
Tracing Lineage Beyond Relational Operators

ABSTRACT
Tracing the lineage of data is an important requirement for
establishing the quality and validity of scientific data. Re-
cently, the problem of data provenance has been increas-
ingly addressed in database research. This work has been
limited to the lineage of data as it is manipulated using re-
lational operations within an RDBMS. While this captures
a very important aspect of scientific data processing, the
existing work is incapable of handling the equally impor-
tant, and prevalent, cases where the data is processed by
non-relational operations. This is particularly common in
scientific data where sophisticated processing is achieved by
programs that are not part of a DBMS. The problem of
tracking lineage when non-relational operators are used to
process the data is particularly challenging since there is po-
tentially no constraint on the nature of the processing. In
this paper we propose a novel technique that overcomes this
significant barrier and enables the tracing of lineage of data
generated by an arbitrary function. Our technique works di-
rectly with the executable code of the function and does not
require any high-level description of the function or even the
source code. We establish the feasibility of our approach on
a typical application and demonstrate that the technique is
able to discern the correct lineage. Furthermore, it is shown
that the method can help identify limitations in the function
itself.

1. INTRODUCTION
With the advance of high-throughput experimental tech-

nology, scientists are tackling large scale experiments and
producing enormous amounts of data. Web technology al-
lows scientists to collaborate and share data – further in-
creasing the amount of available data. In order for this data
to be useful, it is essential to know the provenance of the
data – how was it generated, using what tools, what pa-
rameters were used, etc. This information is often termed
Provenance or Lineage of the data. Lineage information can
be used to estimate the quality, reliability, and applicability

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

of data to a given task. Three aspects of data provenance
have been identified in [25]: Interaction, Actor Status, and
Relationship. Relationship has been defined as “Informa-
tion on how one data item in a process relates to another.”
Despite the importance of recording these relationships be-
tween input and output data, managing provenance in e-
science remains a challenge. The prototype reported in [25],
for example, the relationship aspect of data provenance has
not been implemented [18].

To improve scientific collaboration, Workflow Manage-
ment System(WMSF) and Grid computation are used to
simplify access to computational resources and experimen-
tal results over distributed systems[16, 15, 26, 10]. Many
prototype systems such as Chimera[10], MyGrid[26], and
Geo-Opera [7] have been developed. Lineage can be cate-
gorized into coarse-grained lineage and fine-grained lineage.
Coarse-grained lineage records the procedures used to trans-
form the data, the parameters used, the general description
of the input and output data. Coarse grained lineage is also
referred to as work-flow in literature. There is a subtle dif-
ference between workflow and lineage. Workflow defines a
plan for desired processing before it actually happens. Lin-
eage, on the other hand, describes the relationship between
data products and data transformations after processing has
occurred. Coarse-grained lineage is useful in many applica-
tions. However, applications such as the scientific computa-
tions in [27, 22] require fine-grained lineage. Coarse-grained
lineage is insufficient since detailed information of how in-
dividual output elements are derived from a certain subset
of input elements is desired. Fine-grained lineage, which
records the individual data items in the input used to pro-
duce a data item in the output, provides the necessary de-
tails.

Lineage tracing in the context of database systems has
been extensively studied [11, 9, 12]. These algorithms can
only trace fine-grained lineage when the data is produced
by relational operators within DBMS. Consequently, they
cannot be directly applied to trace data lineage when non-
relational operators are employed as is often the case with
scientific applications. A workflow may involve programs
maintained and distributed at different research groups, but
shared within the grid. The program could be an executable
or a web service implementing an arbitrary function that
the user knows little about. Even though the data may be
stored in a database, the program used to derive the data
usually resides outside the database, or at best as a stored
procedure. To the best of our knowledge, there is currently
no technique that enables lineage tracing for these “black

1

box” functions.
A similar challenge is also seen in data mining and data

cleansing applications. For many applications, data clean-
ing is an important first step. It has been reported that
the data cleaning procedure takes more than half the total
time in the construction of a data warehouse. Extensive re-
search has been conducted on how to resolve inconsistencies
and missing values in the data. However, after the data is
cleaned and stored in the database, the information of how
the data is cleaned is not stored in the database and is lost
forever. For example, the missing value could be replaced
by a most likely value or derived from a model, but once the
data has made it to the database, this data is treated as if it
is the real data. In many cases, the data used to replace the
missing value may be incorrect. It is important to maintain
this information if one has doubts about the data. Since the
data cleaning procedures are usually performed by a pro-
gram without relational semantics, it is difficult to maintain
this information.

Despite the importance of the problem, there has been
very limited work that has addressed the problem of tracing
lineage when arbitrary functions are used – this is largely
due to the difficulty of the problem. In [27], Wooddruff
and Stonebraker use reverse functions to compute the map-
pings from output to input. A reverse function returns a
set of input data that is used to generate a given output
data item. When a reverse function is not available, a weak
reverse function is used to compute a set of input that is
a superset or subset of the data used to compute the out-
put. A verification function is also used to refine the set.
Marathe [22] apply rewrite rules to the AML (Array Manip-
ulation Language) expression in order to trace fine-grained
lineage for array data. This lineage may contain false pos-
itives. These solutions have been shown to be effective in
certain scenarios. However, they have their inherent limi-
tations. First of all, reversibility is not a universal charac-
teristic of data processing queries/functions. Even when a
weak reverse function can be found, it will not be very use-
ful if the exact data items can not be identified. Second,
in order to design reverse queries/functions, a comprehen-
sive understanding of the data processing procedures is a
pre-requisite, which makes the solutions application-specific.
The situation becomes worse when it comes to legacy code
because they are often harder to understand. Third, cod-
ing the reverse queries/functions entails non-trivial efforts,
which thwart the application of these techniques.

To the best of our knowledge, there is no existing work
that is able to automatically infer the connections between
input and output for arbitrary functions. In this paper, we
propose the first such technique. The key idea of our tech-
nique is the observation that the program binary that imple-
ments the function is a valuable source of information that
connects the input and output. Therefore, tracing program
executions reveals how output is derived from input.

While this is a very promising direction, the implemen-
tation is non-trivial. In this paper, we take advantage of
the recent advance in dynamic program analysis and pro-
pose tracing fine grained lineage through dynamic program
slicing. Dynamic program slicing is a technique originally
designed to debug program errors. Given an executable, dy-
namic program slicing is able to trace the set of statements
that have been involved in computing a specific value at a
particular program point and at a given time, thus helping

the programmer to find the bug. Using dynamic program
slicing to trace fine-grained lineage has the following imme-
diate advantages:

• it is a highly automated general solution

• it does not require any user interference

• it does not require any domain expertise on the data
processing functions

• it can simply work on compiled binaries without access
to the source code

• it naturally handles non-reversible computations such
as aggregation operations

• the traced fine grained lineage is accurate

The only barrier to make this intuitive idea work is the cost.
Fortunately, recent progress in program tracing, especially
in dynamic program slicing, enables tracing fine grained lin-
eage with reasonable cost. It is worth pointing out that
the overhead of our system stems mostly from the under-
lying dynamic program analysis engine which is based on a
single-core machine and not highly optimized. As a result,
it is usually several times slower than an industry-strength
engine. The emergence of multi-core machines enables much
more sophisticated runtime tracing techniques which are ca-
pable of reducing the overhead by orders of magnitude. The
results presented in this paper will directly benefit from
these improvements and we expect that the tracing costs
will be reduced in future work. Even in the absence of these
improvements, the contribution of this paper is significant
since it provides a new functionality that is currently not
available. For most applications that require lineage infor-
mation – the availability of the information is more crucial
than the run-time cost of computing it. At the same time, it
is a simple matter to support rapid query processing with-
out lineage tracing while at the same time having a separate,
slower computation that generates the lineage information in
the background. In this fashion, query results are available
immediately while the lineage information is generated a lit-
tle later. We show in this paper, that even though lineage
tracing is slower than query processing, it remains at accept-
able levels for all the applications that we have considered
– we are certain that this is a price that these applications
are willing to pay for obtaining valuable lineage information
that has not been available earlier. This paper makes the
following contributions:

• We develop the first fine-grained lineage tracing algo-
rithm that can be applied to any arbitrary function
without human input or access to source code. We de-
scribe how the ideas of dynamic slicing for debugging
programs are adapted to provide fine-grained lineage.

