
Compositional Dynamic Test Generation
(Extended Abstract)

Patrice Godefroid ∗

Microsoft Research
pg@microsoft.com

Abstract
Dynamic test generation is a form of dynamic program analysis
that attempts to compute test inputs to drive a program along
a specific program path. Directed Automated Random Testing,
or DART for short, blends dynamic test generation with model
checking techniques with the goal of systematically executing all
feasible program paths of a program while detecting various types
of errors using run-time checking tools (like Purify, for instance).
Unfortunately, systematically executing all feasible program paths
does not scale to large, realistic programs.

This paper addresses this major limitation and proposes to per-
form dynamic test generation compositionally, by adapting known
techniques for interprocedural static analysis. Specifically, we in-
troduce a new algorithm, dubbed SMART for Systematic Modular
Automated Random Testing, that extends DART by testing func-
tions in isolation, encoding test results as function summaries ex-
pressed using input preconditions and output postconditions, and
then re-using those summaries when testing higher-level functions.
We show that, for a fixed reasoning capability, our compositional
approach to dynamic test generation (SMART) is both sound and
complete compared to monolithic dynamic test generation (DART).
In other words, SMART can perform dynamic test generation com-
positionally without any reduction in program path coverage. We
also show that, given a bound on the maximum number of feasible
paths in individual program functions, the number of program exe-
cutions explored by SMART is linear in that bound, while the num-
ber of program executions explored by DART can be exponential
in that bound. We present examples of C programs and preliminary
experimental results that illustrate and validate empirically these
properties.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.2.5 [Software Engineer-
ing]: Testing and Debugging; F.3.1 [Logics and Meanings of Pro-
grams]: Specifying and Verifying and Reasoning about Programs

General Terms Verification, Algorithms, Reliability

Keywords Software Testing, Automatic Test Generation, Scala-
bility, Compositional Program Analysis, Program Verification

∗ This work was done mostly when the author was still affiliated with Bell
Laboratories. It is also funded in part by NSF CCR-0341658.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’07 January 17–19, 2007, Nice, France.
Copyright c© 2007 ACM 1-59593-575-4/07/0001. . . $5.00.

1. Introduction
Given a program P , say a C program with a million lines of code,
with a set of input parameters, wouldn’t it be nice to have a tool
that could automatically generate a set of input values that would
exercise, say, even only 50% of the code of P ?

This problem is called the test generation problem, and has
been studied since the 70’s (e.g., [Kin76, Mye79]). Yet, effective
solutions and tools to address this problem have proven elusive for
the last 30 years. What happened?

There are several possible explanations to the current lack of
practically-usable tools addressing this problem. First, the expen-
sive sophisticated program-analysis techniques required to tackle
the problem, such as symbolic execution engines and constraint
solvers, have only become computationally affordable in recent
years thanks to the increasing computational power available on
modern computers. Second, this steady increase in computational
power has in turn enabled recent progress in the engineering of
more practical software model checkers, more efficient theorem
provers, and, last but not least, more precise yet scalable static anal-
ysis tools. Indeed, automatic code inspection tools based on static
program analysis are increasingly being used in the software indus-
try (e.g., [BPS00, HCXE02]).

Recently, there has been a renewed interest on automated
test generation from program analysis (e.g., [BKM02, BCH+04,
VPK04, CS05, GKS05, CE05]). Work in this area can roughly be
partitioned into two groups: static versus dynamic test generation.

Static Test Generation is Often Ineffective

Static test generation (e.g., [Kin76]) consists of analyzing a pro-
gram P statically, by exclusively using symbolic execution tech-
niques to attempt to compute inputs to drive P along specific exe-
cution paths or branches, without ever executing the program. The
idea is to symbolically explore the tree of all computations the pro-
gram exhibits when all possible value assignments to input param-
eters are considered. For each control path ρ, that is, a sequence
of control locations of the program, a path constraint φρ is con-
structed that characterizes the input assignments for which the pro-
gram executes along ρ. All the paths can be enumerated by a search
algorithm that explores all possible branches at conditional state-
ments. The paths ρ for which φρ is satisfiable are feasible and are
the only ones that can be executed by the actual program. The so-
lutions to φρ exactly characterize the inputs that drive the program
through ρ. Assuming that the theorem prover used to check the
satisfiability of all formulas φρ is sound and complete, this use of
static analysis amounts to a kind of symbolic testing.

Unfortunately, this approach does not work whenever the pro-
gram contains statements involving constraints outside the scope
of reasoning of the theorem prover, i.e., statements “that cannot be
reasoned about symbolically”. This limitation is illustrated by the
following example.

47

void obscure(int x, int y) {
if (x == hash(y)) return -1; // error
return 0; // ok

}
Assume that the function hash cannot be reasoned about symbol-
ically. Formally, this means that it is in general impossible to gen-
erate two values for inputs x and y that are guaranteed to satisfy
(or violate) the constraint x == hash(y). (For instance, if hash
is a hash or cryptographic function, it has been mathematically de-
signed to prevent such reasoning.) In this case, static test generation
cannot generate test inputs to drive the execution of the program
obscure through either branch of the conditional statement: static
test generation is helpless for a program like this.

The practical implication of this simple observation is signifi-
cant: static test generation as proposed by King 30 years ago and
much discussed since then (e.g., see [Mye79, Edv99, BCH+04,
VPK04, XMSN05, CS05]) is doomed to perform poorly whenever
symbolic execution is not possible. Unfortunately, this is frequent
in practice due to complex program statements (pointer manipula-
tions, arithmetic operations, etc.) and calls to operating-system and
library functions that are hard or impossible to reason about sym-
bolically with good enough precision.

