
SATURN: A Scalable Framework for Error
Detection Using Boolean Satisfiability

YICHEN XIE and ALEX AIKEN

Stanford University

This article presents SATURN, a general framework for building precise and scalable static error
detection systems. SATURN exploits recent advances in Boolean satisfiability (SAT) solvers and is
path sensitive, precise down to the bit level, and models pointers and heap data. Our approach
is also highly scalable, which we achieve using two techniques. First, for each program function,
several optimizations compress the size of the Boolean formulas that model the control flow and
data flow and the heap locations accessed by a function. Second, summaries in the spirit of type
signatures are computed for each function, allowing interprocedural analysis without a dramatic
increase in the size of the Boolean constraints to be solved.

We have experimentally validated our approach by conducting two case studies involving a
Linux lock checker and a memory leak checker. Results from the experiments show that our system
scales well, parallelizes well, and finds more errors with fewer false positives than previous static
error detection systems.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verifica-
tion; D.2.3 [Software Engineering]: Coding Tools and Techniques; D.2.5 [Software Engineer-
ing]: Testing and Debugging

General Terms: Algorithms, Experimentation, Languages, Verification

Additional Key Words and Phrases: Program analysis, error detection, Boolean satisfiability

ACM Reference Format:
Xie, Y. and Aiken, A. 2007. SATURN: A scalable framework for error detection using boolean satisfi-
ability. ACM Trans. Program. Lang. Syst. 29, 3, Article 16 (May 2007), 43 pages. DOI = 10.1145/
1232420.1232423 http://doi.acm. org/10.1145/1232420.1232423

This research is supported by National Science Foundation grant CCF-1234567.
This article combines techniques and algorithms presented in two previous conference articles by
the authors, published, respectively, in Proceedings of the 32nd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL 2005) and Proceedings of the 5th Joint
Meeting of the European Software Engineering Conference and ACM SIGSOFT Symposium on the
Foundations of Software Engineering (FSE).
Authors’ Address: Computer Science Department, Stanford University, Stanford, CA; email: {yxie,
aiken}@cs.stanford.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 0164-0925/2007/05-ART16 $5.00 DOI 10.1145/1232420.1232423 http://doi.acm.org/
10.1145/1232420.1232423

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

2 • Y. Xie and A. Aiken

1. INTRODUCTION

This article presents SATURN,1 a software error-detection framework based on
exploiting recent advances in solving Boolean satisfiability (SAT) constraints.

At a high level, SATURN works by transforming commonly used program con-
structs into Boolean constraints and then using a SAT solver to infer and check
program properties. Compared to previous error detection tools based on data
flow analysis or abstract interpretation, our approach has the following advan-
tages:

(1) Precision. SATURN’s modeling of loop-free code is faithful down to the bit
level, and is therefore considerably more precise than most abstraction-
based approaches where immediate information loss occurs at abstraction
time. In the context of error detection, the extra precision translates into
added analysis power with less confusion, which we demonstrate by finding
many more errors with significantly fewer false positives than previous
approaches.

(2) Flexibility. Traditional techniques rely on a combination of carefully chosen
abstractions to focus on a class of properties effectively. SATURN, by exploit-
ing the expressive power of Boolean constraints, uniformly models many
language features and can therefore serve as a general framework for a
wider range of analyses. We demonstrate the flexibility of our approach by
encoding two property checkers in SATURN that traditionally require distinct
sets of techniques.

However, SAT-solving is NP-complete, and therefore incurs a worst-case ex-
ponential time cost. Since SATURN aims at checking large programs with mil-
lions of lines of code, we employ two techniques to make our approach scale.
Intraprocedurally, our encoding of program constructs as Boolean formulas is
substantially more compact than previous approaches (Section 2). While we
model each bit path sensitively, as in Xie and Chou [2002], Kroening et al.
[2003], and Clarke et al. [2004a], several techniques achieve a substantial re-
duction in the size of the SAT formulas SATURN must solve (Section 3).

Interprocedurally, SATURN computes a concise summary, similar to a type
signature, for each analyzed function. The summary-based approach enables
SATURN to analyze much larger programs than previous error checking systems
based on SAT, and in fact, the scaling behavior of SATURN is at least competitive
with, if not better than, other non-SAT approaches to bug finding and verifi-
cation. In addition, SATURN is able to infer and apply summaries that encode a
form of interprocedural path sensitivity, lending itself well to checking complex
program behaviors (see Section 5.2 for an example).

Summary-based interprocedural analysis also enables parallelization.
SATURN processes each function separately and the analysis can be carried out
in parallel, subject only to the ordering dependencies of the function call graph.
In Section 6.8, we describe a simple distributed architecture that harnesses the
processing power of a heterogeneous cluster of roughly 80 unloaded CPUs. Our

1SATisfiability-based failURe aNalysis.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

SATURN: Scalable Framework for Error Detection Using Boolean Satisfiability • 3

implementation dramatically reduces the running time of the leak checker on
the Linux kernel (5MLOC) from over 23 h to 50 min.

We present experimental results to validate our approach (Sections 5 and 6).
Section 5 describes the encoding of temporal safety properties in SATURN and
presents an interprocedural analysis that automatically infers and checks such
properties. We show one such specification in detail: checking that a single
thread correctly manages locks—that is, does not perform two lock or unlock
operations in a row on any lock (Section 5.5). Section 6 gives a context- and path-
sensitive escape analysis of dynamically allocated objects. Both checkers find
more errors than previous approaches with significantly fewer false positives.

One thing that SATURN is not, at least in its current form, is a verification
framework. Tools such as CQual [Foster et al. 2002] are capable of verification
(proving the absence of bugs, or at least as close as one can reasonably come
to that goal for C programs). In this article, SATURN is used as a bug finding
framework in the spirit of MC [Hallem et al. 2002], which means it is designed
to find as many bugs as possible with a low false positive rate, potentially at
the cost of missing some bugs.

The rest of the article is organized as follows: Section 2 presents the SATURN

language and its encoding into Boolean constraints. Section 3 discusses a num-
ber of key improvements to the encoding that enable efficient checking of open
programs. Section 4 gives a brief outline of how we use the SATURN framework
to build modular checkers for software. Sections 5 and 6 are two case studies
where we present the details of the design and implementation of two property
checkers. We describe sources of unsoundness for both checkers in Section 7.
Related work is discussed in Section 8, and we conclude with Section 9.

2. THE SATURN FRAMEWORK

In this section, we present a low-level programming language and its transla-
tion into our error detection framework. Because our implementation targets C
programs, our language models integers, structures, and pointers, and handles
the arbitrary control flow2 found in C. We begin with a language and encod-
ing that handles only integer program values (Section 2.1) and gradually add
features until we have presented the entire framework: intraprocedural control
flow including loops (Section 2.2), structures (Section 2.3), pointers (Section 2.4),
and finally attributes (Section 2.5). In Section 3 we consider some techniques
that substantially improve the performance of our encoding.

2.1 Modeling Integers

Figure 1 presents a grammar for a simple imperative language with integers.
The parenthesized symbol on the left-hand side of each production is a variable
ranging over elements of its syntactic category.

The language is statically and explicitly typed; the type rules are completely
standard and for the most part we elide types for brevity. There are two base

2The current implementation of Saturn handles reducible flow-graphs, which are by far the most
common form even in C code. Irreducible flow-graphs can be converted to reducible ones by node-
splitting [Aho et al. 1986].

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

4 • Y. Xie and A. Aiken

Fig. 1. Modeling integers in SATURN.

types: Booleans (bool) and n-bit signed or unsigned integers (int). Note the base
types are syntactically separated in the language as expressions, which are
integer-valued, and conditions, which are Boolean-valued. We use τ to range
solely over different types of integer values.

The integer expressions include constants (const), integer variables (v),
unary and binary operations, integer casts, and lifting from conditionals. We
give the list of operators that we model precisely using boolean formulas (e.g.,
+, −, bitwise-and, etc.); for other operators (e.g., division, remainder, etc.), we
make approximations. We use a special expression unknown to model unknown
values (e.g., in the environment) and the result of operations that we do not
model precisely.

Objects in the scalar language are n-bit signed or unsigned integers, where
n and the signedness are determined by the type τ . As shown at the bottom
of Figure 1, a separate Boolean expression models each bit of an integer and
thus tracking the width is important for our encoding. The signed/unsigned
distinction is needed to precisely model low-level type casts, bit shift operations,
and arithmetic operations.

The class of objects (Obj) ultimately includes variables, pointers, and struc-
tures, which encompass all the entities that can be the target of an assignment.
For the moment we describe only integer variables.

The encoding for a representative selection of constructs is shown in Figure 2;
omitted cases introduce no new ideas. The rules for expressions have the
form

ψ � e E⇒ β,

which means that, under the environment ψ mapping variables to vectors of
Boolean expressions (one for each bit in the variable’s type), the expression e is
encoded as a vector of boolean expressions β.

The encoding scheme for conditionals

ψ � c C⇒ b

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

SATURN: Scalable Framework for Error Detection Using Boolean Satisfiability • 5

Fig. 2. The translation of integers.

is similar, except the target is a single Boolean expression b modeling the con-
dition. The most interesting rules are for statements:

G, ψ � s S⇒ 〈G ′; ψ ′〉
means that under guard G and variable environment ψ the statement s results
in a new guard/environment pair 〈G ′; ψ ′〉. In our system, guards express path
sensitivity; every statement is guarded by a Boolean expression expressing the
conditions under which that statement may execute. Most statements do not
affect guards (the exception is assume); the important operations on guards are
discussed in Section 2.2. Without going into details, we explain the conceptual
meaning of a guard using the following example:

if (c) {s1;s2} else s3;

s4;

Statements s1 and s2 are executed if c is true, so the guard for both statements is
the Boolean encoding of c. Similarly, s3’s guard is the encoding of ¬c. Statement
s4 is reached from both branches of the if statement and therefore its guard is
the disjunction of the guards from the two branches: (c ∨ ¬c) = true.

A key statement in our language is assert, which we use to express points
at which satisfiability queries must be checked. A statement assert(c) checks
that ¬c cannot be true at that program point by computing the satisfiability of
G∧¬b, where G is the guard of the assert and b is the encoding of the condition c.

The overall effect of the encoding is to perform symbolic execution, cast in
terms of Boolean expressions. Each statement transforms an environment into

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

6 • Y. Xie and A. Aiken

Fig. 3. Merging control-flow paths.

a new environment (and guard) that captures the effect of the statement. If
all bits in the initial environment ψ0 are concrete 0s and 1s and there are no
unknown expressions in the program being analyzed, then in fact this encod-
ing is straightforward interpretation and all modeled bits can themselves be
reduced to 0s and 1s. However, bits may also be Boolean variables (unknowns).
Thus each bit b represented in our encoding may be an arbitrary Boolean ex-
pression over such variables.

2.2 Control Flow

We represent function bodies as control-flow graphs, which we define infor-
mally. For the purpose of this section, we assume loop-free programs. Loops are
handled in a variety of ways which are described at the end of this section. Each
statement s is a node in the control-flow graph, and each edge (s, s′) represents
an unconditional transfer of control from s to s′. If a statement has multiple
successors, then execution may be transferred to any successor nondetermin-
istically.