• We implement the system and apply it on a realis-
tic scientific application. Our experiments show that
the overhead is acceptable. Our case study demon-
strates that the traced fine grained lineage informa-
tion is highly effective and greatly benefits a biologist
in analyzing and understanding the results.

• We discuss how this technique can be integrated into a
DBMS such that it provides general support for data
lineage.

The remainder of the paper is organized as follows.

2

���

���
��� � �	
��

��� � ��
�
 ��� � �	
��
 ��� � ��
��
��������������������
������� ��

������ ��� �� ��! ��� ��� ���

" # $ % & ' () * + ,��������������������
������� ��

������ ��� �� ��! ��� ��� ���

Figure 1: Sample Mass Spectrometry results (a) raw
data and (b) analysis results.

2. MOTIVATION
In this section we describe a motivating data process-

ing application of non-relational data processing for which
lineage tracing is both important and challenging. Liquid
Chromatography Mass Spectrometry (LC-MS) is an effec-
tive technique used in protein biomarker discovery in cancer
research [31, 28]. A biomarker is a protein which undergoes
changes in structure or concentration in diseased samples.
Identified biomarkers can be used in diagnoses and drug
design. To detect these biomarkers, proteins from cancer
patients and normal people are digested into smaller pieces
called peptide. These two samples of peptides are “labeled”
by attaching chemicals to them. The normal and diseased
groups are distinguished by having different isotopes (same
chemical structure but different molecular mass) in their la-
bels. The labeled cancer and normal samples are then mixed
with a known ratio (i.e, 1:1). This mixture is then subjected
to the LC-MS process which produces as an output similar
to that shown in Figure 1(a). The x-axis of the graph shows
the ratio of the molecular mass to the charge (m/z ratio) of
the various peptides that were detected by the spectrome-
ter. The y-axis shows the intensity (concentration) of that
particular m/z value. Each peak is labeled with a Greek
symbol to ease exposition. For example, the left-most peak
corresponds to a m/z ratio of 913.437, we will refer to this as
Peak α. Due to naturally occurring isotopes, a single pep-
tide results in a cluster of peaks, called isotopic peaks. The

mass difference between two adjacent isotopic peaks equals
to 1Dalton. If charge is 1, the m/z difference between iso-
topic peaks will be 1, if it is 2, it will be 0.5, if it is 3, it is
0.33 etc. The same type of peptides generated from normal
and disease samples will appear in the same mass spectrum
as a pair of peaks called doublet with mass difference equals
to the mass difference of labeling reagent. The intensity
ratio of the doublet indicates the relative concentration of
proteins from which the peptides were generated. If the ra-
tio is not equal to the expected ratio (the ratio in which the
samples were mixed), then the protein which generate the
peptide may be a potential biomarker.

De-isotoping functions are employed to process the raw
spectrometer output in order to identify the m/z ratios of
peptides that could have generated the observed pattern of
peaks. Due to the complexity of the process and the many
factors that can lead to errors, these functions are heuristics
that the scientists have developed over a period of time.
Not surprisingly, LC-MS has been known to produce a large
percentage of false positives. Many factors contribute to the
problem of many false positives. The data quality may be
poor. The heuristics used in the algorithm may not handle
some situations. The design of the algorithm may contain
flaws, and there could be human errors that are not easy to
detect. It is evident that the quantification of peak intensity
is critical for the success of the experiment. Eliminating
false positives is important since the results of the LC-MS
will determine in what direction the subsequent research will
proceed – typically involving significant effort and expense.
It is important for scientists to have high confidence that
a potential biomarker is worthy of further analysis. The
availability of fine-grained lineage can significantly improve
scientists’ ability to eliminate false positives.

Algorithm 1 shows the pseudo-code for the state-of-the-
art algorithm for the de-isotope procedure. For each peak P
in the spectrum, up to six isotopic peaks are identified. The
intensity of each isotopic peak is compared against a theoret-
ical threshold that is computed from P.intensity and a con-
stant H , which is indexed by i and P.intensity. If it equals
the threshold, this intensity is aggregated to P.intensity
and the peak is removed from the spectrum. Otherwise, the
threshold intensity is added to P.intensity and subtracted
from the isotopic peak’s intensity.

The output of the de-isotope procedure also looks similar
to its input, except that peaks due to isotopes are deleted
and merged into a single peak. A sample result is shown in
Figure 1(b). For example, the intensity of peak µ denoted
as Pµ, is computed by the following equation:

Pµ =(1 + c2) · P
α + P β + P γ

Similarly, the intensity of peak ν is computed as:

P ν =(1 + c′1 + c′2) · (P
δ − c2 · Pα) + P ε

The values of the constants used, and the actual peaks
that contribute in case depend upon the processing details
that are buried in the complex procedure. This significantly
complicates the ability to automatically infer the relation-
ships between input and output. It is obvious that no reverse
function exists for the functions listed above. Certainly not
one that can be generally inferred even with a high-level
knowledge of the working of the de-isotope procedure. One
possible weak function is to compute all possible six isotopic
peaks, which will include Pα, P β, P γ , P δ, P ε, P ζ , P η. This

3

Algorithm 1 De-isotope

1: for each peak P in the spectrum do
2: Ch=F (P) /*Compute the charge of P*/
3: M []=G(Ch,P) /* Find the next up to 6 isotopic

peaks*/
4: for each M [i] do
5: T = H(P.intensity, i) × P.intensity /*H(...) is the

constant ratio for calculating theoretical isotopic
peak intensity*/

6: if (M [i].intensity ≡ T) then
7: P.intensity+ = M [i].intensity
8: remove peak M [i] from the spectrum
9: else

10: P.intensity+ = T
11: M [i].intensity = M [i].intensity − T
12: end if
13: end for
14: print(. . . , P.intensity, . . .)
15: remove P from spectrum
16: end for

is a superset of the real lineage. The other possible weak re-
verse function is to find the peak with the same m/z, which
is Pα. This set is a subset of the real lineage. Neither re-
verse weak function gives a satisfactory result. In addition,
there is not a good verification function to refine the re-
sult produced by weak reverse function. In this case, the
true function used to compute the intensity will depend on
many conditions and would have to be dynamically gen-
erated. Furthermore, to find (weak) reverse function and
verification function requires detailed knowledge of the al-
gorithms and requires non-trivial effort. Even if a weak re-
verse function is found, it will not be very useful if the exact
data items can not be identified.

