal-
ysis can detect program defects through checking either a
well-specified program model [4] or real code directly [23,
17]. On the other hand, dynamic analysis contrasts the run-
time behavior of correct and incorrect executions for iso-
lating suspicious program segments [10, 20, 24, 5, 14, 15].
Dynamic analysis often assumes no prior knowledge of pro-
gram semantics aside from a labelling of program executions
as either correct or incorrect.

Among dynamic methods, statistical bug localization
schemes like program invariants [2] and statistical debug-
ging [14], have achieved initial success: programs are first in-
strumented to collect statistics characterizing their runtime
behaviors, such as evaluations of conditionals and function
return values. Behaviors can be recorded in the evaluation
history of various program predicates. Take the predicate
“idx < LENGTH” for example, where variable idx is an in-
dex into a buffer of length LENGTH. This predicate checks
whether accesses to the buffer ever exceed the upper bound.
Statistics on the evaluations of predicates are collected over
multiple executions and analyzed afterwards.

The method described in this study shares the principles
of dynamic methods. However, by exploring detailed in-
formation about predicate evaluations, our method can de-
tect more subtle bugs than the state-of-the-art approach de-
scribed by Liblit et al. in [15]. For easy reference, we name



their approach Liblit05. For each predicate P in program
P, Liblit05 estimates two conditional probabilities respec-
tively: Pr1 = Pr(P fails|P is ever observed) and Pr2 =
Pr(P fails|P is ever observed as true). It then treats the
probability difference Pr2 −Pr1 as an indicator of how rele-
vant P is to the bug. Therefore, Liblit05 essentially regards
the predicates whose true evaluations correlate with pro-
gram failures as bug-relevant.

Although Liblit05 has succeeded in isolating some bugs
in widely used systems [15], it has a potential problem in
its ranking model. Because Liblit05 only considers whether
a predicate has ever been evaluated as true in one run, it
loses its discrimination power when a predicate P is observed
as true at least once in every execution. In this case, Pr1

is equal to Pr2, which suggests predicate P is not relevant
to the bug. In Section 2, we will show an example where
a predicate has a small difference between Pr1 and Pr2,
but is strongly bug-relevant. We also note that cases like
the example in Section 2 are not rare, as verified on the
Siemens suite in our experiment study.

The above issue motivates us to develop a new approach
that exploits the multiple evaluations of a predicate in each
program execution. We start from modeling evaluations of
predicate P as independent Bernoulli trials: each evalua-
tion of P gives either true or false. We then estimate
the probability of P being true, which we call the evalu-
ation bias, by calculating the fraction of “true” observa-
tions within each program execution. While the evaluation
biases of P from multiple executions may fluctuate, they
can be thought of as observations from an unknown distri-
bution. Moreover, let X be the random variable carrying
the evaluation bias of predicate P , there exist two statis-
tical models, f(X|Correct) and f(X|Incorrect), that gov-
ern the evaluation bias observed from correct and incorrect
executions. Finally, if f(X|Incorrect) significantly differs
from f(X|Correct), it indicates that P ’s evaluation in in-
correct runs is quite abnormal, and thus likely related to
a bug. Therefore, instead of selecting predicates correlated
with program failures as done by Liblit05, our approach sta-
tistically models predicate evaluations for both correct and
incorrect runs respectively and treats their model difference
as a measure of bug-relevance.

In quantifying the difference between f(X|Correct) and
f(X|Failure), we propose a hypothesis testing-like ap-
proach. Intuitively, it calculates the likelihood that the eval-
uation biases observed from incorrect runs were generated
as if from f(X|Correct). Therefore, a small likelihood sug-
gests that evaluations of this predicate in incorrect runs are
significantly different from that in correct runs. Using this
quantification, we rank all the instrumented predicates, get-
ting a ranked list of suspicious predicates. Programmers can
then either examine the list from the top down, or they can
choose to examine only the top-ranked ones for debugging.

In summary, we make the following contributions:

1. We propose a probabilistic treatment of program pred-
icates that models how a predicate is evaluated in mul-
tiple evaluations during one execution. As discussed in
Section 4, this treatment naturally encompasses the pro-
gram invariants [8] as a special case in software bug iso-
lation.

2. On top of the probabilistic treatment of predicates, we
develop a theoretically well-motivated ranking algorithm,

SOBER, that ranks predicates according to how abnor-
mally one predicate evaluates in incorrect executions.
The more abnormal the evaluations, the more likely a
predicate is relevant to the bug.

3. A systematic evaluation of SOBER on the Siemens suite
[11, 22] demonstrates that our method greatly advances
the state-of-the-art results [5, 15] in software bugs lo-
calization w.r.t. minimal code checking. Moreover, as
a case study, SOBER also helped us locate two buffer
overrun bugs in bc 1.06, one of which has never been
reported.

The rest of the paper is organized as follows. Section 2
first provides a motivating example to illustrate the advan-
tages of the probabilistic treatment of predicates over pre-
vious approaches. We then develop the statistical models
and ranking algorithm in Sections 3 and 4. Systematic eval-
uations and comparisons are presented in Section 5, after
which we describe our case study on bc 1.06. With related
work and threats to validity discussed in Section 7, Section
8 concludes this study.