To model the deterministic semantics of conventional programs, we require
that if a node has multiple successors, then each successor is an assume state-
ment, and, furthermore, that the conditions in those assumes are mutually ex-
clusive and that their disjunction is equivalent to true. Thus a conditional
branch with predicate p is modeled by a statement with two successors: one
successor assumes p (the true branch) and the other assumes ¬p (the false
branch).

The other important issue is assigning a guard and environment to each
statement s. Assume s has an ordered list of predecessors si.3 The encoding of si

produces an environment ψi and guard Gi. The initial guard and environment
for s is then a combination of the final guards and environments of its prede-
cessors. The desired guard is simply the disjunction of the predecessor guards;
as we may arrive at s from any of the predecessors, s may be executed if any
predecessor’s guard is true. Note that due to the mutual exclusion assumption
for branch conditions, at most one predecessor’s guard can be true at a time.
The desired environment is more complex, as we wish to preserve the path sen-
sitivity of our analysis down to the bit level. Thus, the value of each bit of each
variable in the environment for each predecessor si of s must include the guard
for si as well. This motivates the function MergeScalar in Figure 3, which im-
plements a multiplexer circuit that selects the appropriate bits from the input
environments (ψi(v)) based on the predecessor guards (Gi). Finally, MergeEnv

3We use the notation X i as a shorthand for a vector of similar entities: X 1 · · · X n.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

SATURN: Scalable Framework for Error Detection Using Boolean Satisfiability • 7

Fig. 4. The translation of structures.

combines the two components together to define the initial environment and
guard for s.

Preserving path sensitivity for every modeled bit is clearly expensive and
it is easy to construct realistic examples where the number of modeled
paths is exponential in the size of the control-flow graph. In Section 3.3
we present an optimization that enables us to make this approach work in
practice.

Finally, every control-flow graph has a distinguished entry statement with
no predecessors. The guard for this initial statement is true. We postpone dis-
cussion of the initial environment ψ0 to Section 3.2, where we describe the lazy
modeling of the external execution environment.

As mentioned in Section 1, the two checkers described in this article treat
loops unsoundly. One technique we adopt is to simply unroll a loop a fixed num-
ber of times and remove backedges from the control-flow graph. Thus, every
function body is represented by an acyclic control-flow graph. Another trans-
formation is called havoc’ing, which we discuss in detail in the context of the
memory leak checker (Section 6).

While our handling of loops is unsound, we have found it to be useful in
practice (see Section 5.6 and 6.9).

2.3 Structures

The program syntax and the encoding of structures is given in Figure 4. A
structure is a data type with named fields, which we represent as a set of
(field name, object) pairs. We extend the syntax of types (respectively objects)
with sets of types (respectively objects) labeled by field names, and similarly the
representation of a struct in C is the representation of the fields also labeled
by the field names. The shorthand notation o. fi selects the object of field fi

from object o.
The function RecAssign does the work of structure assignment. As expected,

assignment of structures is defined in terms of assignments of its fields. Because

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

8 • Y. Xie and A. Aiken

structures may themselves be fields of structures, RecAssign is recursively
defined.

2.4 Pointers

The final and technically most involved construct in our encoding is pointers.
The discussion is divided into three parts: in Section 2.4.1, we introduce a
concept called Guarded Location Set (GLS) to capture path-sensitive points-to
information. We extend the representation with type casts and polymorphic
locations in Section 2.4.2 and discuss the rules in detail in Section 2.4.3.

2.4.1 Guarded Location Sets. Pointers in SATURN are modeled with
Guarded Location Sets (GLSs). A GLS represents the set of locations a pointer
could reference at a particular program point. To maintain path sensitivity,
a Boolean guard is associated with each location in the GLS and represents
the condition under which the points-to relationship holds. We write a GLS as
{| (G0, l0), . . . , (Gn, ln) |}. Special braces ({| |}) distinguish GLSs from other sets.
We illustrate GLSs with an example, but delay a technical discussion until
Section 2.4.3.

1 if (c) p = &x; /* p : {| (true, x) |} */

2 else p = &y; /* p : {| (true, y) |} */

3 *p = 3; /* p : {| (c, x), (¬c, y) |} */

In the true branch, the GLS for p is {| (true, x) |}, meaning p always points to
x. Similarly, ψ(p) evaluates to {| (true, y) |} in the false branch. At the merge
point, branch guards are added to the respective GLSs and the representation
for p becomes {| (c, x), (¬c, y) |}. Finally, the store at line 3 makes a parallel
assignment to x and y under their respective guards (i.e., if (c) x = 3; else y = 3;).

To simplify technical discussion, we assume locations in a GLS occur at
most once—redundant entries (G, l) and (G ′, l) are merged into (G ∨ G ′, l). Also,
we assume the first location l0 is always null (we use the false guard for G0 if
necessary).

2.4.2 Polymorphic Locations and Type Casts. The GLS representation
models pointers to concrete objects with a single known type. However, it is
common for heap objects to go through multiple types in C. For example, in the
following code,

1 void *malloc(int size);

2 p = (int *)malloc(len);

3 q = (char *)p;

4 return q;

the memory block allocated at line 2 goes through three different types. These
types all have different representations (i.e., different numbers of bits) and
thus need to be modeled separately, but the analysis must understand that they
refer to the same location. We need to model (1) the polymorphic pointer type
void*, and (2) cast operations to and from void*. Casts between incompatible
pointer types (e.g., from int* to char*) can then be modeled via an intermediate
cast to void*.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

SATURN: Scalable Framework for Error Detection Using Boolean Satisfiability • 9

Fig. 5. Pointers and guarded location sets.

We solve this problem by introducing addresses (Addr), which are symbolic
identifiers associated with each unique memory location. We use a mapping
AddrOf : Obj → Addr to record the addresses of objects. Objects of different
types share the same address if they start at the same memory location. In
the example above, p and q point to different objects, say o1 of type int and
o2 of type char, and o1 and o2 must share the same address (i.e., AddrOf(o1) =
AddrOf(o2)). Furthermore, an address may have no associated concrete objects
if it is referenced only by a pointer of type void* and never dereferenced at any
other types. In other words, the inverse mapping AddrOf−1 may not be defined
for some addresses. Using guarded location sets and addresses, we can now
describe the encoding of pointers in detail.

2.4.3 Encoding Rules. Figures 5 and 6 define the language and encoding
rules for pointers. Locations in the GLS can be (1) null, (2) a concrete object o, or
(3) an address σ of a polymorphic pointer (void*). We maintain a global mapping
AddrOf from objects to their addresses and use it in the cast rules to convert
pointers to and from void*.

The rules work as follows. Taking the address of an object (get-addr-
{obj,mem}) constructs a GLS with a single entry—the object itself with guard
true. The newloc rule creates a fresh object or address depending on the type
of the target pointer and binds the GLS containing that location to the target
pointer in the environment ψ . Notice that SATURN does not have a primitive

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

10 • Y. Xie and A. Aiken

Fig. 6. Control-flow merges with pointers.

modeling explicit deallocation. Type casts to void* lift entries in the GLS to
their addresses using the AddrOf mapping, and casts from void* find the con-
crete object of the appropriate type in the AddrOf mapping to replace addresses
in the GLS. Finally, the store rule models indirect assignment through a pointer,
possibly involving field dereferences, by combining the results for each possible
location the pointer could point to. The pointer is assumed to be nonnull by
adding ¬G0 to the current guard (recall G0 is the guard of null in every GLS).
Notice that the store rule requires concrete locations in the GLS as one cannot
assign through a pointer of type void*. Loading from a pointer is similar.

2.5 Attributes

Another feature in SATURN is attributes, which are simply annotations associ-
ated with nonnull SATURN locations (i.e., structs, integer variables, pointers, and
addresses). We use the syntax o#attrname to denote the attrname attribute of
object o.

The definition and encoding of attributes is similar to struct fields except
that it does not require predeclaration, and attributes can be added during the
analysis as needed. Similar to struct fields, attributes can also be accessed
indirectly through pointers.

We omit the formal definition and encoding rules because of their similarity
to field accesses. Instead, we use an example to illustrate attribute usage in
analysis.

1 (*p)#escaped <− true;

2 q <− (void *) p;

3 assert ((*q)#escaped == (*p)#escaped);

In the example above, we use the store statement at line 1 to model the fact
that the location pointed to by p has escaped. The advantage of using attributes
here is that they are attached to addresses and preserved through pointer
casts—thus the assertion at line 3 holds.

3. DISCUSSION AND IMPROVEMENTS

In this section, we discuss how our encoding reduces the size of satisfiability
queries by achieving a form of program slicing (Section 3.1). We also discuss
two improvements to our approach. The first (Section 3.2) concerns how we
treat inputs of unknown shape to functions and the second (Section 3.3) is an
optimization that greatly reduces the cost of guards.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

SATURN: Scalable Framework for Error Detection Using Boolean Satisfiability • 11

3.1 Automatic Slicing

Program slicing is a technique to simplify a program by removing the parts
that are irrelevant to the property of concern. Slicing is commonly done by
computing control and data dependencies and preserving only the statements
that the property depends on. We show that our encoding automatically slices
a program and only uses clauses that the current SAT query requires.

Consider the following program snippet:

if (x) y = a;

else y = b;

z = /* complex computation here */;

if (z) . . . else . . .;

assert(y < 5);

The computation of z is irrelevant to the property we are checking (y < 5).
The variable y is data dependent on a and b and control dependent on x. Using
the encoding rules in Section 2, we see that the encoding of y < 5 only involves
the bits in x, a, and b, but not z, because the assign rule accounts for the data
dependencies and the merge rule pulls in the control dependency. No extra
constraints are included. In large programs, properties of interest often depend
on a small portion of the code analyzed; therefore this design helps keep the
size of SAT queries under control.

3.2 Lazy Construction of the Environment

A standard problem in modular program analysis systems is the modeling of
the external environment. In particular, we need a method to model and track
data structures used, but not created, by the code fragment being analyzed.

There is no consensus on the best solution to this problem. To the best of
our knowledge, SLAM [Ball and Rajamani 2001] and Blast [Henzinger et al.
2003] require manual construction of the environment. For example, to an-
alyze a module that manipulates a linked list of locks defined elsewhere,
these systems likely require a harness that populates an input list with locks.
The problem is reduced as the target code bases (e.g., Windows drivers in the
case of SLAM) can often share a carefully crafted harness (e.g., a model for
the Windows kernel) [Ball et al. 2004]. Nevertheless, the need to “close” the
environment represents a substantial manual effort in the deployment of such
systems.

Because we achieve scalability by computing function summaries, we must
analyze a function independent of its calling context and still model its ar-
guments. Our solution is similar in spirit to the lazy initialization algorithm
described in Khurshid et al. [2003] and, conceptually, to lazy evaluation in lan-
guages such as Haskell. Recall in Section 2, values of variables referenced but
not created in the code, that is, those from the external environment, are defined
in the initial evaluation environment ψ0. SATURN lazily constructs ψ0 by calling
a special function DefVal, which is supplied by the analysis designer and maps
all external objects to a checker-specific estimation of their default values; ψ0 is
then defined as DefVal(v) for all v. Operationally, DefVal is applied on demand,

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

12 • Y. Xie and A. Aiken

when uninitialized objects are first accessed during symbolic evaluation. This
allows us to model potentially unbounded data structures in the environment.
Besides its role in defining the initial environment ψ0, DefVal is also used to
provide an approximation of the return values and side effects of function calls
(Section 5.3).