Dynamic Test Generation is More Powerful

A second approach to test generation is dynamic test generation
(e.g., [Kor90, GMS00]): it consists of executing the program P ,
typically starting with some random inputs, gathering symbolic
constraints on inputs gathered from predicates in branch statements
along the execution, and then using a constraint solver to infer
variants of the previous inputs in order to steer the next execution
of the program towards an alternative program branch. This process
is repeated until a given final statement is reached or a specific
program path is executed.

Directed Automated Random Testing [GKS05], or DART for
short, is a recent variant of dynamic test generation that blends
it with model checking techniques with the goal of systematically
executing all feasible program paths of a program while detecting
various types of errors using run-time checking tools (like Purify,
for instance). In DART, each new input vector attempts to force
the execution of the program through some new path. By repeating
this process, such a directed search attempts to force the program to
sweep through all its feasible execution paths, in a style similar to
systematic testing and dynamic software model checking [God97].
In practice, DART typically achieves much better coverage than
pure random testing (see [GKS05]).

A key observation from [GKS05] is that imprecision in symbolic
execution can be alleviated using concrete values and randomiza-
tion: whenever symbolic execution does not know how to generate
a constraint for a program statement depending on some inputs,
one can always simplify this constraint using the concrete values of
those inputs.

Let us illustrate this important point with an example. Consider
again the program obscure given above. Even though it is stat-
ically impossible to generate two values for inputs x and y such
that the constraint x == hash(y) is satisfied (or violated), it is
easy to generate, for a fixed value of y, a value of x that is equal
to hash(y) since the latter is known at runtime. By picking ran-
domly and then fixing the value of y, we can, in the next run, set
the value of the other input x either to hash(y) or to something
else in order to force the execution of the then or else branches,
respectively, of the test in the function obscure. (DART does this
automatically [GKS05].)

In summary, static test generation is totally helpless to generate
test inputs for the program obscure, while dynamic test generation

can easily drive the executions of that same program through all its
feasible program paths!

Dynamic test generation can thus be viewed as extending static
test generation with additional runtime information, and is thus
more general and powerful. Indeed, it can use the same symbolic
execution engine and use concrete values to simplify constraints
outside the scope of the constraint solver. This is why we believe
that dynamic test generation is our only hope of one day providing
effective, practical test generation tools that are applicable to real-
life software. And the purpose of the present paper is to discuss
how to make this possible for large software applications.

SMART = Scalable DART

Obviously, systematically executing all feasible program paths
does not scale to large, realistic programs.

This paper addresses this major limitation and proposes to per-
form dynamic test generation compositionally, by adapting known
techniques for interprocedural static analysis (e.g., [RHS95]) that
have been used to make static analysis scalable to very large pro-
grams (e.g., [BPS00, DLS02, HCXE02, CDW04]). Specifically, we
introduce a new algorithm, dubbed SMART for Systematic Modular
Automated Random Testing, that extends DART by testing func-
tions in isolation, encoding test results as function summaries ex-
pressed using input preconditions and output postconditions, and
then re-using those summaries when testing higher-level functions.
We show that, for a fixed reasoning capability, our compositional
approach to dynamic test generation (SMART) is both sound and
complete compared to monolithic dynamic test generation (DART).
In other words, SMART can perform dynamic test generation com-
positionally without any reduction in program path (and hence
branch) coverage. We also show that, given a bound on the max-
imum number of feasible paths in individual program functions,
the number of program executions explored by SMART is linear in
that bound, while the number of program executions explored by
DART can be exponential in that bound. We present examples of
C programs and preliminary experimental results that illustrate and
validate empirically these properties. To the best of our knowledge,
SMART is the first algorithm for compositional dynamic test gen-
eration. We claim that a SMART search is necessary to make the
“DART approach” scalable to large programs.

2. The DART Search Algorithm
In this section, we briefly recall the DART search algorithm first
introduced in [GKS05], later re-phrased in [SMA05] and (indepen-
dently) in [CE05]. We present here a simplified version to facilitate
the exposition, see [GKS05] for additional details.

Like other forms of dynamic test generation (e.g., [Kor90]),
DART consists of running the program P under test both con-
cretely, executing the actual program, and symbolically, calculating
constraints on values stored in program variables and expressed in
terms of input parameters. These side-by-side executions require
the program P to be instrumented at the level of a RAM (Ran-
dom Access Memory) machine. The memoryM is a mapping from
memory addresses m to, say, 32-bit words. The notation + for map-
pings denotes updating; for example,M′ :=M+ [m �→ v] is the
same map asM, except that M′(m) = v. We identify symbolic
variables by their addresses. Thus in an expression, m denotes ei-
ther a memory address or the symbolic variable identified by ad-
dress m, depending on the context.

The program P manipulates the memory through statements
that are specially tailored abstractions of the machine instructions
actually executed. A statement can be a conditional statement c
of the form if (e) then goto �′ (where e is an expression over
symbolic variables and �′ is a statement label), an assignment
statement a of the form m ← e (where m is a memory address),

48

abort, corresponding to a program error, or halt, corresponding to
normal termination. The function get next statement() specifies the
next statement to be executed.

The concrete semantics of the RAM machine instructions of P
is reflected in evaluate concrete(e,M), which evaluates expres-
sion e in context M and returns a 32-bit value for e. A program
P defines a sequence of input addresses �M0, the addresses of the
input parameters of P . An input vector �I associates a value to each
input parameter and defines the initial value of �M0 andM.1

Let C be the set of conditional statements and A the set of as-
signment statements in P . A program execution w is a finite2 se-
quence in Execs := (A ∪ C)∗(abort | halt). The concrete seman-
tics of P at the RAM machine level allows us to define for each
input vector �I an execution sequence: the result of executing P on
�I (the details of this semantics is not relevant for our purposes). Let
Execs(P) be the set of such executions generated by all possible
�I. By viewing each statement as a node, Execs(P) forms a tree,
called the execution tree. Its assignment nodes have one successor;
its conditional nodes have one or two successors; and its leaves are
labeled abort or halt. The goal of DART is to explore all paths in
the execution tree Execs(P).