2. A MOTIVATING EXAMPLE
In this section, we present a detailed example that shows

the value of modeling predicate evaluations in a probabilistic
way. This example motivates our approach of using the
differences in evaluation bias between correct and incorrect
executions to localize software bugs.

Program 1 Buggy Code - Version 3 of replace

01 void subline (char *lin, char *pat, char *sub)

02 {

03 ...

04 while(lin[i] != ’\0’)

05 {

06 m = amatch(lin, i, pat, 0);

07 if((m >= 0) /* && (lastm != m) */)

08 {

09 putsub(lin, i, m, sub);

10 lastm = m;

11 }

12 ...

13 }

14 }

Program 1 is excerpted from the faulty version 3 of the
replace program in the Siemens suite [11, 22]. The program
replace has 512 lines of code (LOC) and performs regular ex-
pression matching and substitution. The subclause in Line
7 was intentionally commented out by Siemens researchers
to simulate the bug that usually sneaks in when program-
mers fail to consider fully the if condition. Because this
is essentially a logic error, which incurs no segmentation
faults, even experienced programmers will have few hints as
to where the bug is, and will probably resort to conventional
debuggers for step-by-step tracing. Our question is: Can we
guide programmers to the buggy place or its neighborhood by
contrasting the runtime behaviors between correct and incor-
rect executions?

For clarity in what follows, we denote the program with
subclause (lastm != m) commented out as the incorrect



program P, and naturally, the one without comments is the

correct one, denoted as P̂. We understand that P̂ is defi-

nitely not available in debugging P. So P̂ here is only for
illustration purposes: it helps illustrate how our method is
motivated. As one will see in Section 3, our method only
collects statistics from P and performs all the analysis.

We declare two boolean variables A and B as follows.

A = (m >= 0);

B = (lastm != m);

Let us consider the four possible evaluation combinations of
A and B and their corresponding branching actions (either

enter or skip the block from Lines 8 to 11) in P and P̂.

Figure 1 explicitly lists the actions in P (left) and P̂ (right),
respectively. Clearly, the left panel shows the actual actions
taken in the buggy program P, while the right one lists the
expected actions if P had no bugs.

A ¬A
B enter skip
¬B enter skip

A ¬A
B enter skip
¬B skip skip

Figure 1: Branching Actions in P and P̂

Differences between the above two tables shown in Figure
1 reveal that in the buggy program P, unexpected actions
take place if and only if A∧¬B evaluates to true. Explicitly,
when A∧¬B is true, control flow should skip the block, but
it actually enters the block in P because the if condition A
in P is satisfied. This incorrect control flow usually leads to
incorrect outputs. Therefore, in the buggy program P, one
run is incorrect if and only if there exist true evaluations
of A ∧ ¬B in Line 7; otherwise, the execution is correct
although the program contains a bug. This explains why
not all runs fail in the buggy program.

While the predicate P : (A ∧ ¬B) = true exactly char-
acterizes the scenario under which incorrect executions take
place, there is little chance for a bug locator to find P as
bug-relevant. The reason is that when we are debugging the
incorrect program P, we do not have the correct program

P̂ available. This means that we do not know what B is,
let alone its combination with A. Because evaluations of A
are observable in P, we are therefore interested in whether
the evaluations of A give away the bug. If the evaluations
of A in incorrect executions differ significantly from that in
correct ones, it may be bug-relevant, and point exactly to
the bug location.

A ¬A
B nAB nĀB

¬B nAB̄ = 0 nĀB̄

A ¬A
B n′

AB n′

ĀB

¬B n′

AB̄ ≥ 1 n′

ĀB̄

Figure 2: A Correct and Incorrect Run in P

We therefore contrast how an incorrect execution behaves
differently from a correct one in the buggy program P. Fig-
ure 2 shows the number of true evaluations for the four
combinations of A and B in one correct (left) and incor-
rect (right) run. The major difference is that in the correct
run, A ∧ ¬B never evaluates as true (nAB̄ = 0) while n′

AB̄

must be nonzero for one execution to be incorrect. Because

A ∧ ¬B evaluates to true only in incorrect runs, A has an
extra chance to be true in incorrect runs. We therefore
expect that the probability for A to be true is different be-
tween correct and incorrect executions.

We tested Program 1 with 5,542 test cases that are avail-
able in the Siemens suite. The average probability of A being
evaluated as true within one incorrect run is 0.9024 and it
is 0.2261 in correct ones. This divergence suggests that the
bug location (i.e., Line 7) does exhibit detectable abnormal
behaviors in incorrect executions. Our method, as devel-
oped in Section 3, nicely captures this divergence and ranks
A = true as the top bug-relevant predicate. This predicate
readily leads the programmer to the bug location. Mean-
while, we note that since neither A = true nor A = false

is an invariant in correct or incorrect executions, invariant
methods cannot pick up A as a suspicious predicate. Liblit05

cannot detect A as a suspicious predicate either because it
does not model the true evaluation probability within one
run (see Section 5.3 for details).

The above example illustrates a simple but representative
case where a probabilistic treatment of predicates captures
detailed information about predicate evaluations. This in-
formation, as we will see soon, can be exploited for effective
bug localization. In the next section, we describe our statis-
tical model and ranking algorithm that select bug-relevant
predicates.