In our implementation, we model integers from the environment with a vec-
tor of unconstrained Boolean variables. For pointers, we use the common as-
sumption that distinct pointers from the environment do not alias each other.
This can be modeled by a DefVal that returns a fresh location for each previously
unseen pointer dereference.4 A sound alternative would be to use a separate
global alias analysis as part of the definition of ψ0. Note once a pointer is ini-
tialized, SATURN performs an accurate path-sensitive intraprocedural analysis,
including respecting alias relationships, on that pointer.

3.3 Using BDDs for Guards

Consider the following code fragment:

if (c) { ... } else { ... }
s;

After conversion to a control-flow graph, there are two paths reaching the state-
ment s with guards c and ¬c. Thus the guard of s is c ∨ ¬c. Since guards are
attached to every bit of every modeled location at every program point, it is im-
portant to avoid growth in the size of guards at every control-flow merge. One
way to accomplish this task is to decompile the unrolled control flow graph into
structured programs with only if statements, so that we know exactly where
branch conditionals cancel. However, this approach requires code duplication
in the presence of goto, break, and continue statements commonly found in C.

Our solution is to introduce an intermediate representation of guards using
binary decision diagrams [Bryant 1986]. We give each condition (which may
be a complex expression) a name and use a BDD to represent the Boolean
combination of all condition names that enable a program path. At control-flow
merges we join the corresponding BDDs. The BDD join operation can simplify
the representation of the boolean formula to a canonical form; for example,
the join of the BDDs for c and ¬c is represented by true. In our encoding of
a statement, we convert the BDD representing the set of conditions at that
program point to the appropriate guard.

The simplification of guards also eliminates trivial control dependencies in
the automatic slicing scheme described in Section 3.1. In the small example
in that section, had we not simplified guards, the assertion would have been
checked under the guard (x ∨ ¬x) ∧ (z ∨ ¬z), which pulls in the otherwise
irrelevant computation of z.

4In the implementation, DefVal(p) returns {| (G, null), (¬G, o) |}, where G is an unconstrained Boolean
variable, and o is a fresh object of the appropriate type. This allows us to model common data
structures like linked lists and trees of arbitrary length or depth. A slightly smarter variant handles
doubly linked lists and trees with parent pointers knowing one node in such a data structure.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

SATURN: Scalable Framework for Error Detection Using Boolean Satisfiability • 13

4. BUILDING MODULAR PROPERTY CHECKERS UNDER SATURN

The SATURN framework we have described so far can be applied directly to
checking simple properties such as assertions. While other program behavior
can be encoded and checked under the current scheme, there are two main
limitations that prevent it from being applied to complex properties in large
systems:

(1) Function calls. SATURN, like many other SAT-based techniques, does not di-
rectly model function calls. A common solution among SAT-based assertion
checkers is inlining. However, although we employ a number of optimiza-
tions in our transformation such as slicing, the exponential time cost of
SAT-solving means that inlining will not be practical for large software
systems.

(2) Execution environment. Assertion checking commonly requires a closed pro-
gram. However, many software systems are open programs whose environ-
ment is a complex combination of user input and component interdependen-
cies. Modeling the environment for such programs often requires extensive
manual effort that is both costly and errorprone.

Our solution is based on SATURN’s ability to not only check program properties,
but also infer them by formulating SAT queries that can be solved efficiently.
The latter ability solves the two problems mentioned above.

First, inference enables modular analyses5 that scale. With appropriate ab-
stractions, the checker can summarize a function’s behavior with respect to a
property into a concise summary. This summary, in turn, can be used in lieu of
the full function body at the function’s call sites, which prevents the exponential
growth in the cost of analysis.

Second, by making general enough assumptions about the execution envi-
ronment, summaries capture the behavior of a function under all (or, for error
detection purposes, a common subset of) runtime scenarios. This alleviates the
requirement of having to close the environment.

An added benefit of the modular approach is that it enables local reasoning
during error inspection. Instead of following long error traces which may involve
multiple function calls, human-readable function summaries give information
about the assumptions made for each of the callees in the current function.
Therefore, the user can focus on one function at a time when inspecting error
reports. In our experience, we have found it much easier to confirm errors and
identify false positives with the help of function summaries.

Based on the modular approach, we briefly outline a four-step process by
which we construct property checkers under SATURN:

(1) First of all, we model the property we intend to check with program con-
structs in SATURN. For example, finite state machines (FSM) can be encoded
by attaching integer state fields to program objects to track their current

5Here, modular analysis is defined in two senses: (1) the ability to infer and check open program
modules independent of their usage; and (2) the ability to summarize results of analyzed modules
so as to avoid redundant analysis.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

14 • Y. Xie and A. Aiken

states. State transitions are subsequently modeled with conditional assign-
ments, and checking is done by ensuring that the error state is not reached
at the end of the program—a task easily accomplished with SAT queries on
the final program state.

(2) The next step is to design the function summary representation. A good
summary is one that is both concise for scalability and expressive enough
to adequately describe the relevant properties of function behavior. Striking
the right balance often takes several iterations of design. For example, in
designing the FSM checking framework, we started with a simple summary
that records the set of feasible state transitions across the function, but
found it to be inadequate for Linux lock checking because of interprocedural
data dependencies. We observed that the output lock state often correlates
with the return value of the function and remedied the situation by simply
including the return value in our summary design.

(3) The third step is to design an algorithm that infers and applies function
summaries. As mentioned above, inference is done by automatically insert-
ing SAT queries at appropriate program points. For example, we can infer
the set of possible state transitions by querying, at the end of each function,
the satisfiability of all possible combinations of input and output states. The
feasible (i.e., satisfiable) subset is included in the function summary.6

(4) Finally, we run the checker on a number of real-world applications, and
inspect the analysis results. During early design iterations, the results often
point to inaccuracies in the property encoding (step 1), inadequacies in the
summary design (step 2), or inefficiencies in the inference algorithm (step 3).
We use that as feedback to improve the checker in the next iteration.

Following the four-step process, we designed and implemented two property
checkers for large open source software: a Linux lock checker and a memory
leak checker. We present the details of the construction and experiments in the
following two sections.

5. CASE STUDY I: CHECKING FINITE STATE PROPERTIES

Finite state properties are a class of specifications that can be described as
certain program values passing through a finite set of states, over time, under
specific conditions. Locking, where a lock can legally only go from the unlocked
state to the locked state and then back to the unlocked state, is a canonical
example. These properties are also referred to as temporal safety properties.

In this section, we focus on finite state properties, and describe a summary-
based interprocedural analysis that uses the SATURN framework to automat-
ically check such properties. We start by defining a common name space
for shared objects between the caller and the callee (Section 5.1), which we
use to define a general summary representation for finite state properties
(Section 5.2). We then describe algorithms for applying (Section 5.3) and

6This is a simplification of the actual summary inference algorithm, which takes into account
function side effects and return-value state-transition correlations. We describe the full algorithm
in Section 5.2.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

SATURN: Scalable Framework for Error Detection Using Boolean Satisfiability • 15

inferring (Section 5.4) function summaries in the SATURN framework. We de-
scribe our implementation of an interprocedural lock checker (Section 5.5) and
end with experimental results (Section 5.6).

5.1 Interface Objects

In C, the two sides of a function invocation share the global name space but have
separate local name spaces. Thus we need a common name space for objects
referred to in the summary. Barring external channels and unsafe memory
accesses, the two parties share values through global variables, parameters,
and the function’s result. Therefore, shared objects can be named using a path
from one of these three roots.

We formalize this idea using interface objects (IObj) as common names for
objects shared between caller and callee:

IObj (l) ::= parami | global var | ret val | ∗ l | l . f

Dependencies across function calls are expressed by interface expressions
(IExpr) and conditions (ICond), which are defined respectively by replacing ref-
erences to objects with interface objects in the definition of Expr and Cond (as
defined in Figure 1 and extended in Figure 5).

To perform interprocedural analysis of a function, we must map input inter-
face objects to the names used in the function body, perform symbolic evaluation
of the function, and map the final function state to the final state of the inter-
face objects. Thus we need two mappings to convert between interface objects
and those in the native name space of a function:

[[·]]args : IObj → Objext and [[·]]−1
args : Obj → IObj

Converting IObj’s to native objects is straightforward. For function call r =
f (a0, . . . , an),

[[global]]a0...an = global
[[parami]]a0...an = ai

[[ret val]]a0...an = r
[[∗l]]a0...an = ∗([[l]]a0...an)

[[l . f]]a0...an = ([[l]]a0...an). f

Note that the result of the conversion is in Objext, which is defined as Obj
(Section 2) extended with pointer dereferences. The extra dereference oper-
ations can be transformed away by introducing temporary variables and ex-
plicit load/store operations. We omit the details of this transformation for
brevity.

The inverse conversion is more involved, since there may be multiple aliases
of the same object in the program. We incrementally construct the [[·]]−1

args

mapping for objects accessed through global variables and parameters. For
example, in

void f(struct str *p) {
spin lock(&p−>lock);

}
ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

16 • Y. Xie and A. Aiken

Fig. 7. Function summary representation.

the corresponding interface object for p is param0, since it is defined as the first
formal parameter of f . Recall that the object pointed to by p→lock is lazily
instantiated when p is dereferenced by calling DefVal(p) (see Section 3.2). As
part of the instantiation, we initialize every field of the struct (*p), and compute
the appropriate IObj for each field at that time. Specifically, the interface object
for p→lock is (∗param0).lock.

The conversion operations extend to interface expressions and conditionals.
For brevity, name space conversions for objects, expressions, and conditionals
are mostly kept implicit in the discussion below.

5.2 Function Summary Representation

The language for expressing finite state summaries is given in Figure 7. Each
function summary is a four-tuple consisting of

—a set of input propositions Pin,
—a set of output propositions Pout ,
—a set of interface objects M , which may be modified during the function call,

and
—a relation R summarizing the FSM behavior of the function.

The checker need only supply the set of FSM states and the set of input and
output propositions (i.e., S, Pin, and Pout); both M and R are computed auto-
matically for each function by SATURN (see Section 5.4).

The FSM behavior of a function call is modeled as a set of state transitions
of one or more interface objects. These transitions map input states to output
states based on the values of a set of input (Pin) and output (Pout) propositions.
The state transitions are given in the set R. Each element in R is a five tuple,
(sm, incond, s, outcond, s′), which we describe below:

—sm ∈ IObj is the object whose state is affected by the transition relationship.
In the lock checker, sm identifies the accessed lock objects, as a function may
access more than one lock during its execution.

—incond ∈ 2|Pin| denotes the precondition of the FSM transition: (
∧

i∈incond pi) ∧
(
∧

i /∈incond ¬pi) where {p1, . . . , pn} = Pin. It specifies one of the 2n possible
valuations of the input propositions, and is evaluated on entry to the function.

—s ∈ S is the initial state of sm in the state transition.
—outcond ∈ 2|Pout | is similarly defined as incond and denotes the output condi-

tion of the transition. outcond is evaluated on exit.
—s′ ∈ S is the state of sm after the transition.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

SATURN: Scalable Framework for Error Detection Using Boolean Satisfiability • 17

Fig. 8. Sample function summaries for the locking property.