To simplify the following discussion, we assume that we are
given a theorem prover that decides a theory T (for instance, in-
cluding integer linear constraints, pointer constraints, array/string
constraints, bit-level operation constraints, etc.). DART maintains
a symbolic memory S that maps memory addresses to expres-
sions. Initially, S is a mapping that maps each m ∈ �M0 to
itself. Expressions are evaluated symbolically with the function
evaluate symbolic(e,M,S). When an expression falls outside the
theory T , DART simply falls back on the concrete value of the ex-
pression, which is used as the result. In such a case, we also set
a flag complete to 0, which we use to track completeness. With
this evaluation strategy, symbolic variables of expressions in S are
always contained in �M0.

To carry out a systematic search through the execution tree, our
instrumented program is run repeatedly. Each run (except the first)
is executed with the help of a record of the conditional statements
executed in the previous run. For each conditional, we record a
done value, which is 0 when only one branch of the conditional
has executed in prior runs (with the same history up to the branch
point) and is 1 otherwise. This information associated with each
conditional statement of the last execution path is stored in a list
variable called stack, kept between executions. For i, 0 ≤ i <
|stack|, stack[i] is thus the record corresponding to the i + 1th
conditional executed.

More precisely, the DART test driver run DART is shown in
Figure 1 where the two lines marked by (*) should be ignored.
This driver combines random testing (the repeat loop) with directed
search (the while loop). If the instrumented program throws an ex-
ception, then a bug has been found. The completeness flag complete
holds unless a “bad” situation possibly leading to incompleteness
has occurred. Thus, if the directed search terminates—that is, if di-
rected of the inner loop no longer holds—then the outer loop also
terminates provided the completeness flag still holds. In this case,
DART terminates and safely reports that all feasible program paths
have been explored. But if the completeness flag has been turned
off at some point, then the outer loop continues forever.

The instrumented program itself is described in Figure 2 where
the lines marked by (*) should again be ignored for now (^ denotes

1 To simplify the presentation, we assume that �M0 is the same for all
executions of P .
2 We thus assume that all program executions terminate; in practice, this can
be enforced by limiting the number of execution steps.

list concatenation). It executes as the original program, but with
interleaved gathering of symbolic constraints. At each conditional
statement, it also possible to check whether the current execution
path matches the one predicted at the end of the previous execution
and represented in stack passed between runs. How to do this is
described in the function compare and update stack of [GKS05].

When the original program halts, new input values are generated
in solve path constraint, shown in Figure 3 while ignoring again
all the lines marked with (*), to attempt to force the next run to
execute the last3 unexplored branch of a conditional along the stack.
If such a branch exists and if the path constraint that may lead to
its execution has a solution �I ′, this solution is used to update the
mapping �I to be used for the next run; values corresponding to
input parameters not involved in the path constraint are preserved
(this update is denoted �I + �I ′).

The main property of DART is stated in the following theorem,
which formulates (a) soundness (of error founds) and (b) a form of
completeness.

THEOREM 1. [GKS05] Consider a program P as previously de-
fined. (a) If run DART prints out “Bug found” for P , then there is
some input to P that leads to an abort. (b) If run DART terminates
without printing “Bug found,” then there is no input that leads to
an abort statement in P , and all paths in Execs(P) have been ex-
ercised. (c) Otherwise, run DART will run forever.

Proofs of (a) and (c) are immediate. The proof of (b) rests on the
assumption that any potential incompleteness in DART’s search is
(conservatively) detected by setting the flag complete to 0.

3. The SMART Search Algorithm
We now present an alternative search algorithm that does not com-
promise search completeness but is typically much more efficient
than the DART search algorithm. The general idea behind this new
search algorithm is to perform dynamic test generation composi-
tionally, by adapting (dualizing) known techniques for interproce-
dural static analysis to the context of automated dynamic test gener-
ation. Specifically, we introduce a new algorithm, dubbed SMART
for Systematic Modular Automated Random Testing, that tests func-
tions in isolation, collects testing results as function summaries ex-
pressed using preconditions on function inputs and postconditions
on function outputs, and then re-use those summaries when testing
higher-level functions.

We assume we are given a program P that consists of a set
of functions. If a function f is part of P , we write f ∈ P . In
what follows, we use the generic term of function to denote any
part of a program P that we want to analyze in isolation and then
summarize its observed behaviors. Obviously, any other kinds of
program fragments such as program blocks or object methods can
be treated as “functions” as done in this paper.

To simplify the presentation, we assume that the functions in
P do not perform recursive calls, i.e., that the call-flow graph of
P is acyclic. (This restriction can be lifted using dynamic pro-
gramming techniques to compute function summaries, as is stan-
dard in interprocedural static analysis and pushdown system verifi-
cation [RHS95, ABE+05].) As previously stated, we also assume
that all the executions of P terminate. Note that both of these as-
sumptions do not prevent P from possibly having infinitely many
executions paths, as is the case if P contains a loop whose number
of iterations may depend on some unbounded input.

3 A depth-first search is used for exposition, but the next branch to be forced
could be selected using a different strategy, e.g., randomly or in a breadth-
first manner.