3. AUTOMATED LINEAGE TRACING
In this section we present our new approach for automatic

tracing of fine-grained lineage through run-time analysis.
This approach is motivated by the technique of dynamic
slicing that is used as a debugging tool [21]. Dynamic slic-
ing is able to identify a subset of program statements that
are involved in producing erroneous executions. The goal of
lineage tracing is rather different in that we are interested in
identifying the connections between input and output data
for a program. Although not straight-forward, we show that
it is possible to adapt the technique of dynamic slicing for
our purpose. Before we discuss how this is achieved, we
present a very brief description of dynamic slicing as used
for debugging. Interested readers are referred to [21] for
further details.

3.1 Dynamic Slicing
Dynamic slicing operates by observing the execution of

the program on given input data. The goal is to be able to
determine which statements are responsible for the execu-
tion having reached a given statement. Each statement is
identified by a line number, s. Since a given statement may
be executed many times in a given execution, each execution
of Statement s is identified with a numeric subscript: si for
the ith execution.

Definition 1. Given a program execution, the dynamic

slice of an execution point of si, which denotes the ith exe-
cution instance of statement s, is the set of statements that
directly or indirectly affected the execution of si.

In order to identify the set of relevant statements, dy-
namic slicing captures the exercised dependences between
statement executions. The dependences can be categorized
into two types, data dependence and control dependence.

Definition 2. A statement execution instance si data
depends on another statement execution instance tj if and
only if a variable is defined at tj and then used at si.

. . .
40. for M [0];
50. T = . . . P.intensity
60. if (T ≡ M [0].intensity)
70. P.intensity+ = M [0].intensity
80. . . .
41. for M [1];
51. T = . . . P.intensity
61. if (T ≡ M [1].intensity)
90. else
100. P.intensity+ = T
110. . . .
42. for NULL;
140. print (. . . , P.intensity, . . .)

. . .

Figure 2: Execution Trace of Algorithm 1

In the execution presented in Figure 2, for example, there
is a data dependence from 60 to 50 since T is defined at 50

and then used at 60.
Besides data dependence, another type of dependence cap-

tured by dynamic slicing is called control dependence.

Definition 3. A statement execution instance si con-
trol depends on tj if and only if (1) statement t is a pred-
icate statement and (2) the execution of si is the result of
the branch outcome of tj.

For example in Figure 2, 70 and 80 control depends on 60.
More detail on how to identify control dependence at run-
time can be found at [30].

The dynamic slice of an executed statement si consists of
si and the dynamic slices of all the executed statements that
si data or control depends on. Therefore, the dynamic slice
of 140 contains 140, 100, 61, 51, 41, 70, 60, 50 and 40.

3.2 Tracing Data Lineage
For the case of lineage tracing we are interested in deter-

mining the set of input items that are involved in computing
a certain value at a particular execution point. In this sec-
tion, we adapt the dynamic slicing technique for data lineage
computation.

Let us start by defining data lineage in terms of program
execution.

Definition 4. Given a program execution, the data lin-
eage of v at an execution point of si, denoted as DL(v@si),
is the set of input items that are directly or indirectly in-
volved in computation of the value of v at si.

We also use DL(si) to denote the data lineage of the left
hand side expression of si. For example, DL(P@140) =
{P, M [0], M [1]}.

4

Dynamic slices are usually computed by first constructing
a dynamic program dependence graph [5], in which an edge
reveals a data/control dependence between two statement
instances, and then traversing the graph to identify the set
of reachable statement instances. This method suffers from
the unbounded size of the constructed dependence graph.
More recently, it has been shown that dynamic slices can
be computed in a forward manner [8, 29], in which slices
are continuously propagated and updated as the execution
proceeds. While this method mitigates the space problem,
dynamic slices are often so large that expensive operations
have to be performed at each step of the execution in order
to update the slices.

Fortunately, in lineage tracing, it is not necessary to trace
statement executions. Consider the example below. It is
obvious the lineage set of OUTPUT has only INPUT [0].
However, all statement executions should be contained in
the dynamic slice of OUTPUT because they directly/indirectly
contributed to the value of OUTPUT .

10: x = INPUT[0];
20: x = x + 1;
30: OUTPUT = x;

In other words, if well designed, lineage tracing can be much
more efficient than dynamic slicing.

Next, let us describe how data lineage is computed dur-
ing the program execution. The basic idea is that the set of
input elements that is relevant to the right hand side vari-
able at si is the union of the relevant input sets of all the
statement instances which si data or control depends on. In
other words, all the input items that are relevant to some
operand of si or the predicate that controls the execution of
si are considered as relevant to si as well.

For the simplicity of explanation, let

si : dest =? tj : f(use0, use1, ..., usen)

be the executed statement instance, in which si defines vari-
able def by using the variables of use0,use1, ..., and usen,
and si control depends on tj . Let DEF (x) be the latest
statement instance that defines x. For example, the state-
ment instance 100 can be denoted as

100 : P.intensity =? 61 : f(P.intensity, T)

because it control depends on 61 and defines P.intensity

using T and the old P.intensity.
The computation of data lineage can be represented by

the following equations:

DL(def@si) =(
[

∀x

DL(usex@si) ∪ DL(tj)

=DL(tj) ∪ (
[

∀x.DEF (usex) 6=φ

DL(usex@DEF (usex))

∪ (
[

∀x.DEF (usex)=φ;

{usex}).

(1)
As shown by the equations, the lineage set of the variable

def that is defined by si is the union of the lineage set of
tj and the lineage sets of usex. If a variable usex was pre-
viously defined, DL(usex) = DL(usex@DEF (usex)), oth-
erwise, it is treated as an input and thus DL(usex@si) =
{usex}.

Table 1 presents computation of data lineage for the ex-
ecution trace in Figure 2. In the table, M [. . .] and P are
the abbreviations of M [. . .].intensity and P.intensity, re-
spectively. The last row of the table indicates that the data
lineage of P.intensity at 140 is computed from the input
elements of the original P.intensity, M [0].intensity, and
M [1].intensity.

1. i=0;
2. while (INPUT[i]!=0) {
3. OUTPUT[i]=INPUT[i];

}
4. ...

Execution trace: 11 21 31 22 32 23 ...41

Figure 3: The Undesired Effect of Control Depen-
dence.

The Effect of Control Dependence. Another issue
that confronts us is about handling control dependence. Con-
trol dependence is essential to dynamic slicing because a
large number of bugs are related to altering the branch out-
come of a predicate. However, considering control depen-
dence in data lineage computation may degrade the qual-
ity of the results. For example in Figure 3, since each 3i
statement instance in the execution control depends on the
corresponding 2i statement instance, and 2i control depends
on 2i−1 because whether the ith instance of the while state-
ment gets executed depends on the branch outcome of the
(i − 1)th instance of the while statement. Therefore,

DL(OUTPUT[i]@3i)) = {INPUT[i]} ∪ DL(2i)

= {INPUT[i]} ∪ (INPUT[i-1] ∪ DL(2i−1)

= ...

= {INPUT[i], INPUT[i-1], ..., INPUT[0]}

In other words, even though OUTPUT[i] is equivalent to
INPUT[i], all the INPUT[x ≤ i] are considered as being rele-
vant to OUTPUT[i], which is not very useful.

This implies that blindly considering all control depen-
dences in computation of lineage may incur undesired effect.

Moreover, the programs to which data lineage tracing is
applied are often data dependence intensive. In other words,
by tracing through merely data dependence edges, we are
able to acquire meaningful lineage information. Therefore,
in this paper we trace lineage through only data dependence
and our experience shows that it is sufficient for the pro-
grams under study.