3. PREDICATE RANKING MODELS

3.1 Problem Settings
Let T = {t1, t2, · · · , tn} be a test suite for program P.

Each test case ti = (di, oi) (1 ≤ i ≤ n) has an input di and
the expected output oi. We execute P on each test case ti,
and obtain the output o′i = P(di). We say P passes the
test case ti (i.e., ti is a passing case) if and only if o′i is
identical to oi; otherwise, P fails on ti (i.e., ti is a failing
case). We thus partition the test suite T into two disjoint
subsets Tp and Tf , corresponding to the passing and failing
cases respectively,

Tp = {ti|o′i = P(di) matches oi},

Tf = {ti|o′i = P(di) does not match oi}.
Since program P passes test case ti if and only if P executes
correctly, we use “correct” and “passing”, “incorrect” and
“failing” interchangeably in the following discussion.

Given a buggy program P together with a test suite T =
Tp ∪ Tf , our task is to localize the suspicious bug region by
contrasting P’s runtime behaviors on Tp and Tf .

3.2 Probabilistic Treatment of Predicates
In general, a program predicate is a proposition about

any program property, such as “idx < LENGTH”, “x != 0”,
“!empty(list)”, etc. Predicate P takes the value true or
false for each evaluation. Considering that a predicate may
be evaluated multiple times within one run, we develop the
concept of evaluation bias, which measures the probability
of a predicate being evaluated as true.

Definition 1 (Evaluation Bias). Let nt be the num-
ber of times that predicate P evaluates to true, and nf

the number of times it evaluates to false in one execution.
π(P ) = nt

nt+nf
is the evaluation bias of predicate P .



Intuitively, π(P ) reflects the probability that P takes the
value true in each evaluation. If P is ever evaluated (i.e.,
nt + nf 6= 0), π(P ) varies in the range of [0, 1]: π(P ) is
equal to 1 if P always holds, 0 if it never holds, and is in
between for all other mixtures. If the predicate is never
evaluated, π(P ) has a singularity 0/0. In this case, since we
have no evidence to favor either true or false, we assume
it is unbiased and set π(P ) to 0.5. However, if a predicate is
never evaluated in any failing runs, it has nothing to do with
program failures and is hence eliminated from the following
predicate rankings.

3.3 Methodology Overview
In this section, we first lay out the main idea of our

method, leaving detailed development to Section 3.4. Fol-
lowing the conventions from statistics, we use uppercase let-
ters for random variables and lowercase letters for their real-
izations. Moreover, f(X|θ) is the general notation of prob-
ability density function (pdf) given a model θ.

Let the entire test case space be T , which conceptually
contains all the possible input and the expected output pairs.
According to the correctness of P on the test cases from T ,
T can be partitioned into two disjoint sets Tp and Tf for
passing and failing cases. Therefore, the available test suite
T and its partitions Tp and Tf can be treated as random
samples from T , Tp, and Tf respectively. Given a random
test case t from T , let X be the random variable for the
evaluation bias of predicate P from the execution of t. We
use f(X|θp) and f(X|θf ) to denote the probability density
function of the evaluation bias of P on Tp and Tf respec-
tively. Therefore, the observed evaluation bias of running a
test case t ∈ Tp is a random sample from f(X|θp); similarly,
the observed evaluation bias of running a test case t ∈ Tf is
a random sample from f(X|θf ).

Definition 2 (Bug Relevance). A predicate P is rel-
evant to a software bug if its underlying density function
f(X|θf ) differs from f(X|θp), where X is the random vari-
able for the evaluation bias of P .

The above definition relates f(X|θ), the distribution of
the evaluation bias of predicate P , with the underlying soft-
ware bug(s). Specifically, a predicate is relevant to a bug
if its evaluation distribution for failing runs (i.e., f(X|θf ))
differs from that for passing runs (i.e., f(X|θp)). Moreover,
the larger the difference, the more relevant P is to the bug.

Let L(P ) be an arbitrary similarity function,

L(P ) = Sim(f(X|θp), f(X|θf )). (1)

Because we are only interested in the relative ranking of
predicates, the ranking score s(P ) can be defined as g(L(P )),
where g(x) is any monotonically decreasing function. Choos-
ing g(x) = −log(x), the bug relevance score s(P ) is thus
defined as

s(P ) = −log(L(P )). (2)

Using the bug relevance score in Eq. (2), we can rank
all of the instrumented predicates. Therefore, the ranking
problem boils down to finding a way to quantify the sim-
ilarity function. This includes two problems: (1) What is
a suitable similarity function L(P ), and (2) how is L(P )
computed when the closed form of f(X|θp) and f(X|θf ) is
unknown? In the following subsections, we examine the two
problems in detail.

3.4 Predicate Ranking
In order to quantify the difference between f(X|θp) and

f(X|θf ), without knowledge about their closed forms, we
can only characterize them through general statistics. For
instance, for f(X|θp), its mean and variance, µp = E(X|θp)
and σ2

p = V ar(X|θp) can be estimated through realized sam-
ples,

µp =

∑n

i=1 xi

n

and

σ2
p =

1

n − 1

n∑

i=1

(xi − µp)2,

where xi is the observed evaluation bias of P in executing
ti ∈ Tp. Similarly, we can get the sample mean and variance
of f(X|θf ), µf and σ2

f , by running t ∈ Tf .
Generally speaking, it may make sense to combine differ-

ences in the mean and variance for the bug relevance score.
For example, s(P ) can be defined as

s(P ) = α · |µp − µf | + β · |σ2
p − σ2

f | (α, β ≥ 0).