49

3.1 Definition of Summaries

For a given theory T of constraints, a function summary φf for
a function f is defined as a formula of propositional logic whose
propositions are constraints expressed in T . φf can be computed
by successive iterations and defined as a disjunction of formulas
φw of the form φw = prew ∧ postw, where prew is a conjunction
of constraints on the inputs of f while postw is a conjunction of
constraints on the outputs of f . φw can be computed from the
path constraint corresponding to the execution path w as will be
described shortly. An input to a function f is any address (memory
location) that can be read by f in some of its execution, while an
output of f is any address that can be written by f in some of its
executions and later read by P after f returns.

Preconditions in function summaries are expressed in terms of
constraints on function inputs instead of program inputs in order to
avoid duplication of identical summaries in equivalent but different
calling contexts. For instance, in the following program

int is positive(int x) {
if (x > 0) return 1;
return 0;

}
void top(int y, int z) {

int a,b;
a = is positive(y);
b = is positive(z);
if (a && b) then [...]
[...]

}
the summary for the function is positive could be (x > 0 ∧
ret = 1) ∨ (x ≤ 0 ∧ ret = 0) (if T includes linear arithmetic)
where ret denotes the value returned by the function. This sum-
mary is expressed in terms of the function input x, independently
of specific calling contexts which may map x to different program
inputs like y and z in this example.4

Whenever a constraint on some input cannot be expressed
within T , no constraint is generated. For instance, consider the
following function g:

1 int g(int x) {
2 int y;
3 if (x < 0) return 0;
4 y = hash(x);
5 if (y == 100) return 10;
6 if (x > 10) return 1;
7 return 2;
8 }
Assuming the constraint (hash(x)==100) cannot be expressed
in T , the summary φw of the execution path w corresponding to
taking all the else branches at the three conditional statements in
function g is then (x ≥ 0 ∧ x ≤ 10 ∧ ret = 2).

A precondition defines an equivalence class of concrete execu-
tions. All the concrete executions corresponding to concrete inputs
satisfying the same precondition are guaranteed to execute the same
program path only provided that all the constraints along that path
are in T . In the example above, if the path w that takes all the
else branches in function g was explored with a random concrete
value, say, x = 5, another value satisfying the same precondition
(x ≥ 0 ∧ x ≤ 10), say x = 6 is not guaranteed to yield the same

4 Remember that symbolic variables are associated with program or func-
tion inputs, i.e., memory locations where inputs are being read from. When
syntactic program variables uniquely define where those inputs are stored,
like variables x, y and z in the above example, we merely write “an input
x” in the text to simplify the presentation.

program path, because of the presence of the unpredictable con-
ditional statement in line 5 (as hash(6) could very well be 100).
The execution of this conditional statement makes a DART search
incomplete (the flag complete is then set to 0). In that case, all the
preconditions in a function summary may no longer be mutually
exclusive: a given concrete state may satisfy more than one pre-
condition in a function summary when the function contains con-
ditional statements whose corresponding constraints are outside T .

3.2 Computing Summaries

Function summaries can be computed by successive iterations, one
path at a time. When the execution of the function terminates,
the DART-computed path constraint for the current path w in the
function can be used to generate a precondition prew for that
path: prew is obtained by simplifying the conjunction of branch
conditions on function inputs in the path constraint for w.

If the execution of the function terminates on a return state-
ment, a postcondition postw can be computed by taking the con-
junction of constraints associated with memory locations m ∈
Write(f, �I, w) written during the execution of f during the last
execution w generated from a context (set of input values) �I. Pre-
cisely, we have

postw =
^

m∈Write(f,�I,w)

(m = evaluate symbolic(m,M,S))

Otherwise, if the function terminates on a halt or abort state-
ment, we define postw = false to record this in the summary for
possible later use in the calling context, as described later.

A summary for the execution path w in f is then φw = prew ∧
postw. The process is repeated for other DART-exercised paths w
in f , and the overall summary for f is defined as φf =

W
w φw.

By default, the above procedure can always be used to compute
function summaries path by path. But more advanced techniques,
such as automatically-inferred loop invariants, could also be used
(see Section 4). Note that prew can always be approximated by
false (the strongest precondition) while postw can always be ap-
proximated by true (the weakest postcondition) without compro-
mising the correctness of summaries, and that any technique for
generating provably correct weaker preconditions or stronger post-
conditions can be used to improve precision.

Given the call-flow graph GP of a program P (which we have
previously assumed to be acyclic) and a topological sort of the
functions in GP computed starting from the top-level function of
the program, function summaries can then be computed in either a
bottom-up or top-down strategy.

With a bottom-up strategy, one starts testing functions at the
deepest level in GP , one computes summaries for those, and then
moves up the topological sort to functions one-level up while re-
using the summaries for the functions below (as described in the
next subsection), and so on up to the top-level function of the
program. While the bottom-up strategy is conceptually the easiest
to understand, it suffers from two major limitations that make
its implementation problematic in the context of compositional
dynamic test generation.

First, testing lower-level functions in isolation for all possible
contexts (i.e., for all possible input values) is likely to trigger un-
realistic behaviors that may not happen in the specific contexts
in which the function can actually be called by higher-level pro-
gram functions; this analysis can be prohibitively expensive and
will likely generate an unnecessarily large number of spurious sum-
maries that will never be used subsequently. Thus, too many sum-
maries are computed.