Soundness. Finally, we would like to point out that even
tracing both data and control dependences is not a sound so-
lution, meaning that relevant input instances may be missing
from the lineage set. Consider the example below. Lets as-
sume INPUT[0] has the value of 90 such that statement 3 is
not executed. The only statement that statement 4 depends
on is 1. In other words, OUTPUT@4 has an empty data lin-
eage set. But we can easily tell that OUTPUT is relevant to
INPUT[0]. The root cause is that the dependence between
2 and 4 is neither a data dependence nor a control depen-
dence, and thus the data lineage set can not be propagated
along that dependence. In general, it is hard to capture
this type of dependence because of the fact that it manifests
itself by not executing certain statements while traditional
tracing techniques are only good at capturing what have

5

Table 1: Computation of data lineage.
si tj def use0 DEF use1 DEF DL(def@si)/DL(si)

(use0) (use1)

40 M [0] DL(40) = φ
50 40 T P φ DL(T@50) = DL(P@50) ∪ DL(40) = {P}
60 40 T 50 M [0] φ DL(60) = DL(T@50) ∪ DL(M [0]@60) ∪ DL(40)

= {P, M [0]}
70 60 P P φ M [0] φ DL(P@70) = DL(P@70) ∪ DL(M [0]@70)

∪DL(60) = {P, M [0]}
41 M [1] DL(41) = φ
51 41 T P φ DL(T@51) = DL(P@51) ∪ DL(41) = {P}
61 41 T 51 M [1] φ DL(61) = DL(T@51) ∪ DL(M [1]@61) ∪ DL(41)

= {P, M [1]}
100 61 P P 70 T 51 DL(P@100) = DL(P@70) ∪ DL(T@51)

∪DL(61) = {P, M [0], M [1]}
42 DL(42) = φ
140 P 100 DL(140) = DL(P@100) = {P, M [0], M [1]}

been executed.

1: OUTPUT = 10;
2: if (INPUT[0] >100) then
3: OUTPUT=INPUT[1]
4: print (OUTPUT)

The nature of this type of dependence is very close to that
of control dependence and thus it is minor in lineage tracing.
This is also confirmed by our experiments, in which we did
not encounter any observable problems caused by missing
this type of dependences. Finally, we want to point out
that there exist expensive and conservative techniques to
compute these invisible dependences [19].

4. IMPLEMENTATION-./01234 56136/ 789:;<=>8:>;?<8:@=>ABCDEFDGDH IJBKILM ;NOPPQRS TBCELMBCH UK VIWDBCJKLUXDCKDWVIWDDYDCK TWWZBCDEFDIUKH UK
Figure 4: Slicing Infrastructure.

We have implemented the lineage tracing prototype on
the tool called Valgrind[2] which was originally designed for
debugging memory errors in a x86 binary. The kernel of val-
grind is a dynamic instrumentation engine which is capable
of adding user specified code into the original binary. There-
fore, when the original code is executed, the corresponding
added code, which is also called instrumented code, is ex-
ecuted as well. While previously the instrumentation has
the mere goal of debugging, the valgrind tool can be easily
extended by replacing the instrumenter.

Figure 4 illustrates the structure of our prototype. The
valgrind engine takes a x86 binary and executes it with the
provided input. The engine calls our instrumenter when it

is about to execute a piece of code. Our instrumenter adds
our own code and return a new piece of code, which is also
called instrumented code, to the engine to execute. The ex-
ecution of the instrumented code will result in calling func-
tions provided in the runtime component, which performs
certain operations based on the semantic of original code in
order to propagate and update the lineage information. The
roBDD component computes and stores lineage sets. More
detail about this component will be covered in the follow-
ing paragraphs. Eventually, the system produces both the
regular output and the corresponding lineage information.
Note that we chose using valgrind because it is robust and
open-source. However, an inherent limitation of valgrind is
its speed. Simply executing a program on valgrind without
any instrumentation may incur 10x slowdown. There are
industry tools such as dbt from intel and valcun from Mi-
crosoft, the overhead of which can be as low as 50 percent.
Unfortunately, those tools are not publicly available.

Next, we focus on two implementation challenges.
The Set Representation. From the earlier discussion,

it is clear that lineage computation involves storing a large
number of sets and performing set operations at each step
of the execution. Therefore, the set representation is critical
to the system performance. A naive link-list based imple-
mentation may end up traversing a large set, which may
contain thousands of elements, for the execution of a single
instruction. Fortunately, recent research on dynamic slicing
[29] reveals that reduced ordered Binary Decision Diagram
(roBDD) [1] can be used to achieve both space and time
efficiency in representing sets. RoBDD benefits us in the
following respects. Each unique lineage set is represented
by a unique integer, which can be considered as an index to
the universal roBDD which stores all lineage sets. In other
words, two sets are represented by the same integer number
if and only if they are identical. The use of roBDD achieves
space efficiency because roBDD is capable of removing dupli-
cate, overlapping, and clustered sets which are exactly the
characteristics of lineage sets. Set operations can be per-
formed efficiently using roBDDs. Most specifically, equiva-
lence tests can be performed in O(1) time [24]. Other binary
operations (e.g., union) on two sets whose roBDD represen-
tations contain n and m roBDD nodes can be performed in

6

time O(n×m) [24]. Note that the number of roBDD nodes
is often much smaller than the number of elements in the
represented set.

Binary Instrumentation. In order to trace lineage, we
have to instrument the binary of the program such that lin-
eage information is updated during program execution. Ac-
cording to Equation 1, we need to update the DL set of the
left hand side variable at every step of the execution and
store it somewhere. In our system, we use shadow space to
store lineage sets. More specifically, if the variable is stored
at a specific stack/heap location, a corresponding shadow
memory (SM) is allocated and used to store the set associ-
ated with the variable. Similarly, we use the shadow register
file (SRF) to store the sets for variables in registers. Both
shadow memory and shadow registers are implemented by
software.

register int sum;
1. A = (int*) malloc (100);
2. SM(A) = malloc in shadow(100);
...
10. sum = sum + A[i];
11. SRF(sum) = SRF(sum) ∪ SM(A)[i];

...

Figure 5: An Example of Instrumentation.

Figure 5 shows an example of instrumentation, the instru-
mented code is in bold. We can see that an original memory
allocation is instrumented with a corresponding memory al-
location in the shadow space. An original operation in the
program is instrumented with a set operation on the corre-
sponding sets which are stored in the shadow space. Even
though the example is at source code level, the real instru-
mentation is performed at binary level – without the need to
access source code.

5. INTEGRATION WITH DBMS
Through the use of our lineage tracing utility, it is now

possible to automatically modify any x86 binary so that
it generates fine-grained lineage information for its output.
Once this output is generated, it is possible to store as part
of the database in order to make it available for querying.

To record the fine-grained lineage, the individual data
items must be uniquely identified. If the input is in a flat file,
the data items in the file can be identified by the offset in the
file and their data length. If the file is in a semi-structured
format such as XML, then the scheme proposed in [11] can
be used. If the data is in a DBMS, the data item can be iden-
tify based on the granularity of the data. The granularity
of lineage could be at table, tuple or attribute level. Table
level lineage is equivalent to coarse-grained lineage, tuple-
and attribute-level lineage are examples of fine-grained lin-
eage.

Our lineage tracing utility provides lineage at attribute
level. The tuple level lineage information can be computed
from the attribute level lineage. The lineage information
can itself be stored in a table called lineage. Table 2 shows
an example of how the lineage information can be stored in
a database.