However, ad hoc solutions like the above usually have the
problem of properly setting the parameters, e.g., α and β in
the above.

Therefore, in the following, we develop a principled ap-
proach to quantifying s(P ), which is essentially a measure of
the difference between f(X|θp) and f(X|θf ). Our approach
shares a similar rationale as hypothesis testing [13]. Specif-
ically, in order to quantify the difference between f(X|θp)
and f(X|θf ), we first propose the null hypothesis H0: θp =
θf . Given a random sample X = (X1, X2, · · · , Xm) from
f(X|θf ), we derive, under H0, a statistic Y , which is ex-
pected to conform to a known distribution. If the obser-
vation of Y has only small probability to happen, the null
hypothesis is likely invalid, which immediately suggests that
f(X|θp) and f(X|θf ) are not identical.

Formally, we present the null hypothesis H0:

µp = µf and σp = σf . (3)

Let X = (X1, X2, · · · , Xm) be an independent and iden-
tically distributed (i.i.d.) random sample from the den-
sity function f(X|θf ). Under the null hypothesis, we have
E(Xi) = µp and V ar(Xi) = σ2

p. Since Xi ∈ [0, 1], both
E(Xi) and V ar(Xi) are finite. According to the Central
Limit Theorem [3], the following statistic

Y =

∑m

i=1 Xi

m
, (4)

conforms to N(µp,
σ2

p

m
) as m → +∞.

Let f(Y |θp) be the probability density function of the nor-

mal distribution N(µp,
σ2

p

m
). Then the likelihood L(θp|Y ) of

θp given an observation Y is

L(θp|Y ) = f(Y |θp). (5)

A smaller likelihood implies that H0 is less likely to hold.
This, in consequence, indicates a larger difference between
f(X|θp) and f(X|θf ). Therefore, we can reasonably set the
similarity function in Eq. (1) as the likelihood function, i.e.,

L(P ) = L(θp|Y ). (6)



According to the property of normal distribution, the nor-
malized statistic

Z =
Y − µp

σp/
√

m
(7)

conforms to the standard normal distribution N(0, 1). There-
fore

f(Y |θp) =

√
m

σp

ϕ(Z), (8)

where ϕ(Z) is the probability density function of N(0, 1).
Combining Eq. (2), (6), (5), and (8), we finally derive the

ranking score for predicate P as

s(P ) = −log(L(P )) = log(
σp√

mϕ(Z)
). (9)

We note that the above score exhibits the asymptotic be-
havior of a random sample as the sample size m → +∞.
Practices in statistical inferences suggest that the asymp-
totic behavior is still approximately valid even when the
sample size is nowhere near infinity [3]. In our debugging
scenario, the realized sample x = (x1, x2, ..., xm) corresponds
to the observed evaluation biases from the m failing runs
available. It is definitely true that we cannot have infinite
failing runs in practice. However, as shown in experiments,
Eq. (9) still works well in ranking abnormal predicates even
when we have only a small number of failing runs.

4. GENERALIZING INVARIANTS
Without loss of generality, predicate P is a program in-

variant [8] if and only if it always takes the true evaluation.
According to Definition 1, the evaluation bias of invariants
is always 1. Let f(X|θp) be the population of evaluation bias
for an invariant P , then µp = 1 and σp = 0. The follow-
ing theorem proves that the score function in Eq. (9) can
identify invariant violations and conformations.

Theorem 1. Let P be an invariant summarized from cor-
rect executions. s(P ) = +∞ if there is a violation in incor-
rect executions and s(P ) = −∞ if the invariant P is con-
formed in incorrect executions.

Proof. Given a random sample x = (x1, x2, · · · , xm),
which corresponds to the observed evaluation bias from m
failing runs. Once there exists at least one run where invari-
ant P is violated,

∑m

i=1 xi 6= m. It then follows from Eq.
(7) that

z =
c

σp

where c =

∑m

i=1 xi − mµp√
m

6= 0,

then

lim
σp→0

σp√
mϕ(z)

=

√
2π

m
lim

σp→0

σp

e
−

1

2
( c

σp
)2

=

√
2π

m
lim

t→∞

e
c2t2

2

t

= c2

√
2π

m
lim

t→∞

te
c2t2

2 = +∞.

Thus Eq. (9) gives s(P ) = +∞. Intuitively, our method
treats violated invariants as the most abnormal predicates
and ranks them at the top.

On the other hand, if failing runs do not violate the in-
variant, we have

lim
σp→0

z = lim
σp→0

∑m

i=1 xi − mµp√
mσp

= lim
σp→0

0√
mσp

= 0.

Therefore,

lim
σp→0

σp√
mϕ(z)

= lim
σp→0

σp√
mϕ(0)

= 0,

which immediately leads to s(P ) = −∞. This suggests that
conformed invariants are the least abnormal and are ranked
at the bottom by our method.