Second, because of the inherent limitation of symbolic execu-
tion to reason about constraints outside the given theory T , sum-
maries computed in bottom-up fashion may be incomplete in pres-

50

run () =
complete = 1

(*) summary = [f �→ ∅ | f ∈ P] // Set of summaries
repeat

stack = 〈〉; �I = [] ; directed = 1
(*) context stack = 〈(, , 0)〉 // Stack of contexts

while (directed) do
try (directed, stack, �I) =

SMART instrumented program(stack, �I)
catch any exception→

print “Bug found”; exit()
until complete

Figure 1. run DART and (*) run SMART test drivers

ence of statements involving constraints outside T . For instance,
in the case of function g presented in Section 3.1, analyzing g in
isolation using DART techniques will probably not be able to exer-
cise the then branch of the conditional statement on line 5, i.e., to
randomly find a value of x such that hash(x) == 100. However,
in its actual calling contexts within the program P , it is possible
that the function g is often called with values for x that satisfy this
constraint. In this case, too few summaries are pre-computed, and it
is necessary to compute later in the search a summary for the case
where hash(x) == 100 is satisfied.

To avoid these two limitations, we recommend and adopt a top-
down strategy for computing summaries on a demand-driven basis.
A complete algorithm for doing this is described next.

3.3 Algorithm

A top-down SMART search algorithm is presented in Figures 1,
2 and 3. The pseudo-code for SMART is similar to the one for
DART with the exception of the new additional lines marked by
(*). Indeed, SMART strictly generalizes DART and reduces to it in
the case of programs consisting of a single function.

A SMART search performs dynamic test generation composi-
tionally, using function summaries as defined previously. Those
summaries are dynamically computed in a top-down manner
through the call-flow graph GP of P . Starting from the top-level
function, one executes the program (initially on some random in-
puts) until one reaches a first function f whose execution termi-
nates on a return or halt statement. One then backtracks inside f
as much as possible using DART, computing summaries for that
function and each of those DART-triggered executions. When this
search (backtracking) in f is over, one then resumes the original
execution where f was called, this time treating f essentially as
a black-box, i.e., without analyzing it and re-using its previously
computed summary instead. The search proceeds similarly, with
the next backtracking point being in some lower-level function, if
any, called after f returns, or in the function g that called f other-
wise, or some other higher-level function that called g if the search
in g is itself over. This search order is thus different from DART’s
search order.

A SMART search starts by executing the procedure run SMART
described in Figure 1. The only differences with the procedure
run DART is the initialization of a set of summaries and of a con-
text stack that records the sequence of calling contexts for which
summaries still need to be computed along the current execution,
and is also used to resume execution in a previous context.

The main functionality of SMART is presented in Figure 2.
The key difference with DART is that function calls and returns
are now instrumented to trigger and organize the computation of
function summaries. Whenever a function f is called, a SMART
instrumented program checks whether a summary for f is already
available for the current calling context. This is done by checking

instrumented program(stack, �I) =
// Random initialization of uninitialized input parameters in �M0

for each input x with �I [x] undefined do �I [x] = random()

Initialize memoryM from �M0 and �I
// Set up symbolic memory and prepare execution
S = [m �→ m | m ∈ �M0]
k = 0 // Number of conditionals executed

(*) backtracking = 1 // By default, backtrack at all branch points
// Now invoke P intertwined with symbolic calculations
s = get next statement()
while (s /∈ {abort, halt}) do

match (s)
case (m← e):
S= S + [m �→ evaluate symbolic(e,M,S)]
v = evaluate concrete(e,M)
M =M+ [m �→ v]

case (if (e) then goto �):
b = evaluate concrete(e,M)
c = evaluate symbolic(e,M,S)

(*) if backtracking then
if b then

path constraint = path constraint ^ 〈c〉
else

path constraint = path constraint ^ 〈neg(c)〉
if (k = |stack|) then stack = stack ^ 〈0〉
k= k + 1

(*) case (f : call): // call of function f
(*) if backtracking then
(*) if (�I ∈ summary(f)) then
(*) // We have a summary for f in context �I
(*) path constraint = path constraint ^ 〈summary(f)〉
(*) // Execute f without backtracking until it returns
(*) backtracking = 0
(*) if (k = |stack|) then stack = stack ^ 〈1〉
(*) k= k + 1

(*) else // Compute a summary for f in context �I

(*) Push (f, �I, k) onto context stack
(*) case (f : return): // return of function f
(*) if backtracking then
(*) // Stop the search in f
(*) // Generate a summary for the current path
(*) add to summary(f ,path constraint)
(*) return solve path constr(k,path constraint,stack)
(*) else
(*) if (Top(context stack) = (f, ,)) then
(*) backtracking = 1
(*) // Extend the set of inputs by the return values of f
(*) M =M+ [m �→ m | m ∈ post(summary(f))]

s =get next statement()
od // End of while loop
if (s==abort) then

raise an exception
else // s==halt

(*) if backtracking then
(*) (f, ,) = Top(context stack)
(*) add to summary(f ,path constraint)

return solve path constr(k,path constraint,stack)

Figure 2. DART and (*) SMART instrumented program

51

solve path constr(k,path constraint,stack) =
j = k − 1; kf = 0

(*) (f, �I, kf) = Top(context stack)
while (j ≥ kf) do

if (stack[j] = 0) then
path constraint[j] = neg(path constraint[j])

if (path constraint[0, . . . , j] has a solution �I ′) then
stack[j] = 1
return (1, stack[0..j], �I + �I ′)

else j = j − 1
else j = j − 1

od
(*) if (kf > 0) then
(*) Pop (f, �I, kf) from context stack
(*) return (1, stack[0..(kf − 1)], �I)

return (0, ,) // This directed search is over

Figure 3. DART and (*) SMART solve path constr

whether the current concrete function input assignment satisfies
one of the preconditions currently recorded in the summary for f .5

If so, this summary is added to the current path constraint, and
the execution proceeds by turning backtracking off in f and any
function below it in the call-flow graph of P . The latter is done
through the use of a boolean flag backtracking. Backtracking is
resumed later in the current execution path when f returns: this
is done in the else branch of the conditional statement included
in the return case, where the set of inputs (in the function calling
f) is also extended with the set of return values appearing in the
set post(summary(f)) of postconditions included in the summary
summary(f) currently available for f .