The id attribute is the primary key of the lineage table.
The pid attribute is the identifier of the process that gener-
ated the data. The level attribute describes the level of the

id pid level from id to id Program id

1 318 1 (3,-,-) (5,-,-) De-Isotope

2 2122 1 (1,-,-) (3,-,-) Data cleaning

3 2122 2 (3, 1,-) (1,101,-)

4 2122 2 (3, 1, -) (1,110,-)

5 2122 3 (3, 1, 6) (1,101,6)

6 2122 3 (3,1, 6) (1,110,6)

7 2122 3 (3,1, 6) (1,110,4)

8 318 3 (5,1,5) (3,1,6)

9 318 3 (5,1,5) (3,5,6)

10 318 3 (5,1,5) (3,15,6)

Table 2: Lineage Table

lineage, 1 is table level, 2 is tuple level and 3 is attribute
level. From id and to id are two ids that describes that
from id depends on to id. The program id attribute store
the id of the program used to generate the derived data. If
the input data is in a database, the from id and to id are
represented as a triplet (table id, tuple id, attribute id), the
first number is the identifier of the table, the second number
is the identifier of the tuple in the table and the third number
identifies the attribute inside a table. For example, (3,-,-)
means Table 3. (3,1, -) means Table 3 Tuple 1 and (5,1,5)
means Table 5 Tuple 1 Attribute 5. If the database provides
the internal table and tuple identifiers, we could use these as
the tuple id. In PostgreSQL, oid and tableoid columns are
created when the table is created. The oid uniquely identi-
fies the tuple in a table and tableoid identifies the table to
which the tuple belongs. The order of attributes in the table
can be used as the attribute id. If a key is defined on the
table, the key can be used in place of the oid. For databases
that do not provide the internal tuple identifier, extra tables
can be implemented to manage the internal tuple identifier.

Once the lineage is in the database, user can query the
lineage. For example, if a user wants to know all the data
that a given data item depends on, the following query will
give her the answer.

select * from Lineage l

where l.from id=(5, 1,5) and

l.level=3;

The result will be the last three rows in Table 2. If there
are several steps in the workflow, then a data dependency
graph can be constructed. For example, in Table 2, (5, 1,5)
depend on (3,1, 6), (3, 5, 6) and (3, 15,6), in turn (3, 1,6)
depends on (1,101,6), (1,110,6) and (1,110,4).

6. EXPERIMENTAL RESULTS
In this section we present an experimental evaluation of

the proposed approach using several real applications. The
necessary pieces of the application have been implemented
on an x86 architecture. We use the LC-MS application as
an example. This application is highly sensitive to incorrect
(even approximate) lineage and obtaining accurate lineage
information is not possible with existing techniques. The
experiments below establish the feasibility of our approach
and also demonstrate that although there is a distinct slow-
down due to lineage tracing, it is not crippling. It should
be noted, as mentioned earlier, that for many applications

7

Y
-A

x
is

X-Axism/z

in
te

n
s
it
y

m/z

in
te

n
s
it
y

Digestion
Isotope

Labeling

L
C

MSDe-Isotope

Cancer

Normal

1:1 mix

Doublet

Figure 6:

the availability of correct lineage information is far more im-
portant that rapid query execution. Even when rapid query
processing is necessary, it is possible to compute answers
quickly without tracing lineage and later provide lineage in-
formation by repeating the query with lineage tracing.

Overview of the experiment To demonstrate the im-
portance of tracing fine-grained lineage, we applied our fine-
grained lineage tracing to the de-isotoping function of LC-
MS and obtained very encouraging results.

There are many computational steps involved in extract-
ing scientific information from the raw LC-MS data. Figure
7 shows a sample work flow of analyzing LC-MS data [28].
First the data is transformed into a common data format
such as the CDF format. After removing the chemical noise,
the potential peptide peak clusters are selected. An itera-
tive algorithm (the de-isotope algorithm shown in Fig ??) is
used to determine the charge of the peptide and resolve the
overlapping peptide peaks.

6.1 Experiment setup
Dataset We use actual mass spectrometer output from a

real experiment as input data for our tests. The biological
samples were acquired from normal mice and mice bearing
breast cancer. These samples were digested into peptides us-
ing trypsin and then chemically labeled. The peptides from
the normal sample were labeled with succinimidyl-(1H3)-
acetate(light acetate); while the peptides from cancer sam-
ple were labeled with succinimidyl-(2H3)-acetate(heavy ac-
etate). The mass difference between light acetate and heavy
acetate is 3Da. The isotope labeled peptides from normal
and cancer samples were mixed in equal parts by volume
and then analyzed using a mass spectrometer.

Software The software used to process the LC-MS data
has been developed in [28]. It is a complicated program
that involves multiple steps and is implemented in C++.
Although the source was available to us, it was not used in
determining the lineage information.

Machine The experiments are conducted on a machine
with 2.40GHz Pentium 4 CPU and 1G memory running
GNU Linux.

Isotope
Fitting

Filter
Noise

Select
Candidate

Clusters

Charge
Fitting

Raw
Peak

Cluster
Multi-
Scan

clusters

Chromatographic
refinement

Single
Scan

clusters

Table of
Peaks and

Differentials

Table of
Component

Peaks

Doublet
detection

Mixed
Doublet
rescue

Calculation of
Differentials

C
ha

rg
e

an
d

is
ot

op
e

m
at

ch
ed

 c
lu

st
er

s

R
es

id
ua

l p
ea

ks

CDF
File

Figure 7: Work flow of LC-MS

6.2 Case study
Figure 7 shows the work flow of LC-MS, which consists of

many steps such as noise filtering, de-isotope etc. The most
critical step is de-isotope as discussed earlier in Section ??..
There are many things that can easily go wrong at this De-
isotope step. For example, the quality of the spectrum may
not be good, so the program may not recognize the iso-
topic peaks correctly. Often, such peaks are important for
the research and one can not afford to repeat the experi-
ment(e.g. if the cancer patient has died). The peaks from
peptides having similar molecular weight and their isotopic
peaks can overlap. When the resulting peaks involving over-
lapping peaks are in doubt, it is desirable to examine what
peaks are actually used to compute the result. In biomarker
discovery, the intensity ratio of light and heavy peptides is
particularly important. When the ratio is not normal, it
could due to the disease(i.e.cancer) or abnormality of the
data. It is important to examine the fine-grained lineage
to rule out the latter and avoid expensive follow-up wet-
bench experiments based upon invalid conclusions. Since
the lineage information is not maintained, this is often done
manually and approximately.

Figure 8 (a) shows a portion of a MS spectrum. The de-
isotope step identifies 4 peaks each with charge 4. These
can form two doublets: (P σ, P υ) and (P τ , Pϕ). However,
it turns out that this result is surprising since it implies
an unusually large peptide1. The availability of fine-grained
lineage generated by our method makes it possible to explore
this further. The lineage for these peaks is as follows:

DL(P σ) ={Pα, P β}

DL(P τ) ={Pα, P γ , P δ, P ε, P ζ , P η, P θ, P ι}

DL(P υ) ={P κ, P λ, Pµ, P ν}

DL(Pϕ) ={P κ, P ξ, P o, P π, P ρ, P ς}
1Since the charges for these peaks are 4, the peptide that
produces the doublet (P σ, P υ) has to contain 3 occurrences
of the amino acid Lysine(K) and the peptide that produces
the doublet (P τ , Pϕ) should contain 4 occurrences of Ly-
sine(K). While the occurrence of 3 or 4 Lysine(K) is possible,
it is very unlikely.