Theorem 1 indicates that if a bug can be caught by invari-
ant violations as implemented in the DIDUCE [9] project,
our method can also detect it because the bug relevant score
for a violated invariant is +∞. Meanwhile, as to conformed
invariants, our method simply ignores them due to their −∞
scores. While previous research [19] has suggested that in-
variant violations themselves can only locate a limited num-
ber of bugs in the Siemens suite, our ranking algorithm, be-
ing a superset of invariant-based methods, actually achieves
the best bug localization results.

5. EXPERIMENTAL RESULTS
In this section, we evaluate the effectiveness of our statis-

tical model-based bug localization algorithm, SOBER, and
compare it with two state-of-the-art bug localization algo-
rithms: Cause Transition (CT) proposed by Cleve and Zeller
[5], and the statistical approach (Liblit05) by Liblit et al. [15].
We subject these three algorithms to a standard testbed, the
Siemens suite [11, 22], and evaluate the localization quality
with an objective measure as described in Section 5.1.

The Siemens suite was originally prepared by Siemens
Corp. Research in study of test adequacy criteria [11]. A
variant is available at http://www.cc.gatech.edu/aristotle/
Tools/subjects. The Siemens suite contains seven programs:
print tokens, print tokens2, replace, schedule, schedule2, tcas,
and tot info. For each program, Siemens researchers manu-
ally injected multiple bugs, getting multiple faulty versions,
and each faulty version has one bug. The Siemens suite
contains 130 faulty versions in total, which simulate a wide
spectrum of realistic bugs. Due to its high quality, many re-
searchers investigating bug localization have reported their
results on it [10, 19, 20, 5]. Readers interested in details
about the Siemens suite are referred to [11, 22].

In the following, Section 5.1 first introduces some neces-
sary background on performance metrics we use. We briefly
review CT and Liblit05 in Sections 5.2 and 5.3 respectively
and compare SOBER with them from Section 5.5.

5.1 Performance Metrics
Performance metrics are always a central issue in accurate

and objective comparisons. In measuring bug localization
quality, we here adopt a framework that is based on the
program static dependencies. This measure was originally
proposed by Renieris et al. [20] and was later adopted by
Cleve et al. in reporting the performance of CT [5]. We
briefly summarize this measure as follows.

1. Given a (buggy) program P, its program dependence
graph is written as G, where each statement is a node
and there is an edge between two nodes if two statements
have data and/or control dependencies.

2. The buggy statements are marked as defect nodes. The
set of defect nodes is written as Vdefect.



3. Given a bug localization report R, which is a set of sus-
picious statements, their corresponding nodes are called
blamed nodes. The set of blamed nodes is written as
Vblamed.

4. A programmer can start from Vblamed and perform the
breadth-first search until he reaches one of the defect
nodes. The set of statements covered by the breadth-
first search is written as Vexamined.

5. The T -score, defined as follows, measures the percentage
of code that has been examined in order to reach the bug,

T =
|Vexamined|

|V | ∗ 100%, (10)

where |V | is the size of the program dependence graph
G. In [20, 5], the authors used 1 − T as a measure.

T -score roughly measures the real cost in locating a bug.
The less code to be examined, the higher the quality of a bug
report R. A good algorithm should generate a high quality
bug report requiring minimal code checking. For algorithms
that generate a ranked list of all predicates, users can select
the top-k most suspicious as a report. The best strategy for
the optimal value of k is to choose the one under which a
bug can be located with minimum code checking, i.e.,

kopt = argmin
k

E[Tk], (11)

where E[Tk] is the average value of T -Score for a set of bugs
under study given a fixed value of k.

5.2 Cause Transition Algorithm: CT
The Cause Transition algorithm [5], denoted as CT, is

an enhanced variant of Delta Debugging proposed by Zeller
[24]. The original Delta Debugging compares the memory
graph [25] of a failing execution ef against the memory graph
of a passing execution ep. Through manipulating the mem-
ory contents of these two executions, Delta Debugging sys-
tematically narrows down the differences between ef and ep

to a small set of suspicious variables. CT enhances Delta
Debugging through exploiting cause transitions: “moments
where new relevant variables begin being failure causes” [5].
This actually implements the concept of “search in time” in
addition to the original “search in space”.

5.3 Statistical Debugging: Liblit05
Liblit et al. proposed a statistical approach to ranking

predicates according to their correlation with program crashes
[15]. The top ranked predicates are considered as hints for
debugging. We name this approach Liblit05. Liblit05 con-
trasts the probability that one execution crashes when a
predicate is ever observed true and when a predicate is
observed (either true or false). Specifically, the authors
define

Context(P ) = Pr(Crash|P observed) (12)

Failure(P ) = Pr(Crash|P observed true), (13)

and treat the probability difference

Increase(P ) = Failure(P ) − Context(P ), (14)

as a measure of the extent, to which predicate P is related
to the underlying bug(s). Finally, the ranking score in [15]

also considers the number of failing runs where P is ever
observed as true.