Figure 8 presents the summary of three sample locking functions: spin lock,
spin trylock, and complex wrapper. The function complex wrapper captures some
of the more complicated locking behavior in Linux. Nevertheless, given appro-
priate input and output propositions (i.e., Pin and Pout), we are able to express
(and automatically infer) its behavior using our summary representation (i.e.,
M and R). We describe how function summaries are inferred and used in the
following subsections.

5.3 Summary Application

This subsection describes how the summary of a function is used to model its
behavior at a call site. For a given function invocation f (a0, . . . , an), we encode
the call into a set of statements simulating the observable effects of the function.
The encoding, given in Figure 9, is composed of two stages:

(1) In the first stage, we save the values of relevant program states before and
after the call (lines 3–4 and 8 in Figure 9), and account for the side effects
of the function by conservatively assigning unknown values to objects in the

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

18 • Y. Xie and A. Aiken

Fig. 9. Summary application.

modified set M (line 6). Relevant values before the call include all input
propositions pi, and the current states (smi) of the interface objects men-
tioned in the transition relation R. Relevant values after the call include all
output states qi. We then use an assume statement to rule out impossible
combinations of input and output propositions (line 10; e.g., some functions
always return a nonnull pointer).

(2) In the second stage, we process the state transitions in R by first testing
their activation conditions, and, when satisfied, carrying out the transitions
(line 14–16). The proposition incond denotes the condition (

∧
i∈incond p̂i) ∧

(
∧

i /∈incond ¬ p̂i); the condition for outcond is symmetric. Notice that since
incond and outcond are a valuation of all input and output propositions, no
two transitions on the same state machine should be enabled simultane-
ously. Violations of this property can be attributed to either an inadequate
choice of input and output propositions, or a bug in the program (e.g., Type B
errors in the Linux lock checker—Section 5.5).

There is one aspect of the encoding that is left unspecified in the description,
which is the unknown values used to model the side effects of the function call.
For integer values, we use the rule for unknown and conservatively model these
values with a set of unconstrained boolean variables. For pointers, we extend the
DefVal operator described in Section 3.2 to obtain a checker-specified estimation

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

SATURN: Scalable Framework for Error Detection Using Boolean Satisfiability • 19

Fig. 10. Summary inference.

of the shape of the object being pointed to. The current implementation uses
fresh locations for modified pointers.

5.4 Summary Inference

This section describes how we compute the summary of a function after analysis.
Before we proceed, we first state two assumptions about the translation from
C to SATURN’s intermediate language:

(1) We assume that each function has one unique exit block. In case the func-
tion has multiple return statements, we add a dummy exit block linked
to all return sites. The exit block is analyzed last (see Section 2) and the
environment ψ at that point encodes all paths from function entry to exit.
Summary inference is carried out after analyzing the exit block.

(2) We model return statements in C by assigning the return value to a special
object rv, and [[rv]]−1

args = ret val.

Figure 10 gives the summary inference algorithm. The input to the algorithm
is a set of input (Pin) and output (Pout) propositions. The inference process
involves a series of queries to the SAT solver based on the initial (ψ0) and
final state (ψ) to determine (1) the set of modified objects M , and (2) the set of
transition relationships R. In computing M and R, we use a shorthand ψ(x) to
denote the valuation of x under environment ψ .

The summary inference algorithm proceeds as follows. Intuitively, modified
objects are those whose valuation may be different under the initial environ-
ment ψ0 and the final environment ψ . We compute M by iterating over all
interface objects v and use the SAT solver to determine whether the values
may be different or not.

The transition set R is computed by enumerating all relevant interface ob-
jects (e.g., locks in the lock checker) in the function and all combinations of input
and output propositions. We again use the SAT solver to determine whether a
transition under a particular set of input and output propositions is feasible.

As the reader may notice, summary inference requires many SAT queries
and can be computationally expensive when solved individually. Fortunately,
these queries share a large set of common constraints encoding the function
control and data flow. In fact, the only difference among the queries are con-
straints that describe the different combinations of input/output propositions
and initial/final state pairs for each state machine. We exploit this fact by taking
advantage of incremental solving capabilities in modern SAT solvers. Incremen-
tal solving algorithms share and reuse information learned (e.g., using conflict
clauses) in the common parts of the queries and can considerably speed up
SAT solving time for similar queries. In practice, we observe that SAT queries
typically complete in under 1 s.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

20 • Y. Xie and A. Aiken

5.5 A Linux Lock Checker

In this section, we use the FSM checking framework described above to con-
struct a lock checker for the Linux kernel. We start with some background
information, and list the challenges we encountered in trying to detect locking
bugs in Linux. We then describe the lock checker we have implemented in the
SATURN framework.

The Linux kernel is a widely deployed and well-tested core of the Linux op-
erating system. The kernel is designed to scale to an array of multiprocessor
platforms and thus is inherently concurrent. It uses a variety of locking mech-
anisms (e.g., spin locks, semaphores, read/write locks, primitive compare and
swap instructions, etc.) to coordinate concurrent accesses of kernel data struc-
tures. For efficiency reasons, most of the code in the kernel runs in supervisor
mode, and synchronization bugs can thus cause crashes or hangs that result
in data loss and system down time. For this reason, locking bugs have received
the attention of a number of research and commercial checking and verification
efforts.

Locks (also known as mutexes) are naturally expressed as a finite state prop-
erty with three states: Locked, Unlocked, and Error. The lock operation can be
modeled as two transitions: from Unlocked to Locked, and Locked to Error (un-
lock is similar). There are a few challenges that a checker must overcome to
model locking behavior in Linux:

—Aliasing. In Linux, locks are passed by reference (i.e., by pointers in C). One
immediate problem is the need to deal with pointer aliasing. CQual employs
a number of techniques to infer nonaliasing relationships to help refine the
results from the alias analysis [Aiken et al. 2003]. MC [Hallem et al. 2002]
assumes nonaliasing among all pointers, which helps reduce false positives,
but also limits the checking power of the tool.

—Heap objects. In fine-grained locking, locks are often embedded in heap ob-
jects. These objects are stored in the heap and passed around by reference. To
detect bugs involving heap objects, a reasonable model of the heap needs to be
constructed (recall Section 3.2). The need to write “harnesses” that construct
the checking environment has proven to be a nontrivial task in traditional
model checkers [Ball et al. 2004].

—Path sensitivity. The state machine for locks becomes more complex when
we consider trylocks. Trylocks are lock operations that can fail. The caller
must check the return value of trylocks to determine whether the operation
has succeeded or not. Besides trylocks, some functions intentionally exit
with locks held on error paths and expect their callers to carry out error
recovery and cleanup work. These constructs are used extensively in Linux.
In addition, one common usage scenario in Linux is the following:

if (x) spin lock(&l);

. . .;

if (x) spin unlock(&l);

Some form of path sensitivity is necessary to handle these cases.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

SATURN: Scalable Framework for Error Detection Using Boolean Satisfiability • 21

—Interprocedural analysis. As we show in Section 5.6, a large portion of syn-
chronization errors arise from misunderstanding of function interface con-
straints. The presence of more than 600 lock/unlock/trylock wrappers further
complicates the analysis. Imprecision in the intraprocedural analysis is am-
plified in the interprocedural phase, so we believe a precise interprocedural
analysis is important in the construction of a lock checker.

Our lock checker is based on the framework described above (see Figure 8).
States are defined as usual: {Locked, Unlocked, Error}. To accurately model try-
locks, we define Pout = {liftc(ret val)} for functions that return integers or point-
ers. Tracking this proposition in summaries is also adequate for modeling func-
tions that exit in different lock states depending on whether the return value
is 0 (null) or not. We define Pout to be the empty set for functions of type void;
Pin is defined to be the empty set.

We detect two types of locking errors in Linux:

—Type A: double locking/unlocking. These are functions that may acquire or
release the same lock twice in a row. The summary relationship R of such
functions contains two transitions on the same lock: one leads from the Locked
state to Error, and the other from the Unlocked state to Error. This signals an
internal inconsistency in the function—no matter what state the lock is in
on entry to the function, there is a path leading to the error state.

—Type B: ambiguous return state. These are functions that may exit in both
Locked and Unlocked states with no observable difference (with respect to
Pout , which is liftc(ret val)) in the return value. These bugs are commonly
caused by missed operations to restore lock states on error paths.7

5.6 Experimental Results

We have implemented the lock checker described in Section 5.5 as a plugin
to the SATURN framework. The checker models locks in Linux (e.g., objects of
type spinlock t, rwlock t, rw semaphore, and semaphore) using the state ma-
chines defined in Section 5. When analyzing a function, we retrieve the lock
summaries of its callees and use the algorithm described in Section 5.3 to sim-
ulate their observable effects. At the end of the analysis, we compute a summary
for the current function using the algorithm described in Section 5.4 and store
it in the summary database for future use.

The order of analysis for functions in Linux is determined by topologically
sorting the static call graph of the Linux kernel. Recursive function calls are
represented by strongly connected components (SCC) in the call graph. During
the bottom-up analysis, functions in SCCs are analyzed once in an arbitrary
order, which might result in imprecision in inferred summaries. A more precise

7One can argue that Type B errors are rather a manifestation of the restricted sets of predicates
used for the analysis; a more precise way of detecting these bugs is to allow ambiguous output
states in the function summary, and report bugs in calling contexts where only one of the output
states is legal. Practically, however, we find that this restriction is a desirable feature that allows
us to exploit domain knowledge about lock usage in Linux, and thus helps the analysis to pinpoint
more accurately the root cause of a bug.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

22 • Y. Xie and A. Aiken

Table I. Performance Statistics on a Single
Processor Pentium IV 3.0-GHz Desktop

with 1 GB Memory

Type Count

Num. of files 12455
Total line count 4.8 million LOC
Total num. func. 63850
Lock related func. 23458
Running time 19 h 40 min CPU time
Approx. LOC/s 67

approach would require unwinding the recursion as we do for loops, until a fixed
point is reached for function summaries in the SCC. However, our experiments
indicate that recursion has little impact on the precision of inferred lock sum-
maries, and therefore we adopt the simpler approach in our implementation.

We start the analysis by seeding the lock summary database with manual
specifications of around 40 lock, unlock, and trylock primitives in Linux. Other-
wise the checking process is fully automatic: our tool works on the unmodified
source tree and requires no human guidance during the analysis.

We ran our lock checker on the then latest release of the kernel source tree
(v2.6.5). Performance statistics of the experiment are tabulated in Table I. All
experiments were done on a single processor 3.0-GHz Pentium IV computer
with 1 G of memory. Our tool parsed and analyzed around 4.8 million lines of
code (LOC) in 63,850 functions in under 20 h. Function side-effect computa-
tion is not currently implemented in the version of the checker reported here.
Loops are unrolled a maximum of two iterations based on the belief that most
double lock errors manifest themselves by the second iteration. We have im-
plemented an optimization that skips functions that have no lock primitives
and do not call any other functions with nontrivial lock summaries. These func-
tions are automatically given the trivial “No-Op” summary. We analyzed the re-
maining 23,927 lock related functions, and stored their summaries in a GDBM
database.