If no summary is available for the current calling context, this
calling context is saved by pushing it onto the context stack, and
the algorithm will compute a summary for it by continuing the
search deeper in the called function f . When backtracking is on
and the inner-most function terminates either on a return statement
or a halt statement, add to summary(f ,path constraint) computes
a summary for f and the last path executed as discussed in Sec-
tion 3.2. Note that a function summary for f includes in itself sum-
maries of lower-level functions possibly called by f itself.

After computing a summary for the current function and exe-
cution path, solve path constr, presented in Figure 3, is called to
determine where the algorithm should backtrack next. When back-
tracking in a specific function f and calling context �I is over, the
search resumes in the last calling context saved in the context stack.

3.4 Correctness

The correctness of the SMART search algorithm is defined with
respect to the DART search algorithm, thus independently of a spe-
cific theory T representing the reasoning capability of symbolic
execution. Specifically, we can prove that, for any program P con-
taining exclusively statements whose corresponding constraints are
in a given decidable theory T (i.e., for which the flag complete al-
ways remains 1), the SMART search algorithm provides exactly
the same program path coverage as the DART search algorithm.
Thus, for those programs P , every feasible path that is exercised by
DART is also “explored”, albeit compositionally, by SMART; and
conversely, every compositional execution considered by SMART
is guaranteed to correspond to a concrete full execution path. For-
mally, we have the following.

5 Checking later that the output values of f for that run satisfy the corre-
sponding postcondition in the summary is not mandatory for correctness
but can increase precision and hence coverage.

THEOREM 2. (Relative Soundness and Completeness) Given any
program P and theory T , run SMART terminates without printing
“Bug found” if and only if run DART terminates without printing
“Bug found”.

In practice, programs P typically contain statements corre-
sponding to constraints outside T (whatever T is). The SMART
and DART searches may then behave differently because their
search order vary, and calls to the function random() to initial-
ize undefined inputs may return different values, hence exercis-
ing the code randomly differently. Nevertheless, a corollary of the
previous theorem is that the SMART search algorithm is func-
tionally equivalent to DART, in the sense that it still satisfies the
conditions identified in Theorem 1 characterizing the correctness
of the DART search algorithm (and of its various implementa-
tions [GKS05, CE05, SMA05, YST+06]). Formally, we can prove
the following.

THEOREM 3. Consider a program P as previously defined. (a) If
run SMART prints out “Bug found” for P , then there is some input
to P that leads to an abort. (b) If run SMART terminates without
printing “Bug found,” then there is no input that leads to an abort
statement in P . (c) Otherwise, run SMART will run forever.

In summary, SMART is functionally equivalent to DART and,
typically, whatever test inputs DART can generate, SMART can
too, although possibly much more efficiently. How much more
efficient (hence scalable) can SMART be compared to DART? This
question is addressed next.

3.5 Complexity

Let b be a bound on the maximum number of distinct execution
paths that can be contained in any function f of the program P . If a
function f does not contain any loop, such a bound is guaranteed to
exist, although it can be exponential in the number of statements in
the code describing f . If f contains loops whose number of itera-
tions may depend on an unbounded input, the number of execution
paths in f could be infinite, and such a bound b may not exist. In
practice, a bound b can always be enforced by simply limiting the
number of execution paths explored in a function, i.e., by limiting
the size of summaries; this heuristics has been shown to work well
in the context of interprocedural static analysis (e.g., see [BPS00]).

Given such a bound b, it is easy to see that the number of execu-
tion paths considered by a SMART search (while the flag directed
is kept to 1) will be at most nb, where n is the number of functions
f in P , and is therefore linear in nb. In contrast, the number of exe-
cution paths considered by a DART search (while the flag directed
is kept to 1) can be exponential in nb, as DART does not exploit
program hierarchy and treats a program as a single, “flat” function.
This reduction in the number of explored paths from exponential
to polynomial in b is also observed with compositional verification
algorithms for hierarchical finite-state machines [AY98].

Although SMART can avoid systematically executing all the
possibly exponentially many feasible program paths in P , it does
require the use of formulas φf representing function summaries
which can be of size linear in b, and the use of theorem proving
techniques to check satisfiability of those formulas, with decision
procedures which can, in the worst case, be exponential in the size
of those formulas, i.e., exponential in b. However, while DART
can be viewed as always trying to systematically execute all pos-
sible execution paths, i.e., all possible disjuncts in φf =

W
w φw,

SMART will try to check the satisfiability of φf in conjunction
with additional constraints generated from a calling context of f ,
and hence try to find just one way to satisfy the resulting formula
using a logic constraint solver. This key point is illustrated next.

52

4. Example, Case Study, Discussion
A Simple Example

Consider the function locate whose code is as follows:

1 // locate index of first character c
2 // in null-terminated string s
3 int locate(char *s, int c) {
4 int i=0;
5 while (s[i] != c) {
6 if (s[i] == 0) return -1;
7 i++;
8 }
9 return i;
10 }
Given a string s of maximum size n (i.e, s[n] is always zero), there
are at most 2n distinct execution paths for that function if c is non-
zero (and at most n if c is zero). Those 2n paths can be denoted
by the regular expression: 〈(line5:then; line6:else)i (line5:else |
(line5:then; line6:then))〉 for 0 ≤ i ≤ (n − 1). There are n + 1
possible return values: -1 (for the n paths 〈(line5:then; line6:else)i

(line5:then; line6:then)〉 for 0 ≤ i ≤ (n− 1)), and 0, 1, . . . , (n−
1), each returned by the path 〈(line5:then; line6:else)i line5:else〉
where i is equal to the return value.