A detailed examination reveals fundamental differences
between Liblit05 and SOBER. First, from the methodological
point of view, Liblit05 evaluates how much more likely one
execution crashes if the predicate P is observed as true than
that when P is only observed. This means that Liblit05 es-
sentially values predicates whose true evaluations correlate
with program crashes. SOBER, on the other hand, mod-
els the evaluation distribution of the predicate P in pass-
ing (i.e., f(X|θp)) and failing (i.e., f(X|θf )) runs respec-
tively and regards predicates with large differences between
f(X|θf ) and f(X|θp) as bug-relevant. Therefore, SOBER

and Liblit05, actually follow two fundamentally different ap-
proaches although both of them adopt statistical analysis in
ranking predicates. Second, SOBER explores the multiple
evaluations of predicates within one execution while Liblit05

disregards them. For instance, if a predicate P evaluates as
true at least once in each execution but has different prob-
abilities to be true in correct and incorrect runs, Liblit05

simply ignores P while SOBER readily captures the evalua-
tion abnormality in incorrect execution.

Let us re-examine Program 1 in Section 2. The buggy
statement (Line 7) is executed almost in every execu-
tion. Within one run, it takes multiple evaluations as true

and false. In this case, Liblit05 has little discrimination
power. In detail, for predicate P : “(m >= 0) = true”,
Increase(P ) = 0.0104 and the Increase value for predi-
cate P ′ : “(m >= 0) = false” is −0.0245. According to
[15], neither P nor P ′ is ranked top since they are either
negative or too small. Thus, Liblit05 fails to identify the
defect point in Program 1. As we experimented, SOBER

successfully ranks P as the most suspicious predicate. Intu-
itively, SOBER works because the evaluation bias in failing
runs (0.9024) significantly diverges from that in passing runs
(0.2261).

5.4 Implementations
All of the experiments in this section were carried out on

a 3.2GHz Intel Pentium-4 PC with 1GB physical memory,
running Fedora Core 2. We implemented both SOBER and
Liblit05 within Matlab. Because this work focuses on the
comparison of bug localization quality, no sampling is taken
in collecting predicate evaluations at runtime. Intuitively,
analyses from full execution traces should reflect the best
performance for both methods.

We instrumented the source code to monitor predicates
of three categories: branches, returns and scalar-pairs,
which are described in detail in [14, 15]. With prelimi-
nary experiments, we observed that dropping scalar-pairs

can generally reduce by half the overhead without signif-
icantly degrading the localization quality. Therefore, only
branches and returns were finally instrumented for exper-
iments.

In the evaluations, we generated program dependence graphs
using CodeSurfer 1.9 with patch 3 and the gcc compiler
3.3.3. Because evaluation results may vary with different
build switches in CodeSurfer, we finally chose to take the
factory default (by enabling the factory-default switch)
so that results can be replicated in the future.

5.5 Performance Comparison
In this section, we compare our method SOBER with CT
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Figure 5: Performance Comparison w.r.t. Various top-k Values
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Figure 3: Located Bugs w.r.t. Code Examination

and Liblit05. We subject both Liblit05 and SOBER to the
130 bugs in the Siemens suite and measure their localization
quality using the T -Score (Eq. (11)). The result of CT is
directly cited from [5].

Figure 3 depicts the number of bugs that can be located
when a certain percentage of code is examined by a program-
mer. The x-axis is labelled with T -Score, which is the per-
centage of code to be examined. For Liblit05 and SOBER, we
choose the top-5 most suspicious statements to form the set
of blamed nodes. Because reports that require programmers
to examine more than 20% of the code are likely useless, we
take the T -Score range [0, 20] as the meaningful range. Fig-
ure 3 shows that SOBER is apparently better than Liblit05

while both of them are consistently superior to CT.
For practical use, it is instructive to know how many (or

what percentage of) bugs can be identified when no more
than α% code is examined. We therefore plot the cumulative
comparison in Figure 4. It clearly suggests that both SOBER

and Liblit05 are much better than CT and that SOBER con-
sistently outperforms Liblit05. Although Liblit05 catches up
in the T-Score range [60, 100], we regard this advantage as
irrelevant because it does not make much sense for a bug
locator to require more than 60% code examination.

In detail, Figure 4 tells us that for the 130 bugs in the
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Figure 4: Cumulative Comparison

Siemens suite, when a programmer would like to examine at
most 1% of the code, CT catches 4.65% of the bugs while
Liblit05 and SOBER capture 7.69% and 8.46% respectively.
Moreover, when 10% code examination is acceptable, CT

and Liblit05 identify 34 (26.36%) and 52 (40.00%) out of the
130 bugs. Our method SOBER, being the best of the three,
locates 68 (52.31%) out of 130 bugs, catching 16 more bugs
than the state-of-the-art approach Liblit05. When the user
is patient enough to examine 20% of the code, 73.85% of the
bugs (i.e., 96 out of 130) can be located by SOBER.