We set the memory limit for each function to 700 MB to prevent thrashing
and the CPU time limit to 90 s. Our tool failed to analyze 27 functions—some of
which were written in assembly, and the rest due to internal failures of the tool.
The tool also failed to terminate on 442 functions in the kernel, largely due to
resource constraints, with a small number of them due to implementation bugs
in our tool. In every case we have investigated, resource exhaustion was caused
by exceeding the capacity of an internal cache in SATURN. This represents a
failure rate of < 2% on the lock-related functions.

The result of the analysis consists of a bug report of 179 previously unknown
errors and a lock summary database for the entire kernel, which we describe
in the subsections below.

5.6.1 Errors and False Positives. As described in Section 5.5, we detect two
types of locking errors in Linux: double lock/unlock (Type A) and ambiguous
output states (Type B). We tabulate the bug counts in Table II.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

SATURN: Scalable Framework for Error Detection Using Boolean Satisfiability • 23

Table II. Number of Bugs Found in Each Category

Accuracy
Type Bugs FP Warnings (bug/warning)
A 134 99 233 57%
B 45 22 67 67%
Total 179 121 300 60%

Table III. Breakdown of Intra- and
Interprocedural Bugs

Type A B Total
Interprocedural 108 27 135
Intraprocedural 26 18 44
Total 134 45 179

Table IV. Breakdown of False Positives

Type A Type B Total
Propositions 26 16 42
Lock assertions 21 4 25
Semaphores 22 0 22
SATURN lim. 18 1 19
Readlocks 7 0 7
Others 5 1 7
Total 99 22 121

The bugs and false positives are classified by manually inspecting the error
reports generated by the tool. One caveat of this approach is that errors we
diagnose may not be actual errors. To counter this, we only flag ones we are
reasonably sure about. We have several years of experience examining Linux
bugs, so the number of misdiagnosed errors is expected to be low.

Table III further breaks down the 179 bugs into intraprocedural versus in-
terprocedural errors. We observe that more than three-quarters of diagnosed
errors are caused by misunderstanding of function interface constraints.

Table IV classifies the false positives into six categories. The biggest category
of false positives is caused by inadequate choice of propositions Pin and Pout .
In a small number of widely called utility functions, input and output lock
states are correlated with values passed in/out through the parameter, instead
of the return value. To improve this situation, we need to detect the relevant
propositions either by manual specification or by using a predicate abstraction
algorithm similar to that used in SLAM or BLAST. Another large source of
false positives is an idiom that uses trylock operations as a way of querying the
current state of the lock. This idiom is commonly used in assertions to make
sure that a lock is held at a certain point. We believe a better way to accomplish
this task is to use the lock querying functions, which we model precisely in our
tool. Fortunately, this usage pattern only occurs in a few macros, and can be
easily identified during inspection. The third largest source of false positives
is counting semaphores. Depending on the context, semaphores can be used in
Linux either as locks (with down being lock and up being unlock) or resource
counters. Our tool treats all semaphores as locks, and therefore may misflag

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

24 • Y. Xie and A. Aiken

Fig. 11. An interprocedural Type A error found in sound/oss/sscape.c.

Fig. 12. An intraprocedural Type B error found in drivers/message/i2o/i2o core.c.

consecutive down/up operations as double lock/unlock errors. The remaining
false positives are due to readlocks (where double locks are OK), and unmodeled
features such as arrays.

Figure 11 shows a sample interprocedural Type A error found by
SATURN, where sscape coproc close calls sscape write with &devc→lock held.
However, the first thing sscape write does is to acquire that lock again, result-
ing in a deadlock on multiprocessor systems. Figure 12 gives a sample intrapro-
cedural Type B error. There are two places where the function exits with return
value -EBUSY: one with the lock held, and the other unheld. The programmer
has forgotten to release the lock before returning at line 13.

We have filed the bug reports to the Linux Kernel Mailing List (LKML) and
received confirmations and patches for a number of reported errors. To the best
of our knowledge, SATURN is by far the most effective bug detection tool for Linux
locking errors.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

SATURN: Scalable Framework for Error Detection Using Boolean Satisfiability • 25

5.6.2 The Lock Summary Database. Synchronization errors are known
to be difficult to reproduce and debug dynamically. To help developers diag-
nose reported errors, and also better understand the often subtle locking be-
havior in the kernel (e.g., lock states under error conditions), we have built
a Web interface for the Linux lock summary database generated during the
analysis.

Our own experience with the summary database has been pleasant. During
inspection, we use the summary database extensively to match up the derived
summary with the implementation code to confirm errors and identify false
positives. In our experience, the generated summaries accurately model the
locking behavior of the function being analyzed. In fact, shortly after we filed
these bugs, we logged more than 1000 queries to the summary database from
the Linux community.

The summary database also reveals interesting facts about the Linux ker-
nel. To our surprise, locking behavior is far from simple in Linux. More than
23,000 of the ∼63,000 functions in Linux directly or indirectly operate on locks.
In addition, 8873 functions access more than one lock. There are 193 lock wrap-
pers, 375 unlock wrappers, and 36 functions where the output state correlates
with the return value. Furthermore, more than 17,000 functions directly or
indirectly require locks to be in a particular state on entry.

We believe SATURN is the first automatic tool that successfully understands
and documents any aspect of locking behavior in code the size of Linux.

6. CASE STUDY II: THE LEAK DETECTOR

In this section, we present a static memory leak detector based on the path
sensitive pointer analysis in SATURN. We target one important class of leaks,
namely, neglecting to free a newly allocated memory block before all its refer-
ences go out of scope. These bugs are commonly found in error handling paths,
which are less likely to be covered during testing. This second study is interest-
ing in its own right as an effective memory leak detector, and as evidence that
SATURN can be used to analyze a variety properties.

The rest of the section is organized as follows: Section 6.1 gives examples
illustrating the targeted class of bugs and the analysis techniques required.
We briefly outline the detection algorithm in Section 6.2 and give details in
Sections 6.3, 6.4, and 6.5. Handling the unsafe features of C is described in Sec-
tion 6.7. Section 6.8 describes a parallel client/server architecture that dramati-
cally improves analysis speed. We end with experimental results in Section 6.9.

6.1 Motivation and Examples

Below we show a typical memory leak found in C code:

p = malloc(. . .); . . .

if (error condition) return NULL;

return p;

Here the programmer allocates a memory block memory and stores the refer-
ence in p. Under normal conditions p is returned to the caller, but in case of an

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

26 • Y. Xie and A. Aiken

error, the function returns NULL and the new location is leaked. The problem
is fixed by inserting the statement free(p) immediately before the error return.

Our goal is to find these errors automatically. We note that leaks are
always a flow-sensitive property, but sometimes are path-sensitive as well.
The following example shows a common usage where a memory block is freed
when its reference is nonnull.

if (p != NULL)

free(p);

To avoid false positives in their path insensitive leak detector, Heine and Lam
[2003] transformed this code into

if (p != NULL)

free(p);

else

p = NULL;

The transformation handles the idiom with a slight change of program seman-
tics (i.e., the extra NULL assignment to p). However, syntactic manipulations
are unlikely to succeed in more complicated examples:

char fastbuf[10], *p;

if (len < 10)

p = fastbuf;

else

p = (char *)malloc(len);

. . .

if (p != fastbuf)

free(p);

In this case, depending on the length of the required buffer, the programmer
chooses between a smaller but more efficient stack-allocated buffer and a larger
but slower heap-allocated one. This optimization is common in performance
critical code such as Samba and the Linux kernel and a fully path-sensitive
analysis is desirable in analyzing such code.

Another challenge to the analysis is illustrated by the following example:

p−>name = strdup(string);

push on stack(p);

To correctly analyze this code, the analysis must infer that strdup allocates
new memory and that push on stack adds an external reference to its first
argument p and therefore causes (*p).name to escape. Thus an interprocedural
analysis is required. Without abstraction, interprocedural program analysis
is prohibitively expensive for path-sensitive analyses such as ours. As with
the lock checker, we use a summary-based approach that exploits the natural
abstraction boundary at function calls. For each function, we use SAT queries
to infer information about the function’s memory behavior and construct a
summary for that function. The summary is designed to capture the following
two properties:

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

SATURN: Scalable Framework for Error Detection Using Boolean Satisfiability • 27

(1) whether the function is a memory allocator, and
(2) the set of escaping objects that are reachable from the function’s parame-

ters.

We show how we infer and use such function summaries in Section 6.5.

6.2 Outline of the Leak Checker

This subsection discusses several key ideas behind the leak checker. First of
all, we observe that pointers are not all equal with respect to memory leaks.
Consider the following example:

(*p).data = malloc(. . .);

return;

The code contains a leak if p is a local variable, but not if p is a global or
a parameter. In the case where *p itself is newly allocated in the current
procedure, (*p).data escapes only if object *p escapes (except for cases involving
cyclic structures; see below). In order to distinguish between these cases, we
need a concept called access paths (Section 6.3) to track the paths through
which objects are accessed from both inside and outside (if possible) the
function body. We describe details about how we model object accessibility in
Section 6.4.

References to a new memory location can also escape through means other
than pointer references:

(1) memory blocks may be deallocated;
(2) function calls may create external references to newly allocated locations;
(3) references can be transferred via program constructs in C that currently are

not modeled in SATURN (e.g., by decomposing a pointer into a page number
and a page offset, and reconstructing it later).

To model these cases, we instrument every allocated memory block with a
Boolean escape attribute whose default value is false. We set the escape at-
tribute to true whenever we encounter one of these three situations. A memory
block is not considered leaked when its escape attribute is set.

One final issue that requires explicit modeling is that malloc functions in C
might fail. When it does, malloc returns null to signal a failed allocation. This
situation is illustrated in Section 6.1 and requires special-case handling in
path-insensitive analyses. We use a Boolean valid attribute to track the return
status of each memory allocation. The attribute is nondeterministically set at
each allocation site to model both success and failure scenarios. For a leak to
occur, the corresponding allocation must originate from a successful allocation
and thus have its valid attribute set to true.

6.3 Access Paths and Origins

This subsection extends the interface object concept introduced in Section 5.1
to track and manipulate the path through which objects are first accessed.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

28 • Y. Xie and A. Aiken

Fig. 13. Access paths.

Table V. Objects, Access Paths, and
Access Origins in the Sample Program

Object AccPath RootOf

p param0 param0
∗p ∗param0 param0
(∗p).data (∗param0).data param0
∗(∗p).data ∗(∗param0).data param0
g globalg globalg
q localq localq
rv ret val ret val

Following standard literature on alias and escape analysis, we call the revised
definition access paths. As shown in the Section 6.2, access path information is
important in defining the escape condition for memory locations.

Figure 13 defines the representation and operations on access paths, which
are interface objects (see Section 5.1) extended with Locals and NewLocs. Ob-
jects are reached by field accesses or pointer dereferences from five origins:
global and local variables, the return value, function parameters, and newly
allocated memory locations. We represent the path through which an object is
accessed first with AccPath.

PathOf maps objects (and polymorphic locations) to their access paths and ac-
cess path information is computed by recording object access paths used during
the analysis. The RootOf function takes an access path and returns the object
from which the path originates.

We illustrate these concepts using the following example:

struct state { void *data; };
void *g;

void f(struct state *p)

{
int *q;

g = p−>data;

q = g;

return q; /* rv = q */

}
Table V summarizes the objects reached by the function, their access paths

and origins. The origin and path information indicates how these objects are
first accessed and is used in defining the leak conditions in Section 6.4.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

SATURN: Scalable Framework for Error Detection Using Boolean Satisfiability • 29

Fig. 14. Memory leak detection rules. (Note: For brevity, RootOf(p) denotes RootOf(PathOf(p)).)