Now, consider the function top which calls the function locate:

11 void top(char *input) {
// assume input is null-terminated

12 int z;
13 z = locate(input,’a’);
14 if (z == -1) return -1; // error code
15 if (input[z+1] != ’:’) return 1; // success
16 return 0; // failure
17 }
In the function top, there are 3 possible execution paths: 〈line14:then〉,
〈line14:else; line15:then〉 and 〈line14:else; line15:else〉.

Following the call to locate, the outcome of the test at line 14
is completely determined by the return value from function locate
stored in z. In contrast, the test at line 15 constraints the next
element input[z+1] in the string input and its outcome depends
on the value stored at that address. That input value could either
be equal to ’:’ or not, except for input[n] which we assumed
to be zero. Therefore, for the whole program P composed of the
two functions top and locate, there are 3n−1 possible execution
paths: n executions terminate after the then branch of line 14, n
executions terminate after the then branch of line 15, and n − 1
executions terminate in line 16. Thus, the number of feasible paths
in P is (roughly) the product of the number of paths in its functions
locate and top.

A DART search attempts to systematically execute all possi-
ble execution paths and would thus perform 3n − 1 runs for this
program. In contrast, a SMART search will systematically execute
all possible execution paths of the function locate and top sepa-
rately. Precisely, a SMART search computing function summaries
as described in Section 3.2 would compute 2n path summaries for
function locate, whose function summary φf would then be of
the form

φf = (s[0] = c ∧ ret = 0)

∨ (s[0] �= c ∧ s[0] = 0 ∧ ret = −1)

∨ (s[0] �= c ∧ s[0] �= 0 ∧ s[1] = c ∧ ret = 1)

etc.

Then, the SMART search would explore the feasibility of the 3
paths of the function top using φf to summarize function locate.

Packet size

Runs

8754 6 10

400

SMART

DART

91

300

200

100

0

500

32

800

700

600

Figure 4. Experimental comparison between DART and SMART
For this example, SMART would then perform 2n + 3 runs, i.e.,
the sum of the number of paths in its functions locate and top.

Observe how the address z+1 is defined relative to z and that
its absolute value “does not matter” (as long as z + 1 �= n) when
proving the satisfiability of the constraint generated from the test
input[z+1] != ’:’ and of its negation. This is captured by the
SMART algorithm, which will not attempt to try all possible ways
to satisfy/violate these constraints (as DART would), but will only
find one way to satisfy those. This observation explains intuitively
the significant speed-up that SMART can provide compared to
DART, while guaranteeing the same path (and hence branch) cov-
erage (100% branch coverage is achieved in this example).

Case Study

We have developed an implementation of the SMART search algo-
rithm for the C programming language, extending the DART im-
plementation described in [GKS05]. We report here preliminary
experiments comparing the efficiency of DART and SMART on
the oSIP example discussed in [GKS05]. oSIP is an open-source
C library implementing the SIP protocol and consisting of about
30,000 lines of C code. SIP messages are transmitted as ASCII
strings and a large part of the oSIP code is dedicated to parsing
SIP messages.

Figure 4 presents the number of runs needed by DART and
SMART to fully explore all the feasible program paths in a subset
of the oSIP parser code. Experiments were performed for several,
small packet sizes. Runtime is linear in the number of runs for those
experiments. As is clear from Figure 4, SMART can fully cover all
the feasible program paths of this example much more efficiently
than DART. In fact, for this example, the SMART search is optimal
in the sense that its number of runs (and runtime) grows in a linear
way with the size of the input packet.

Discussion

Another way to limit the “path explosion” problem in a DART
search is simply to allow backtracking only at branches of condi-
tional statements that have never been executed so far. If B denotes
the number of conditional statements in a program P , the number
of execution paths (runs) explored by such a “branch-coverage-
driven” DART search is trivially bounded by 2B, i.e., is linear in
the program size. The drawback of this naive solution is obviously
that full feasible path coverage is no longer guaranteed, even for
programs containing only statements with constraints in T . This,
in turn, typically reduces overall branch coverage itself, and thus
chances of finding bugs. In contrast, SMART reduces the compu-
tational complexity of DART without sacrificing full path coverage
and hence provably without reducing branch coverage.

In the presence of loops, loop invariants could be used to gen-
erate more general and compact function summaries than those
generated by the path-by-path procedure for computing summaries
presented in Section 3.2. For instance, considering again the func-
tion locate, a more compact and general function summary is

53

φf = ((∃i ≥ 0 : s[i] = c ∧ (∀j < i : (s[j] �= c) ∧ (s[j] �=
0))) ∧ ret = i) ∨ ((∃i ≥ 0 : s[i] = 0 ∧ (∀j < i : s[j] �=
c))∧ ret = −1), which is independent of any maximum size n for
the string s. Concrete values known at runtime could be used to
detect “partial” loop invariants, i.e., simplified loop invariants that
are valid only when some input variables are fixed.

5. Conclusion
DART [GKS05], and closely related work (e.g., [SMA05, CE05,
YST+06]), is a promising new approach to automatically generate
tests from program analysis. Actually, DART can be viewed [GK05]
as one way of combining static (interface extraction, symbolic ex-
ecution) and dynamic (testing, run-time checking) program analy-
sis with model-checking techniques (systematic state-space explo-
ration) in order to address one of the main limitations of previous
dynamic, concrete-execution-based software model checkers (such
as VeriSoft, JavaPathFinder and CMC, among others), namely their
inability to automatically deal with input data nondeterminism.