8

[\] ^ _ ` a b c d e f g h i jklkmknk
okpkkplkpmk
pmqk pmqp pmql pmqr pmqm pmqq pmqn pmqstuv

wxyzx{wy| } ~ � ��
���

��������� ������������
���������������
���� ���� ���� ���� ���� ���� ���� ����� �� � �� � ��

(a) (b)

�� �� �� �� �� ���� �� �� �
¡� ¢� £� ¤� ¥� ¦�§¨§©§ª§

«§¬§§¬¨§¬©§
¬©§ ¬©¬ ¬©¨ ¬©® ¬©© ¬© ¬©ª ¬©¯°±²

³́µ¶́·³µ̧ ¹� º�
»¼ ½¾

¿¼ ½¾ À¼ ½¾Á¼ ½¾ÂÃÄ
ÅÆÇÈÆÉÅÇÊ ËÌËÍËËÍÌËÎËË

ÎÌËÏËËÏÌËÐËËÐÌË
ÍÐÌË ÍÐÌÍ ÍÐÌÎ ÍÐÌÏ ÍÐÌÐ ÍÐÌÌ ÍÐÌÑ ÍÐÌÒ

(c) (d)

Figure 8: Doublet Quantification

From this information, we discover that the m/z differ-
ence between the isotopic peaks is approximately 0.33. This
implies that the charge should be 3 instead of 4. Obviously
there is something wrong. After investigation, we found out
that we had inadvertently used an incorrect value for the
mass accuracy when running the de-isotope function. With
the help of the fine-grained lineage we were able to correct
this value and set it to a more appropriate value and reran
the function. The new results are shown in Figure 8 (d), this
time the program correctly assigned 4 peaks with charge 3.
There are two doublets :(P σ′, P υ′) and (P τ ′, Pϕ′). The in-
tensity ratio between P σ′, P υ′ is 1.45:1, while the intensity
ratio between P τ ′, Pϕ′ is 1.57:1. These results are exciting
since the normal ration is 1:1. Thus, these doublets could
potentially be the biomarkers of interest. However, before
investing more money and effort in investigating these po-
tential biomarkers, it is important to have high confidence
that the ratio is correct. The lineage information can once
again help establish the confidence in these ratios. In this
case it turns out that the domain experts were happy with
the lineage. The new lineage information is shown below.

In particular, the likelihood that P σ′

is correct is high since
all six isotopic peaks have been identified.

DL(P σ′) ={P β′

, P γ′ , P δ′ , P ε′ , P ζ′ , P η′ , P θ′}

DL(P τ ′) ={P ι′ , P κ′}

DL(P υ′) ={P ι′ , P λ′

, P o′ , P π′

, P ρ′}

DL(Pϕ′

) ={P ι′ , P λ′

, Pµ′

, P ν′ , P ξ′}

After examining this fine-grained lineage, we are confident

that doublet (P σ′

, P υ′) and doublet (P τ ′ , Pϕ′

) are indeed
potential biomarkers.

6.2.1 Identifying False Positives
The availability of fine-grained lineage can help improve

the quality of the results generated by the de-isotope pro-
cedure. Figure 9 shows the results from an experiment that
provides an example of this aspect. Figure 9 (a) shows a rel-
atively clean raw spectrum. Figure 9 (b) shows the output
of the de-isotope function on this input data. The program
detects 4 peaks, which form two doublets (P θ, P κ) and (P ι,
Pλ). The intensity ratio of doublet (P θ, P κ) is 0.78 and that
of doublet (P ι, Pλ) is 1.45. The intensity ratio of doublet
(P θ, P κ) may be within the experiment variation, while the
doublet (P ι, Pλ) could be a potential biomarker. The fine-
grained lineage reveals that it is very likely that the doublet
(P ι, Pλ) may be a false positive. This is indicated by the
fact that peak Pλ is not an independent peak, but just an
vestige of another peak (P κ) that was produced as a result
of the limitations of the de-isotope procedure. This deter-
mination is not possible unless we are able to determine the
fine-grained lineage. The following is the fine grained lineage
of the two doublets in Figure 9 (b).

DL(P θ) ={Pα}

DL(P ι) ={Pα, P β}

DL(P κ) ={Pα, P β, P δ, P ζ , P η}

DL(Pλ) ={Pα, P β, P δ, P ε}

9

ÓÔÓÓÕÓÓÓÕÔÓÓÖÓÓÓÖÔÓÓ×ÓÓÓ×ÔÓÓ
ØÙØ ØÚÕ ØÚ× ØÚÔ ØÚÚÛÜÝ

ÞßàáßâÞà ã ä å æ ç è é êÓÔÓÓÕÓÓÓÕÔÓÓÖÓÓÓÖÔÓÓ×ÓÓÓ×ÔÓÓ
ØÙØ ØÚÕ ØÚ× ØÚÔ ØÚÚÛÜÝ

ÞßàáßâÞà ã ë
ì

íîïîîðîîîðïîîñîîîñïîîòîîîòïîî
óôó óõð óõò óõï óõõö÷ø

ùúûüúýùû þ ÿ
îïîîðîîîðïîîñîîîñïîîòîîîòïîî
óôó óõð óõò óõï óõõö÷ø

ùúûüúýùû þ
(a) (b)

Figure 9: Program limitation

Pλ =P ε − c0 · (P δ − c′1 · (P β. − c′′0 · Pα)))

The lineage shows that Pλ in Figure 9 (b) has no iso-
topic peaks. This is a strong indication that it is not an
independent peak. The lack of isotopic peaks is especially
surprising since the main peak (P ε) has a high intensity
(in Figure9(a)). The theoretical constant (H [P.I, i]) used to
compute the theoretical isotopic peak intensity is calculated
from sampling a large database of proteins, which guaran-
tees 95% accuracy. This particular peptide may fall in the
other 5%. Thus Pλ actually is a leftover from when the
theoretical intensity has been subtracted from P ε. The fact
that P γ is not in the lineage of P β suggests that there is a
leftover after the theoretical peak has been subtracted(the
red portion of P γ). But the result did not contain a peak
from what is left of P γ), which implies that the intensity of
what is left of P γ is too small and has been filtered out. This
indicates that the theoretical constant (H [P.I, i]) is not cor-
rect and P ι is a leftover from P β. If we add P ι to P θ and Pλ

to P κ, then the intensity ratio between P θ to Pλ becomes
0.83 which is close enough to the normal ratio of 1:1 to be
insignificant. This example illustrates the power of having
fine grained lineage since it could potentially have prevented
fruitless experimentation on this unlikely biomarker. This
result itself was very exciting for our colleagues working on
biomarker discovery.

Figure 10 shows a more complicated situation where the
program was not able to compute the correct answer which
was discovered with the help of our fine-grained lineage. Fig-
ure 10 (b) is the result of de-isotope. Pψ and Pω are both
charge 1 and we infer that Pψ and Pω are a doublet based
on their m/z difference. Pψ is the light peptide from normal
sample and Pω is the heavy peptide that came from cancer
patient. After examining the fine-grained lineage informa-
tion,

DL(Pψ) ={P η, P ι, P λ}

DL(Pω) ={P η, P o, P ρ, P σ}

we have confidence that Pψ and Pω are correct and they
are indeed a doublet. On the other hand, P υ raises some
suspicions because the program determines its charge to be
2. If we can pair Pϕ with P υ, they will form a doublet but

Pϕ is charge 1. Note that the value is in m/z, if P υ is charge
2, its molecular weight to be 2101 and far more than 1053.5
that Pϕ has, therefore P υ and Pϕ can not be a doublet. We
turn to fine-grained lineage for help.