5.6 The Optimal Setting of K
As we discussed in Section 5.1, the selection of top-k sus-

picious nodes will affect the performance of both Liblit05 and
SOBER. We plot the performance curve for each algorithm
with k = 1, k = 5, and k = 10 in Figure 5. We confine
the comparison within the [0, 20] meaningful T -score range
with finer x ticks. Since we do not have detailed results
from [5], CT is still only depicted at the 1, 10, and 20 ticks.
Figure 5 shows that Liblit05 is the best when k = 1, and
SOBER apparently outperforms the other two when k = 5.
Finally, when k = 10, SOBER is slightly better than Liblit05.
Since users are always interested in locating bugs with min-
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imal code examinations, it is desirable to select the optimal
k that maximizes the performance. We found that both
Liblit05 and SOBER achieve their best performance when k
is equal to 5 as shown in Figure 5. In addition, Figure 6
plots the performance of SOBER with various k-values. It
clearly indicates that SOBER finds the most bugs when k is
set to 5. Therefore, the setting of k = 5 in Figures 3 and 4
is justifiable. Figure 6 also suggests that too few suspicious
points (e.g., k = 1) may not convey enough information for
bug localization while too many (e.g., k = 9) are in them-
selves a burden for programmers to examine, and thus both
lead to poor localization qualities.

5.7 Time Complexity
Our method SOBER is computationally efficient in that it

scores each predicate once according to Eq. (9) and sorts all
of the predicates at the end. Given a program under study,
suppose we collect the runtime statistics of k predicates from
n correct and m incorrect executions, the time complexity
of scoring each predicate is O(n + m). Therefore, the entire
time complexity for SOBER is O((n + m) · k + k · log(k)).
Similarly, because Liblit05 also needs O(n+m) to score each
predicate, it has the same time complexity O((n + m) · k +
k · log(k)). We experimented with the 31 faulty versions of
replace, which has 512 LOC, the average time for Liblit05

and SOBER to analyze each version is 11.7775 and 11.3844
seconds respectively. This speed is much faster than CT [5].

5.8 Advantages of CT
Although comparisons above indicate that both Liblit05

and SOBER outperform CT in quality and efficiency, they
should not be carelessly interpreted as showing either Liblit05

or SOBER is always a better substitute for CT. CT has its
own unique advantages. In the first place, CT only needs
one pair of passing and failing runs for analysis, although
some work is needed in selecting a proper pair. Liblit05

and SOBER, on the other hand, rely on multiple runs to
obtain reliable statistics. Moreover, the localization report
produced by CT generally contains more information than
those generated by Liblit05 and SOBER. In particular, CT

not only provides a set of suspicious points but tries to relate
them in the form of a cause-effect chain as well. This makes
a bug report from CT more accessible to the programmer.
Therefore, SOBER and Liblit05 are essentially complemen-

tary to, rather than a substitute for CT. For instance, when
a programmer encounters one failing case during develop-
ment, CT is a good choice to use; when multiple failing runs
are available (e.g., during regression testing or beta-testing),
Liblit05 and SOBER can be expected to work better.

6. CASE STUDY: BC 1.06

Systematic evaluations in Section 5 demonstrate the ef-
fectiveness of SOBER in comparison with CT and Liblit05.
Although the Siemens suite covers a wide spectrum of bugs
through its 130 faulty versions, its subject programs are
mainly small-scale: ranging from 141 to 512 LOC [11]. In
this section, we report on a case study of SOBER on a
real-world program bc 1.06: SOBER precisely identifies two
buffer overflow bugs, one of which has never been reported
before. More extensive case studies are in progress.

bc is a calculator program that accepts scripts written in
the bc language, a numeric processing language supporting
arbitrary precision. bc 1.06 in this study is shipped with
most of recent UNIX/Linux distributions. It has 14,288
LOC. A single buffer overflow error was once reported in
[14, 15].

This experiment was conducted on a P4 3.06 GHz ma-
chine running Linux RedHat 9 with gcc 3.3.3. Inputs to bc

1.06 are 4,000 randomly generated valid bc programs with
various sizes and complexities. We generate each input pro-
gram in two steps: First, a random syntax tree is generated
which complies with the bc language specification; second,
a program is derived from the syntax tree.

Program 2 bc 1.06, storage.c

void more_variables ()

{

...

127 old_count = v_count;

...

137 for (indx = 3; indx < old_count; indx++)

...

141 for (; indx < v_count; indx++)

...

}

Program 3 bc 1.06, storage.c

void more_arrays ()

{

...

167 arrays = (bc_var_array **) bc_malloc (a_count

* sizeof(bc_var_array*));

...

/* Copy the old arrays. */

for (indx = 1; indx < old_count; indx++)

arrays[indx] = old_ary[indx];

176 for (; indx < v_count; indx++)

arrays[indx] = NULL;

...

}

With the aid of SOBER, we quickly identify two bugs in
bc 1.06, including a previously unreported one. Among the



4,000 input cases we test on bc 1.06, there are 3,479 correct
cases and 521 incorrect ones. After running through these
cases, the analysis from SOBER reports “indx < old count”
as the highest ranked predicate. This predicate points to
old count in line 137 in storage.c as shown in Program 2.
A quick scan of the code shows that old count copies the
value from v count. By putting a watch on v count us-
ing gdb, we quickly find that v count is overwritten when a
buffer named genstr overflows (in bc.y, line 306). genstr is
an 80-byte-long buffer used to hold byte code characters. An
input containing complex and relatively large functions can
easily overflow this buffer1. To the best of our knowledge,
this bug has never been reported before. We manually ex-
amined the statistics of this top-ranked predicate and found
its evaluation biases in correct and incorrect executions are
0.0274 and 0.9423 respectively, which explains why SOBER

worked so well. Liblit05 also ranks this predicate at the top,
and locates the bug.