6.4 Escape and Leak Conditions

Figure 14 defines the rules we use to find memory leaks and construct func-
tion summaries. As discussed in Section 5.4, we assume that there is one unique
exit block in each function’s control flow graph. We apply the leak rules at the
end of the exit block, and the implicitly defined environment ψ in the rules
refers to the exit environment.

In Figure 14, the PointsTo(p, l) function gives the condition under which
pointer p points to location l . The result is simply the guard associated with l
if it occurs in the GLS of p and false otherwise. Using the PointsTo function, we
are ready to define the escape relationships Escaped and EscapeVia.

Ignoring the exclusion setX for now, EscapeVia(l , p, X) returns the condition
under which location l escapes through pointer p. Depending on the origin of
p, EscapeVia is defined by four rules via-* in Figure 14. The simplest of the four
rules is via-local, which stipulates that location l cannot escape through p if p’s
origin is a local variable, since the reference is lost when p goes out of scope at
function exit.

The rule via-global handles the case where p is accessible through a global
variable. In this case, l escapes when p points to l , which is described by the
condition PointsTo(p, l). The case where a location escapes through a function
parameter is treated similarly in the via-interface rule.

The rule via-newloc handles the case where p is a newly allocated location.
Again ignoring the exclusion set X , the rule stipulates that a location l es-
capes if p points to l and the origin of p, which is itself a new location, in turn
escapes.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

30 • Y. Xie and A. Aiken

Fig. 15. The definition of function summaries.

However, the above statement is overly generous in the following situation:

s = malloc(. . .); /* creates new location l’ */

s−>next = malloc(. . .); /* creates l */

s−>next−>prev = s; /* circular reference */

The circular dependency that l escapes if l ′ does, and vice versa, can be satisfied
by the constraint solver by assuming both locations escape. To find this leak,
we prefer a solution where neither escapes. We solve this problem by adding
an exclusion set X to the leak rules to prevent circular escape routes. In the
via-newloc rule, the location l in question is added to the exclusion set, which
prevents l ′ from escaping through l .

The Escaped(l , X) function used by the via-newloc rule computes the condi-
tion under which l escapes through a route that does not intersect with X . It
is defined by considering escape routes through all pointers and other means
such as function calls (modeled by the attribute l#escaped).

Finally, Leaked(l , X) computes the condition under which a new location
l is leaked through some route that does not intersect with X . It takes into
consideration the validity of l , which models whether the initial allocation is
successful or not (see Section 6.1 for an example).

Using these definitions, we specify the condition under which a leak error
occurs:

∃l s.t. (l ∈ NewLocs) and (Leaked(l , {}) is satisfiable).

We issue a warning for each location that satisfies this condition.

6.5 Interprocedural Analysis

This subsection describes the summary-based approach to interprocedural leak
detection in SATURN. We start by defining the summary representation in Sec-
tion 6.5.1 and discuss summary generation and application in Sections 6.5.2
and 6.5.3.

6.5.1 Summary Representation. Figure 15 shows the representation of a
function summary. In leak analysis, we are interested in whether the func-
tion returns newly allocated memory (i.e., allocator functions), and whether
it creates any external reference to objects passed via parameters (recall
Section 6.1). Therefore, a summary � is composed of two components: (1)
a Boolean value that describes whether the function returns newly allo-
cated memory, and (2) a set of escaped locations (escapees). Since caller and
callee have different names for the formal and actual parameters, we use ac-
cess paths (recall Section 6.3) to name escaped objects. These paths, called
Escapees in Figure 15, are defined as a subset of access paths whose origin is a
parameter.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

SATURN: Scalable Framework for Error Detection Using Boolean Satisfiability • 31

Fig. 16. Summary generation.

Consider the following example:

1 void *global;

2 void *f(struct state *p) {
3 global = p−>next−>data;

4 return malloc(5);

5 }
The summary for function f is computed as

〈isMalloc: true; escapees: {(*(*param0).next).data}〉
because f returns newly allocated memory at line 4 and adds a reference to
p->next->data from global and therefore escapes that object.

Notice that the summary representation focuses on common leak scenarios.
It does not capture all memory allocations. For example, functions that return
new memory blocks via a parameter (instead of the return value) are not con-
sidered allocators. Likewise, aliasing relationships between parameters are not
captured by the summary representation.

6.5.2 Summary Generation. Figure 16 describes the rules for function
summary generation. When the return value of a function is a pointer, the
IsMalloc rule is used to decide whether a function returns a newly allocated
memory block. A function qualifies as a memory allocator if it meets the follow-
ing two conditions:

(1) The return value can only point to null or newly allocated memory locations.
The possibility of returning any other existing locations disqualifies the
function as a memory allocator.

(2) The return value is the only externally visible reference to new locations
that might be returned. This prevents false positives from region-based
memory management schemes where a reference is retained by the alloca-
tor to free all new locations in a region together.

The set of escaped locations is computed by iterating through all parameter
accessible objects (i.e., objects whose access path origin is a parameter p), and
testing whether the object can escape through a route that does not go through
p, that is, if Escaped(l , {parami}) is satisfiable.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

32 • Y. Xie and A. Aiken

Take the following code as an example:

void insert after(struct node *head, struct node *new) {
new−>next = head−>next;

head−>next = new;

}
The escapee set of insert after includes (*head).next, since it can be reached
by the pointer (*new).next, and *new, since it can be reached by the pointer
(*head).next. The object *head is not included, because it is only accessible
through the pointer head, which is excluded as a possible escape route. (For
clarity, we use the more mnemonic names head and next instead of param0 and
param1 in these access paths.)

6.5.3 Summary Application. Function calls are replaced by code that
simulates their memory behavior based on their summary. The following
pseudocode models the effect of the function call r = f(e1, e2, . . . , en), assuming
f is an allocator function with escapee set escapees:

1 /* escape the escapees */

2 foreach (e) in escapees do

3 (*e)#escaped = true;

4

5 /* allocate new memory, and store it in r */

6 if (*) {
7 newloc(r);

8 (*r)#valid <− true;

9 } else

10 r <− null;

Lines 1–3 set the escaped attribute for f ’s escapees. Note that e at line 3 is
an access path from a parameter. Thus (*e) is not strictly a valid SATURN object
and must be transformed into one using a series of assignments. The details
are omitted for brevity.

Lines 5–10 simulate the memory allocation performed by f. We nondetermin-
istically assign a new location to r and set the valid bit of the new object to true.
To simulate a failed allocation, we assign null to r at line 10.

In the case where f is not an allocation function, lines 5–10 are replaced by
the statement r ← unknown.

6.6 Loops and Recursion

For the leak detector, SATURN uses a two-pass algorithm for loops. In the first
pass, the loop is unrolled a small number of times (three in our implementation)
and the backedges discarded; thus, just the first three iterations are analyzed.
For leak detection, this strategy works well except for loops such as

for (i = 0; i < 10000; i++)

;

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

SATURN: Scalable Framework for Error Detection Using Boolean Satisfiability • 33

The problem here is that the loop exit condition is never true in the first few
iterations of the loop. Thus path-sensitive analysis of just the first few itera-
tions concludes that the exit test is never satisfied and the code after the loop
appears to be unreachable. In the first pass, if the loop can terminate within
the number of unrolled iterations, the analysis of the loop is just the result of
the first pass. Otherwise, we discard results from the first pass and a second,
more conservative analysis is used. In the second pass, we replace the right-
hand side of all assignments in the loop body by unknown expressions and the
loop is analyzed once (havoc’ing). Intuitively, the second pass analyzes the last
iteration of the loop; we model the fact that we do not know the state of modi-
fied variables after an arbitrary number of earlier iterations by assigning them
unknown values [Xie and Chou 2002]. Integer unknowns are represented using
unconstrained Boolean variables, and are thus conservative approximations of
the actual runtime values. For pointers, however, unknown currently evaluates
to a fresh location, and therefore is unsound. The motivation for this two-pass
analysis is that the first pass yields more precise results when the loop can be
shown to terminate; however, if the unrolled loop iterations cannot reach the
loop exit, then the second pass is preferable because it is more important to at
least reach the code after the loop than to have precise information for the loop
itself.

Recursion is handled in a similar manner as in the Linux lock checker: we an-
alyze mutually recursive functions once in arbitrary order. Theoretically, this is
a source of both false positives (missed escape routes through recursive function
calls) and false negatives (missed allocation functions). Practically, however, the
loss of precision due to recursion is minimal in our experiments.

6.7 Handling Unsafe Operations in C

The C type system allows constructs (i.e., unsafe type casts and pointer arith-
metic) not currently modeled by SATURN. We have identified several common id-
ioms that use such operations, motivating some extensions to our leak detector.

One extension handles cases similar to the following, which emulates a form
of inheritance in C:

struct sub { int value; struct super super; }
struct super *allocator(int size)

{
struct sub *p = malloc(. . .);

p−>value = . . .;

return (&p−>super);

}
The allocator function returns a reference to the super field of the newly al-
located memory block. Technically, the reference to sub is lost on exit, but
it is not considered an error because it can be recovered with pointer arith-
metic. Variants of this idiom occur frequently in the projects we examined.
Our solution is to consider a structure escaped if any of its components
escape.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

34 • Y. Xie and A. Aiken

Another extension recognizes common address manipulation macros in
Linux such as virt to phys and bus to virt, which add or subtract a constant page
offset to arrive at the physical or virtual equivalent of the input address. Our
implementation matches such operations and treats them as identity functions.

6.8 A Distributed Architecture

The leak analysis uses a path-sensitive analysis to track every incoming and
newly allocated memory location in a function. Compared to the lock checker in
Section 5, the higher number of tracked objects (and thus SAT queries) means
the leak analysis is much more computationally intensive.

However, SATURN is highly parallelizable, because it analyzes each function
separately, subject only to the ordering dependencies of the function call graph.
We have implemented a distributed client/server architecture to exploit this
parallelism in the memory leak checker.

The server side consists of a scheduler, dispatcher, and database server. The
scheduler computes the dependence graph between functions and determines
the set of functions ready to be analyzed. The dispatcher sends ready tasks
to idle clients. When the client receives a new task, it retrieves the function’s
abstract syntax tree and summaries of its callees from the database server. The
result of the analysis is a new summary for the analyzed function, which is sent
to the database server for use by the function’s callers.

We employ caching techniques to avoid congestion at the server. Our imple-
mentation scales to hundreds of CPUs and is highly effective: the analysis time
for the Linux kernel, which requires nearly 24 h on a single fast machine, is ana-
lyzed in 50 minutes using around 80 unloaded CPUs.8 The speedup is sublinear
in the number of processors because there is not always enough parallelism to
keep all processors busy, particularly near the root of a call graph.

Due to the similarity of the analysis architecture between the Linux lock
checker and the memory leak detector, we expect that the former would also
benefit from a distributed implementation and achieve similar speedup.

6.9 Experimental Results

We have implemented the leak checker as a plug-in to the SATURN analysis
framework and applied it to five user space applications and the Linux kernel.