DL(P υ) = {Pα, P β, P γ}

DL(Pϕ) = {P η, P ν}

DL(Pχ) = {P θ, P κ}

DL(Pψ) = {P η, P ι, P λ}

P υ = Pα + P β + P γ

P υ is determined to be charge 2 because program included
P β in its lineage. In fact, the charge of the P υcould be 1 or
2. If the charge of P υ is 1, as shown in Figure 10 (c), PΩ will
be assigned charge 1 and appear in the result. P υ and Pψ

could pair up and PΩ and Pχ could pair up. We will have
three doublets. On the other hand, if the charge of P υ is 2,
as shown in Figure 10 (d), P υ and Pχ pair up. Then we will
have two doublets. The program use heuristics to handle the
situation when peptides and their isotopic peaks overlaps.
In this case, the heuristics fail to produce the correct result.
By checking the lineage, we discover the limitations of the
heuristics and the other two alternative interpretations of
the raw MS data as shown in figure 10 (c) and (d).

6.3 Performance

benchmark original valgrind tracing tracing/

(sec.) (sec.) (sec.) valgrind

auto-class 0.104 2.92 93.6 32.0

image processing 0.8 5.15 166.3 32.3

lemur 0.85 12.1 302.8 25.0

rainbow 2.22 19.6 286.6 14.6

apriori 2.06 20.7 257.4 12.4

deisotope 9.2 85.8 646.6 7.5

cluto 1.67 42 1670 39.7

Table 3: Runtime

We selected seven benchmark programs to evaluate the
time and space overhead of the lineage tracing technique.

10

� � � � � � � � � 	
 � � � � � � � ������������
�����������
���� ���� ���� ���� ���� ������

!"#$"%!#& ' () * (+, (+- (+ . (+
/0/1/2/3/4/
5/6/7/8/0//
0/40 0/42 0/44 0/46 0/48 0/509:;

<=>?=@<>A
(a) (b)

B CD E CDFCDG CD H CD
IJIKILIMINI

OIPIQIRIJII
JINJ JINL JINN JINP JINR JIOJSTU

VWXYWZVX[\ CD] ^_ ` ^_ a ^b c ^b
dedfdgdhdid

jdkdldmdedd
edie edig edii edik edim edjenop

qrstruqsv
(c) (d)

Figure 10:

Auto-class [3] is an unsupervised Bayesian classification sys-
tem that seeks a maximum posterior probability classifica-
tion. It takes a database of attribute vectors (cases) as input
and produces a set of classes and the partial class mem-
berships as output. The image processing program takes
a cryo-EM image in tiff format and applies Fourier trans-
formation [17] to the image. The low frequency noise is
removed and then another Fourier transformation is per-
formed to covert the image back to a visible form. We used
a 512x512 tiff image as input. Lemur [4] is a toolkit designed
to facilitate research in language modeling and information
retrieval (IR), where IR is broadly interpreted as ad hoc and
distributed retrieval, structured queries, cross-language IR,
summarization, filtering, categorization, and so on. We se-
lected the program RelEval from the toolkit to conduct the
experiment. This program makes use of the toolkit library
and performs 32 feedback queries with pre-constructed in-
dex files. Rainbow[23] is a program that performs statistical
text classification. It takes documents as input and produces
a model containing statistics which can be used to classify
documents. The input we used contains 1000 files, each with
the size of a few Kbytes. Apriori [6] is a data mining tool
which is able to mine association rules. We used a 4 Mbytes
input file. De-isotope [28] is the program introduced in early
sections. Cluto [20] is a software package for clustering low-
and high-dimensional datasets and for analyzing the charac-
teristics of the various clusters. We used one of the provided
input file (332K).

In the first experiment, we studied the runtime overhead
of the technique. The results are presented in Table 3. The
original execution times are given in the second column.

The column labeled with valgrind presents the overhead
of the valgrind instrument engine. In other words, we ran
the programs on the engine without tracing and collected
the execution times. The column with label tracing shows
the times with lineage tracing on. The last column presents
the slow down factor between runs with tracing and with-
out tracing. We chose to compare the execution times be-
tween valgrind and tracing instead of between tracing

and original because valgrind itself often entails x10 slow-
down, which undesirably skews the real slow down incurred
by the lineage tracing technique.

From the results in the Table, we make the following ob-
servations.

• The slow down factors range between 7.5-39.8, which
we consider as being acceptable in our application do-
main. The overhead can be easily paid off by the highly
valuable lineage information we gain as demonstrated
in our case studies.

• The overhead is closely related to the characteristics
of a program. For example, in classification type of
programs such as Cluto and auto-clsss, individual
output values are usually related to a large set of in-
put values, resulting in slow set operations that are
involved in lineage computation. Deisotope demon-
strates the other extreme, in which small lineage sets
result in low runtime overhead.

• Part of the runtime overhead is caused by the valgrind
engine. As mentioned earlier, replacing valgrind with
a more efficient industry-strength instrumentation en-
gine will greatly reduce the overall runtime overhead.

11

benchmark orig.(MB) bdd (MB) tracing (MB)

auto-class 1.8 1.9 2.2

image processing 16.1 198 16

lemur 14 38.4 9.7

rainbow 6.8 50.8 15.3

apriori 4.1 0.19 3.6

deisotope 125 66.2 17.4

cluto 3 5.2 2.2

Table 4: Memory

Table 4 presents the memory overhead. The original mem-
ory usage is presented in the column with label orig. The
memory overhead stems from two components: the bdd com-
ponent which stores sets and the tracing component which
propagates lineage sets. The memory consumed by the bdd

component is mainly decided by the characteristics of the
lineage sets. If the sets are repetitive, highly overlapped
,or sparse such as in apriori, they can be efficiently repre-
sented by roBDDs, resulting in less memory consumption.
The tracing part is mainly decided by the memory footprint
of the original execution. As we can observe from Table 4,
the memory usages are mostly comparable, which suggests
that memory overhead is not the dominant factor compared
to runtime overhead.

7. RELATED WORK
Provenance or lineage has been extensively studied in the

context of scientific computation such as datasets on the
grid. One form of the provenance is workflow or coarse-
grained provenance. In scientific computation, coarse-grained
(i.e., table or file level) lineage is sufficient because typically
all elements in the same file or table have undergone the
same computational process. Also the lineage is used to
trace the source of abnormality in the data or for the data
dissemination (i.e., a description of the derivation process is
disseminated along with the base data). [10] surveys the use
of workflows in scientific computation.

In scientific databases, for example biological databases,
keeping the coarse-grained lineage is insufficient since not
all data values are processed similarly. There is a great
need for DBMS support for fine-grained lineage tracing. Al-
though the need is urgent, it remains an unsolved problem.
Recently, there has been an increasing interest in this area.
Cui et al. [12, 13, 14] propose fine-grained tracing in the con-
text of data warehousing where all data is produced using
relational database queries. The notion of reverse queries
that are automatically generated is presented in order to
produce all tuples that participated in the computation of
a given query. Woodruff and Stonebaker [27] support fine-
grained lineage using inverse or weak inverse functions. That
is, the dependence of a given result on base data is captured
using a mathematical function. They adopt a lazy approach
to compute fine-grained lineage upon request from the user.
It is not clear if such functions can be identified for a given
application. The identification task is highly non-trivial and
makes the approach impractical.