After we fix the first bug, a second run of SOBER (3303
correct and 697 incorrect cases) generates a bug report with
the top predicate “a count < v count” pointing to line 176
in storage.c as shown in Program 3. This is most likely a
copy-paste error where a count should have been used in
the position of v count. This bug was reported in previ-
ous studies [14, 15]. SOBER values the predicate “a count

< v count” because its evaluation biases differ significantly
between passing and failing executions: 0.0224 in passing
and 0.5157 in failing runs. Although the ultimate explana-
tion of predicate ranking is Eq. (9), this divergence in the
evaluation bias does shed light on why SOBER is effective.

As a final note, predicates identified by SOBER for these
two bugs are far from the actual crashing points. This sug-
gests that SOBER picks up predicates that characterize the
scenario under which bugs are triggered, rather than the
crashing scenes, which are simply available with conven-
tional debuggers, like gdb.

7. DISCUSSION

7.1 Related Work
In this section, we briefly review previous works related

to bug detection in general. Static analysis techniques have
been used to verify program correctness against a well-
specified program model [1, 4] and to check real codes di-
rectly for Java [23] and C/C++ programs [17]. Engler et
al. also show that checking programmers’ beliefs against
themselves can be an effective approach to bug detection
[7]. Complementary to static analysis, dynamic analysis fo-
cuses more on the runtime behavior checking and often as-
sumes few specifications. SOBER belongs to the category of
dynamic analysis.

Within dynamic analysis, the DAIKON project automat-
ically discovers likely invariants from executions of instru-
mented programs [8]. It first poses a wide spectrum of pred-
icates and gradually rejects or relaxes those violated. Pred-
icates that are valid in all runs are taken as invariants. The
DIDUCE project [9] monitors a more restricted set of pred-
icates and relaxes them in a similar manner to DAIKON
at runtime. After the set of predicates becomes stable, the

1Some random inputs with fewer than 50 LOC can overflow
the buffer. The bc specification allows a parser depth of up
to 150 levels. Our random inputs have much smaller depth.

DIDUCE project relates further violations as indications of
potential bugs. Recent studies also show that program in-
variants can be used to find latent errors [2] and to warn
about unsafe upgrades [16], to name just a few. However,
because invariants hold through all test runs, they may not
be effective in locating subtle bugs as [19] suggests. In com-
parison, our probabilistic treatment of predicates naturally
relaxes this requirement and is shown to achieve the best
performance on the Siemens suite.

Program spectra, proposed by Reps et al. in [21], also
work well for bug localization. Earlier work in [10] explores
the relation between spectra differences and faults in regres-
sion testing. Similar information is later visualized in [12],
making it more accessible to the programmers. Recent re-
searches by Renieris et al. show that spectrum differences are
more effective for bug localization when it is applied along
with nearest neighbor queries [20]. Taking program spectra
as a summary of program runtime behaviors, we find that
the above program spectra-based methods can be thought
of as model-based approaches: The spectra are taken from
passing and failing run(s) respectively and their differences
suggest the bug location. In comparison, our method models
general predicates and quantifies the model difference using
statistical principles.

The power of statistical analysis is demonstrated in pro-
gram analysis and bug detection. Dickinson et al. find pro-
gram failures through clustering program execution profiles
[6]. Their subsequent work [18] first performs feature se-
lection using logistic regression and in consequence clusters
failure reports within the space of selected features. Cluster
results are shown to be useful in prioritizing software bugs.
Early work of Liblit et al. on statistical debugging [14] also
adopts logistic regression in sifting predicates that are cor-
related with program crashes. In addition, they impose L1

norm regularization during the regression so that predicates
that are really correlated are distinguished. In comparison,
our method SOBER is a statistical model-based approach,
while the above statistical methods follow the principle of
discriminant analysis.

7.2 Threats to Validity
Care should be taken in interpreting the experiment re-

sults and conclusions thus drawn. The first threat lies in
the benchmark selection. Since the Siemens suite mainly
contains small-scale subject programs, absolute performance
measures (e.g., 52.31% bugs are located with at most 10%
code examination) do not readily generalize to arbitrarily
large programs. On the other hand, because the Siemens
suite covers a wide variety of bugs, the relative performance
comparison is statistically significant, and hence credible.

Results in this study are also subjected to the threat of
performance metrics. Although the evaluation framework
based on the program dependence graphs involves few sub-
jective judgements, it is by no means a comprehensively fair
metric. For instance, this measure does not take into ac-
count how easily a programmer can make sense of the bug lo-
calization report. Recent work [5] also identifies some other
limitations of this measurement. However, to the best of our
knowledge, this is by far the most objective metric for bug
localization besides large-scale user studies.

8. CONCLUSIONS
In this paper, we proposed a statistical approach to lo-



calize software bugs without prior knowledge of program
semantics. This approach tackles the limitation of previ-
ous methods in modeling the divergence of predicate evalu-
ations between correct and incorrect executions. Systematic
evaluations through the Siemens suite, together with a case
study in bc 1.06, clearly demonstrated the advantages of our
method in bug localization. A number of interesting topics
merit further study. It is not yet clear how the localization
quality varies along with insufficient test cases. Moreover,
it is also instructive to know how robust SOBER is to eval-
uation samplings.
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