6.9.1 User Space Applications. We checked five user space software pack-
ages: Samba, OpenSSL, PostFix, Binutils, and OpenSSH. We analyzed the lat-
est release of the first three, while we used older versions of the last two to
compare with results reported for other leak detectors [Heine and Lam 2003;
Hackett and Rugina 2005]. All experiments were done on a lightly loaded dual
XeonTM 2.8G server with 4 GB of memory as well as on a heterogeneous cluster

8As a courtesy to the generous owners of these machines, we constantly monitor CPU load and user
activity on these machines, and turn off clients that have active users or tasks. Furthermore, these
80 CPUs range from low-end Pentium 4 1.8G workstations to high-end Xeon 2.8G servers in dual-
and quad-processor configurations. Thus performance statistics for distributed runs reported here
only provide an approximate notion of speedup when compared to single-processor analysis runs.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

SATURN: Scalable Framework for Error Detection Using Boolean Satisfiability • 35

Table VI. Experimental Results for the Memory Leak Checker

(a) Performance Statistics
Single Proc. Distributed

LOC Time LOC/s P.Time P.LOC/s

User-space app
Samba 403,744 3 h 22 min 52 s 33 10 min 57 s 615
OpenSSL 296,192 3 h 33 min 41 s 23 11 min 09 s 443
Postfix 137,091 1 h 22 min 04 s 28 12 min 00 s 190
Binutils 909,476 4 h 00 min 11 s 63 16 min 37 s 912
OpenSSH 36,676 27 min 34 s 22 6 min 00 s 102

Subtotal 1,783,179 12 h 46 min 22 s 39 56 min 43 s 524
Linux Kernel

v2.6.10 5,039,296 23 h 13 min 27 s 60 50 min 34 s 1661

Total 6,822,475 35 h 59 min 49 s 53 1 h 47 min 17 s 1060

(b) Analysis results.
Fn Failed (%) Alloc Bugs FP (%)

User-space app.
Samba 7,432 24 (0.3%) 80 83 8 (8.79%)
OpenSSL 4,181 60 (1.4%) 101 117 1 (0.85%)
Postfix 1,589 11 (0.7%) 96 8 0 (0%)
Binutils 2,982 36 (1.2%) 91 136 5 (3.55%)
OpenSSH 607 5 (0.8%) 19 29 0 (0%)

Subtotal 16,791 136 (0.8%) 387 373 14 (3.62%)
Linux Kernel

v2.6.10 74,367 792 (1.1%) 368 82 41 (33%)

Total 91,158 928 (1.0%) 755 455 55 (10.8%)

LOC: total number of lines of code; Time: analysis time on a single processor (2.8G Xeon);
P.Time: parallel analysis time on a heterogeneous cluster of around 80 unloaded CPUs.
Fn: number of functions in the program; Alloc: number of memory allocators detected; FP: number of false
positives.

of around 80 idle workstations. For each function, the resource limits were set
to 512 MB of memory and 90 s of CPU time.

The top portions of Table VI(a) and VI(b) give the performance statistics and
bug counts of the leak checker on the five user-space applications. Note that
we miss any bugs in the small percentage of functions where resource limits
are exceeded. The 1.8 million lines of code were analyzed in under 13 h using a
single processor and in under 1 h using a cluster of about 80 CPUs. The parallel
speedups increased significantly with project size, indicating larger projects
had relatively fewer call graph dependencies than small projects. Note that the
sequential scaling behavior (measured in lines of code per second) remained
stable across projects ranging from 36K up to 909K lines of unpreprocessed
code.

The tool issued 379 warnings across these applications. We have examined
all the warnings and believe 365 of them are bugs. (Warnings are per allocation
site to facilitate inspection.) Besides bug reports, the leak checker generates a
database of function summaries documenting each function’s memory behav-
ior. In our experience, the function summaries are highly accurate, and that,
combined with path-sensitive intraprocedural analysis, explains the exception-
ally low false positive rate. The summary database’s function level granularity

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

36 • Y. Xie and A. Aiken

Fig. 17. Three representative errors found by the leak checker.

enabled us to focus on one function at a time during inspection, which facilitated
bug confirmation.

Most of the bugs we found can be classified into three main categories:

(1) Missed deallocation on error paths. This case is by far the most common,
often happening when the procedure has multiple allocation sites and error
conditions. Errors are common even when the programmer has made an
effort to clean-up orphaned memory blocks. Figure 17(a) gives an example.

(2) Missed allocators. Not all memory allocators have names like
OPENSSL malloc. Programmers sometimes forget to free results from
less obvious allocators such as get longfilename (samba/client/clitar.c,
Figure 17(b)).

(3) Nonescaping procedure calls. Despite the suggestive name,
trusted domain password delete (samba/passdb/secrets.c)
does not free its parameter (Figure 17(c)).

Figure 18 shows a false positive caused by a limitation of our choice of func-
tion summaries. At line 4, BN copy returns a copy of t on success and null on
failure, which is not detected, nor is it expressible by the function summary.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

SATURN: Scalable Framework for Error Detection Using Boolean Satisfiability • 37

Fig. 18. A sample false positive.

6.9.2 The Linux Kernel. The bottom portions of Table VI(a) and VI(b)
summarize statistics of our experiments on Linux 2.6.10. Using the paral-
lel analysis framework (recall Section 6.8), we distributed the analysis work-
load on 80 CPUs. The analysis completed in 50 mins, processing 1661 lines/s.
We are not aware of any other analysis algorithm that achieves this level of
parallelism.

The bug count for Linux is considerably lower than for the other applications
relative to the size of the source code. The Linux project has made a conscious
effort to reduce memory leaks, and, in most cases, they have tried to recover from
error conditions, where most of the leaks occur. Nevertheless, the tool found 82
leak errors, some of which were surrounded by error handling code that frees
a number of other resources. Two errors were confirmed by the developers as
exploitable and could potentially enable denial-of-service attacks against the
system. These bugs were immediately fixed when reported.

The false positive rate was higher in the kernel than user space applica-
tions due to wide-spread use of function pointers and pointer arithmetic. Of
the 41 false positives, 16 were due to calls via function pointers and nine due
to pointer arithmetic. Application-specific logic accounted for another 12, and
the remaining four were are due to SATURN’s current limitations in modeling
constructs such as arrays and unions.

7. UNSOUNDNESS

One theoretical weakness of the two checkers, as described above, is unsound-
ness. In this section, we briefly summarize the sources of unsoundness. Both
the finite-state machine (FSM) checker and the memory leak analysis share
the following sources of unsoundness:

(1) Handling of loops. We introduced two techniques to handle loops in SATURN:
unrolling and havoc’ing, both of which are unsound. The former might miss
bugs that occur only in a long-running loop, and the latter is unsound in its
treatment of modified pointers in the loop body (see Section 6.6).

(2) Handling of recursion. Recursive function calls are not handled in the two
checkers, so bugs could remain undetected due to inaccurate function sum-
maries.

(3) Interprocedural aliasing. Both checkers use the heuristic that distinct
pointers from the external environment (e.g., function parameters, global

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

38 • Y. Xie and A. Aiken

variables) point to distinct objects. Although effective in practice, this
heuristic may prevent our analysis from detecting bugs caused by
interprocedural aliasing.

(4) Summary representation. The function summary representations for both
checkers leave several aspects of a function’s behavior unspecified. Exam-
ples include interprocedural side-effects (e.g., modification of global vari-
ables) and aliasing, both of which may lead to false negatives.

(5) Unhandled C constructs. For efficiency reasons, constructs such as unions,
arrays, and pointer arithmetic are not directly modeled by the SATURN

framework. Rather, they are handled by specific checkers during trans-
lation from C to the SATURN intermediate language. For example, in the
leak checker, memory blocks stored in arrays are considered to be escaped,
which is a source of unsoundness.

It is worth noting that unsoundness is not a fundamental limitation of the
SATURN framework. Sound analyses can be constructed in SATURN by using ap-
propriate summaries for both loops and functions and by iterating the analyses
to reach a fixed point. For example, Hackett and Aiken [2005] described the
design and implementation of a sound and precise pointer alias analysis in
SATURN.

8. RELATED WORK

In this section we discuss the relationship of SATURN to several other systems
for error detection and program verification.

8.1 FSM Checking

Several previous systems have been successfully applied to checking finite state
machine properties in system code. SATURN was partly inspired by the first
author’s previous work on Meta Compilation (MC) [Engler et al. 2000; Hallem
et al. 2002] and our project is philosophically aligned with MC in that it is a
bug detection, rather than a verification, system. In fact, SATURN began as an
attempt to improve the accuracy of MC’s flow-sensitive but path-insensitive
analysis.

Under the hood, MC attaches finite state machines (FSM) to syntactic
program objects (e.g., variables, memory locations, etc.) and uses an inter-
procedural data flow analysis to compute the reachability of the error state.
Because conservative pointer analysis is often a source of false positives for bug
finding purposes [Foster et al. 2002], MC simply chooses not to model pointers
or the heap, thereby preventing false positives from spurious alias relation-
ships by fiat. MC checkers use heuristics (e.g., separate FSM transitions for
the true and false branches of relevant if statements) and statistical methods
to infer some of the lost information. These techniques usually dramatically
reduce false positive rates after several rounds of trial and error. However,
they cannot fully compensate for the information lost during the analysis. For
example, in the code below,

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

SATURN: Scalable Framework for Error Detection Using Boolean Satisfiability • 39

/* 1: data correlation */

if (x) spin lock(&lock);

if (x) spin unlock(&lock);

/* 2: aliasing */

l = &p−>lock;

spin lock(&p−>lock);

spin lock(l);

MC emits a spurious warning in the first case, and misses the error in the
second. The first scenario occurs frequently in Linux, and an interprocedural
version of the second is also prevalent.

SATURN can be viewed as both a generalization and simplification of MC be-
cause it uniformly relies on Boolean satisfiability to model all aspects without
special cases. The lock checker presented in Section 5.5 naturally tracks locks
that are buried in the heap, or conditionally manipulated based on the values of
certain predicates. In designing this checker, we focused on two kinds of Linux
mutex errors that exhibited high rates of false positives in MC: double locking
and double unlocking (2 errors and 23 false positives [Engler et al. 2000]). Our
experiments show that SATURN’s improved accuracy and summary-based inter-
procedural analysis allow it to better capture locking behavior in the Linux
kernel and thus find more errors at a lower false positive rate.

While BLAST, SLAM, and other software model checking projects have made
dramatic progress and now handle hundreds of thousands of lines of code [Ball
and Rajamani 2001; Henzinger et al. 2002, 2003], these are whole-program
analyses. ESP, a lower-complexity approach based on context-free reachabil-
ity, is similarly whole-program [Das et al. 2002]. In contrast, SATURN analyzes
open programs and computes summaries for functions independent of their
calling context. In our experiments, SATURN scaled to millions of lines of code
and should in fact be able to scale arbitrarily, at least for checking properties
that lend themselves to concise function summaries. In addition, SATURN has
the precision of path-sensitive bit-level analysis within function bodies, which
makes handling normally difficult-to-model constructs, such as type casts, easy.
In fact, SATURN’s code size is only about 25% of the comparable part of BLAST
(the most advanced software model checker available to us), which supports
our impression that a SAT-based checker is easier to engineer.