But DART suffers from two major limitations. First, its effec-
tiveness critically depends on the symbolic reasoning capability T
available. Whenever symbolic execution is not possible, concrete
values can be used to simplify constraints and carry on with a sim-
plified, partial symbolic execution. Randomization can also help by
suggesting concrete values whenever automated reasoning is im-
possible or difficult. Still, it is currently unknown whether dynamic
test generation is really that superior to static test generation, that is,
how effective using concrete values and randomization help sym-
bolic execution for testing purposes in practice. More experiments
with various kinds of examples are needed to determine this.

Second, DART suffers from the “path explosion” problem: sys-
tematically executing all feasible program paths is typically pro-
hibitively expensive for large programs. This paper addresses this
second limitation in a drastic way, by performing dynamic test gen-
eration compositionally and eliminating path explosion due to in-
terprocedural program paths (i.e., paths across function boundaries)
without sacrificing overall path or branch coverage. A SMART
search can be viewed as exploring the set of feasible whole pro-
gram paths symbolically, i.e., by exploring simultaneously sets of
such paths, instead of executing those one by one.

Our approach adapts known techniques for interprocedural
static analysis to the context of dynamic test generation. While
implementations of interprocedural static analysis are typically
both incomplete (may miss bugs) and unsound (may generate false
alarms) with respect to falsification [GK05], our compositional dy-
namic test generation is performed in such a way to preserve the
soundness of bugs [God05]: any error path found is guaranteed to
be sound, as every compositional symbolic execution is grounded,
by design, into some concrete execution. The only imprecision in
our approach is incompleteness with respect to falsification: we
may miss bugs by failing to exercize some executable program
paths and branches.

The idea of compositional dynamic test generation was al-
ready suggested in [GK05]; the motivation of the present paper
is to investigate this idea in detail. Other recent related work in-
cludes [CG06], which proposes and evaluates several heuristics
based on light-weight static analysis of function interfaces to par-
tition large software applications into groups of functions, called
units. Those units can then be tested in isolation without generating
too many false alarms caused by unrealistic inputs being injected
at interfaces between units. In contrast with the present work, no
summarization of unit testing, nor any global analysis is ever per-
formed in [CG06]. Both types of techniques can actually be viewed
as complementary. We refer the reader to [GKS05] for a detailed
discussion of other automated test generation techniques and tools,
and to [GK05] for a discussion of other possible DART extensions.

References
[ABE+05] R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. Reps,

and M. Yannakakis. Analysis of Recursive State Machines.
TOPLAS, 27(4):786–818, July 2005.

[AY98] R. Alur and M. Yannakakis. Model Checking of Hierarchical
State Machines. In FSE’98.

[BCH+04] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and
R. Majumdar. Generating Tests from Counterexamples. In
ICSE’2004.

[BKM02] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated
testing based on Java predicates. In ISSTA’2002.

[BPS00] W.R. Bush, J.D. Pincus, and D.J. Sielaff. A static analyzer
for finding dynamic programming errors. Software Practice
and Experience, 30(7):775–802, 2000.

[CDW04] H. Chen, D. Dean, and D. Wagner. Model Checking One
Million Lines of C Code. In NDSS’04.

[CE05] C. Cadar and D. Engler. Execution Generated Test Cases:
How to Make Systems Code Crash Itself. In SPIN’2005.

[CG06] A. Chakrabarti and P. Godefroid. Software Partitioning for
Effective Automated Unit Testing. In EMSOFT’2006.

[CS05] C. Csallner and Y. Smaragdakis. Check’n Crash: Combining
Static Checking and Testing. In ICSE’2005.

[DLS02] M. Das, S. Lerner, and M. Seigle. ESP: Path-Sensitive
Program Verification in Polynomial Time. In PLDI’2002.

[Edv99] J. Edvardsson. A Survey on Automatic Test Data Generation.
In Proceedings of the 2nd Conference on Computer Science
and Engineering, pages 21–28, Linkoping, October 1999.

[GK05] P. Godefroid and N. Klarlund. Software Model Checking:
Searching for Computations in the Abstract or the Concrete
(Invited Paper). In IFM’2005.

[GKS05] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
Automated Random Testing. In PLDI’2005.

[GMS00] N. Gupta, A. P. Mathur, and M. L. Soffa. Generating Test
Data for Branch Coverage. In ASE’2000.

[God97] P. Godefroid. Model Checking for Programming Languages
using VeriSoft. In POPL’97.

[God05] P. Godefroid. The Soundness of Bugs is What Matters
(Position Paper). In BUGS’2005.

[HCXE02] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A System and
Language for Building System-Specific Static Analyses. In
PLDI’2002.

[Kin76] J. C. King. Symbolic Execution and Program Testing. Journal
of the ACM, 19(7):385–394, 1976.

[Kor90] B. Korel. A Dynamic Approach of Test Data Generation. In
IEEE Conference on Software Maintenance, 1990.

[Mye79] G. J. Myers. The Art of Software Testing. Wiley, 1979.

[RHS95] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural
dataflow analysis via graph reachability. In POPL’95.

[SMA05] K. Sen, D. Marinov, and G. Agha. CUTE: A Concolic Unit
Testing Engine for C. In FSE’2005.

[VPK04] W. Visser, C. Pasareanu, and S. Khurshid. Test Input
Generation with Java PathFinder. In ISSTA’2004.

[XMSN05] T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra: A
Framework for Generating Object-Oriented Unit Tests Using
Symbolic Execution. In TACAS’2005.

[YST+06] J. Yang, C. Sar, P. Twohey, C. Cadar, and D. Engler. Automat-
ically Generating Malicious Disks using Symbolic Execution.
In Proceedings of IEEE Security and Privacy’2006, Oakland,
2006.

54