Buneman et al. [11] classified lineage into the why lineage,
which specifies why the data is derived, and the where lin-
eage, which specifies where the data is copied from. Bhagwat
et al.[9] proposed three schemes to propagate annotations
attached to attributes in relational data. The where lineage

is a unique address recorded in the annotation, along with
other non-lineage information. As it only records where the
data is copied from, where lineage is not sufficient for scien-
tific databases where data go through complex processing.
The intuition behind where lineage is rooted in the classi-
cal view maintenance problem. Another limitation of these
approaches is that the lineage information is stored as un-
structured text which makes it very difficult to analyze.

Dynamic slicing [21] is a debugging technique that cap-
tures the executed statements that are involved in compu-
tation of a wrong value. Recent research has shown that
dynamic slicing is quite effective in locating runtime soft-
ware errors [30] and dynamic slices can be efficiently com-
puted [29]. The data lineage tracing technique in this pa-
per is based upon the concepts from dynamic slicing such
as data/control dependences. Certain implementation tech-
niques such as roBDD are also reused. The distinction be-
tween dynamic slicing and data lineage tracing lies in the
information that is traced. In dynamic slicing, a set of exe-
cuted statements are traced in order to assist programmers
in debugging. In contrast, lineage computation traces the
set of input that is relevant to a particular output value.
A lineage set is usually much smaller than a dynamic slice,
which leads to a much more efficient implementation. Fur-
thermore, while control dependence is very crucial in dy-
namic slicing, it is less important in lineage tracing because
data dependence is dominant.

Overall we see that while tracing of fine-grained lineage
and storage of multi-version data is critical to supporting
meaningful tracing of scientific databases, current solutions
fall short of these requirements. To the best of our knowl-
edge, ours is the first work to propose such a system and the
only one that can support the types of queries discussed in
Section 6 which are of direct relevance to scientists.

8. CONCLUSIONS

9. REFERENCES
[1] Buddy, a binary decision diagram package. Department of

Information Technology, Technical University of Denmark.
[2] http://valgrind.org.
[3] http://www.cs.purdue.edu/homes/mgelfeky/dq/.
[4] http://www.lemurproject.org/.
[5] Hiralal Agrawal and Joseph R. Horgan. Dynamic program

slicing. In PLDI ’90: Proceedings of the ACM SIGPLAN
1990 Conference on Programming Language Design and
Implementation, pages 246–256, White Plains, New York,
United States, 1990.

[6] R. Agrawal, T. Imielinski, and A. Swami. Mining
association rules between sets of items in large databases.
In SIGMOD, pages 207–216, 1993.

[7] Gustavo Alonso and Claus Hagen. Geo-opera: Workflow
concepts for spatial processes. In Symposium on Large
Spatial Databases, pages 238–258, 1997.

[8] Arpad Beszedes, Tamas Gergely, Zsolt Mihaly Szabo, Janos
Csirik, and Tibor Gyimothy. Dynamic slicing method for
maintenance of large c programs. In CSMR ’01:
Proceedings of the Fifth European Conference on Software
Maintenance and Reengineering, pages 105–113, Lisbon,
Portugal, 2001.

[9] D. Bhagwat, L. Chiticariu, W. C. Tan, and
G. Vijayvargiya. An annotation management system for
relational databases. In VLDB, pages 900–911, 2004.

[10] R. Bose and J. Frew. Lineage retrieval for scientific data
processing: a survey. ACM Comput. Surv., 37(1):1–28,
2005.

12

[11] P. Buneman, S. Khanna, and W. C. Tan. Why and where:
A characterization of data provenance. In ICDT, pages
316–330, 2001.

[12] Y. Cui and J. Widom. Lineage tracing in a data
warehousing system. In ICDE, pages 683–684, 2000.

[13] Y. Cui and J. Widom. Lineage tracing for general data
warehouse transformations. VLDB J., 12(1):41–58, 2003.

[14] Y. Cui, J. Widom, and J. L. Wiener. Tracing the lineage of
view data in a warehousing environment. ACM Trans.
Database Syst., 25(2):179–227, 2000.

[15] I. Foster, J. Vockler, M. Wilde, and Y. Zhao. The virtual
data grid: A new model and architecture for data-intensive
collaboration. In CIDR, 2003.

[16] I. T. Foster, J. S. Vöckler, M. Wilde, and Y. Zhao.
Chimera: A virtual data system for representing, querying,
and automating data derivation. In SSDBM, pages 37–46,
2002.

[17] M. Frigo and S. G. Johnson. The design and
implementation of FFTW3. Proceedings of the IEEE,
93(2):216–231, 2005. special issue on ”Program Generation,
Optimization, and Platform Adaptation”.

[18] P. Groth, S. Miles, W. Fang, S. C. Wong, K. P. Zauner,
and L. Moreau. Recording and using provenance in a
protein compressibility experiment. In Proceedings of the
14th IEEE International Symposium on High Performance
Distributed Computing (HPDC’05), July 2005.

[19] Tibor Gyimothy, Arpad Beszedes, and Istan Forgacs. An
efficient relevant slicing method for debugging. In
ESEC/FSE-7: Proceedings of the 7th European Software
Engineering Conference held jointly with the 7th ACM
SIGSOFT International Symposium on Foundations of
Software Engineering, pages 303–321, Toulouse, France,
1999.

[20] George Karypis. Cluto - a clustering toolkit. Technical
Report 02-017, Computer Science and Engineering,
University of Minnesota, April 2002.

[21] Bogdan Korel and J. Laski. Dynamic program slicing.
Information Processing Letters, 29(3):155–163, 1988.

[22] A. P. Marathe. Tracing lineage of array data. J. Intell. Inf.
Syst., 17(2-3):193–214, 2001.

[23] Andrew Kachites McCallum. Bow: A toolkit for statistical
language modeling, text retrieval, classification and
clustering. http://www.cs.cmu.edu/ mccallum/bow, 1996.

[24] C. Meinel and T. Theobald. Algorithms and data
structures in vlsi design, 1998. Springer.

[25] S. Miles, P. Groth, M. Branco, and L. Moreau. The
requirements of recording and using provenance in e-science
experiments. Journal of Grid Computing, 2006.

[26] R. D. Stevens, A. J. Robinson, and C. A. Goble. mygrid:
personalised bioinformatics on the information grid.
Bioinformatics, 19(Suppl 1):i302–i304, 2003.

[27] A. Woodruff and M. Stonebraker. Supporting fine-grained
data lineage in a database visualization environment. In
ICDE, pages 91–102, 1997.

[28] X. Zhang, W. Hines, J. Adamec, J. Asara, S. Naylor, and
F. E. Regnier. An automated method for the analysis of
stable isotope labeling data for proteomics. J. Am. Soc.
Mass Spectrom, 16:1181–1191, 2005.

[29] Xiangyu Zhang, Rajiv Gupta, and Youtao Zhang. Efficient
forward computation of dynamic slices using reduced
ordered binary decision diagrams. In ICSE ’04: Proceedings
of the International Conference on Software Engineering,
pages 502–511, Washington, DC, USA, 2004. IEEE
Computer Society.

[30] Xiangyu Zhang, Haifeng He, Neelam Gupta, and Rajiv
Gupta. Experimental evaluation of using dynamic slices for
fault location. In AADEBUG’05: Proceedings of the
International Symposium on Automated Analysis-driven
Debugging, pages 33–42, Monterey, California, USA, 2005.

[31] W. Zhu, X. Wang, Y. Ma, M. Rao, and J. S. Glimm,
J.and Kovach. Detection of cancer-specific markers amid

massive mass spectral data. Proc Natl Acad Sci U S A,
100:14666–14671, 2003.

13