CQual is a quite different, type-based approach to program checking [Foster
et al. 2002; Aiken et al. 2003]. CQual’s primary limitation is that it is path
insensitive. In the locking application path sensitivity is not particularly im-
portant for most locks, but we have found that it is essential for uncovering the
numerous trylock errors in Linux. CQual’s strength is in sophisticated global
alias analysis that allows for sound reasoning and relatively few false positives
due to spurious aliases.

8.2 Memory Leak Detection

Memory leak detection using dynamic tools has been a standard part of the
working programmer’s toolkit for more than a decade. One of the earliest

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

40 • Y. Xie and A. Aiken

and best known tools is Purify [Hastings and Joyce 1992]; see Chilimbi and
Hauswirth [2004] for a recent and significantly different approach to dynamic
leak detection. Dynamic memory leak detection is limited by the quality of the
test suite; unless a test case triggers the memory leak, it cannot be found.

More recently there has been work on detecting memory leaks statically,
sometimes as an application of general shape or heap analysis techniques, but in
other cases focusing on leak detection as an interesting program analysis prob-
lem in its own right. One of the earliest static leak detectors was LCLint [Evans
1996], which employs an intraprocedural dataflow analysis to find likely mem-
ory errors. The analysis depends heavily on user annotation to model function
calls, thus requiring substantial manual effort to use. The reported false posi-
tive rate is high mainly due to path-insensitive analysis.

Prefix [Bush et al. 2000] detects memory leaks by symbolic simulation. Like
SATURN, Prefix uses function summaries for scalability and is path sensitive.
However, Prefix explicitly explores paths one at a time, which is expensive for
procedures with many paths. Heuristics limit the search to a small set of “inter-
esting” paths. In contrast, SATURN represents all paths using boolean constraints
and path exploration is implicit as part of boolean constraint solving.

Chou [2003] described a path-sensitive leak detection system based on static
reference counting. If the static reference count (which overapproximates the
dynamic reference count) becomes zero for an object that has not escaped, that
object is leaked. Chou [2003] reported finding hundreds of memory leaks in an
earlier Linux kernel using this method, most of which have since been patched.
The analysis is quite conservative in what it considers escaping; for example,
saving an address in the heap or passing it as a function argument both cause
the analysis to treat the memory at that address as escaped (i.e., not leaked).
The interprocedural aspect of the analysis is a conservative test to discover
malloc wrappers. SATURN’s path- and context-sensitive analysis is more precise
both intra- and interprocedurally.

We know of two memory leak analyses that are sound and for which sub-
stantial experimental data is available. Heine and Lam [2003] used ownership
types to track an object’s owning reference (the reference responsible for deal-
locating the object). Hackett and Rugina [2005] described a hybrid region and
shape analysis (where the regions are given by the equivalence classes defined
by an underlying points-to analysis). In both cases, on the same inputs SATURN

finds more bugs with a lower false positive rate. While SATURN’s lower false pos-
itive is not surprising (soundness usually comes at the expense of more false
positives), the higher bug counts for SATURN are surprising (because sound tools
should not miss any bugs). For example, for binutils SATURN found 136 bugs
compared with 66 found by Heine and Lam [2003]. The reason appears to be
that Heine and Lam [2003] inspected only 279 of 1106 warnings generated by
their system; the other 727 warnings were considered likely to be false positives.
(SATURN did miss one bug reported by Heine and Lam [2003] due to exceeding
the CPU time limit for the function containing the bug.) Hackett and Rugina
[2005] reported 10 bugs in OpenSSH out of 26 warnings. Here there appear to
be two issues. First, the abstraction for which the algorithm is sound does not
model some common features of C, causing the implementation for C to miss

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

SATURN: Scalable Framework for Error Detection Using Boolean Satisfiability • 41

some bugs. Second, the implementation does not always finish (just as SATURN

does not).
There has been extensive prior research in points-to and escape analysis.

Access paths were first used by Landi and Ryder [1992] as symbolic names
for memory locations accessed in a procedure. Several later algorithms (e.g.,
[Emami et al. 1994; Wilson and Lam 1995; Liang and Harrold 2001]) also make
use of parameterized pointer information to achieve context sensitivity. Escape
analysis (e.g., Whaley and Rinard [1999]; Ruf [2000]) determines the set of
objects that do not escape a certain region. The result is traditionally used
in program optimizers to remove unnecessary synchronization operations (for
objects that never escape a thread) or enable stack allocation (for ones that never
escape a function call). Leak detection benefits greatly from path sensitivity,
which is not a property of traditional escape analyses.

8.3 Other SAT-Based Checking and Verification Tools

Rapid improvements in algorithms for SAT (e.g., zChaff [Zhang et al. 2001;
Moskewicz et al. 2001], which we use in SATURN) have led to its use in a variety
of applications, including recently in program verification.

Jackson and Vaziri [2000] were apparently the first to consider finding bugs
via reducing program source to Boolean formulas. Subsequently there has been
significant work on a similar approach called bounded model checking [Kroen-
ing et al. 2003]. Clarke et al. [2004b] have further explored the idea of SAT-based
predicate abstraction of ANSI-C programs. While there are many low-level al-
gorithmic differences between SATURN and these other systems, the primary
conceptual difference is our emphasis on scalability (e.g., function summaries)
and focus on fully automated inference, as well as checking, of properties with-
out separate programmer-written specifications.

9. CONCLUSION

We have presented SATURN, a scalable and precise error detection framework
based on Boolean satisfiability. Our system has a novel combination of features:
it models all values, including those in the heap, path sensitively down to the bit
level, it computes function summaries automatically, and it scales to millions
of lines of code. We have experimentally validated our approach by conducting
two case studies involving a Linux lock checker and a memory leak checker. Re-
sults from the experiments show that our system scales well, parallelizes well,
and finds more errors with fewer false positives than previous error detection
systems.

REFERENCES

AHO, A. V., SETHI, R., AND ULLMAN, J. D. 1986. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, Reading, MA.

AIKEN, A., FOSTER, J. S., KODUMAL, J., AND TERAUCHI, T. 2003. Checking and inferring local non-
aliasing. In Proceedings of the 2003 ACM SIGPLAN Conference on Programming Language De-
sign and Implementation. ACM Press, New York, NY, 129–140.

BALL, T., COOK, B., LEVIN, V., AND RAJAMANI, S. 2004. SLAM and Static Driver Verifier: Technology
transfer of formal methods inside Microsoft. In Proceedings of Fourth International Conference
on Integrated Formal Methods. Springer, Berlin, Germany.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

42 • Y. Xie and A. Aiken

BALL, T. AND RAJAMANI, S. K. 2001. Automatically validating temporal safety properties of inter-
faces. In Proceedings of the SPIN 2001 Workshop on Model Checking of Software. Lecture Notes
in Computer Science, vol. 2057. Springer, Berlin, Germany, 103–122.

BRYANT, R. E. 1986. Graph-based algorithms for Boolean function manipulation. IEEE Trans.
Comput. C-35, 8 (Aug.), 677–691.

BUSH, W., PINCUS, J., AND SIELAFF, D. 2000. A static analyzer for finding dynamic programming
errors. Softw. Pract. Exper. 30, 7 (Jun.), 775–802.

CHILIMBI, T. AND HAUSWIRTH, M. 2004. Low-overhead memory leak detection using adaptive sta-
tistical profiling. In Proceedings of the 11th International Conference on Architectural Support
for Programming Languages and Operating Systems.

CHOU, A. 2003. Static analysis for bug finding in systems software. Ph.D. dissertation. Stanford
University, Stanford, CA.

CLARKE, E., KROENING, D., AND LERDA, F. 2004a. A tool for checking ANSI-C programs. In Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), K. Jensen and A. Podelski,
Eds. Lecture Notes in Computer Science, vol. 2988. Springer, Berlin, Germany, 168–176.

CLARKE, E., KROENING, D., SHARYGINA, N., AND YORAV, K. 2004b. Predicate abstraction of ANSI-C
programs using SAT. Form. Meth. Syst. Des. 25, 2-3 (Sept.), 105–127.

DAS, M., LERNER, S., AND SEIGLE, M. 2002. Path-sensitive program verification in polynomial time.
In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design and
Implementation (Berlin, Germany).

EMAMI, M., GHIYA, R., AND HENDREN, L. 1994. Context-sensitive interprocedural points-to analysis
in the presence of function pointers. In Proceedings of the ACM SIGPLAN 1994 Conference on
Programming Language Design and Implementation.

ENGLER, D., CHELF, B., CHOU, A., AND HALLEM, S. 2000. Checking system rules using system-specific,
programmer-written compiler extensions. In Proceedings of the Conference on Operating Systems
Design and Implementation (OSDI).

EVANS, D. 1996. Static detection of dynamic memory errors. In Proceedings of the ACM SIGPLAN
1996 Conference on Programming Language Design and Implementation.

FOSTER, J. S., TERAUCHI, T., AND AIKEN, A. 2002. Flow-sensitive type qualifiers. In Proceedings of
the 2002 ACM SIGPLAN Conference on Programming Language Design and Implementation.
1–12.

HACKETT, B. AND AIKEN, A. 2005. How is aliasing used in systems software? Tech. rep. Stanford
University, Stanford, CA.

HACKETT, B. AND RUGINA, R. 2005. Region-based shape analysis with tracked locations. In Pro-
ceedings of the 32nd Annual Symposium on Principles of Programming Languages.

HALLEM, S., CHELF, B., XIE, Y., AND ENGLER, D. 2002. A system and language for building system-
specific, static analyses. In Proceedings of the ACM SIGPLAN 2002 Conference on Programming
Language Design and Implementation (Berlin, Germany).

HASTINGS, R. AND JOYCE, B. 1992. Purify: Fast detection of memory leaks and access errors. In
Proceedings of the Winter USENIX Conference.

HEINE, D. L. AND LAM, M. S. 2003. A practical flow-sensitive and context-sensitive C and C++
memory leak detector. In Proceedings of the ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation. 168–181.

HENZINGER, T. A., JHALA, R., AND MAJUMDAR, R. 2002. Lazy abstraction. In Proceedings of the 29th
Annual Symposium on Principles of Programming Languages.

HENZINGER, T. A., JHALA, R., MAJUMDAR, R., AND SUTRE, G. 2003. Software verification with Blast. In
Proceedings of the SPIN 2003 Workshop on Model Checking Software. Lecture Notes in Computer
Science, vol. 2648. Springer, Berlin, Germany, 235–239.

JACKSON, D. AND VAZIRI, M. 2000. Finding bugs with a constraint solver. In Proceedings of the 2000
ACM SIGSOFT International Symposium on Software Testing and Analysis.

KHURSHID, S., PASAREANU, C., AND VISSER, W. 2003. Generalized symbolic execution for model check-
ing and testing. In Proceedings of the 9th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. Springer, Berlin, Germany.

KROENING, D., CLARKE, E., AND YORAV, K. 2003. Behavioral consistency of C and Verilog programs
using bounded model checking. In Proceedings of the 40th Design Automation Conference. ACM
Press, New York, NY, 368–371.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

SATURN: Scalable Framework for Error Detection Using Boolean Satisfiability • 43

LANDI, W. AND RYDER, B. 1992. A safe approximation algorithm for interprocedural pointer alias-
ing. In Proceedings of the ACM SIGPLAN 1992 Conference on Programming Language Design
and Implementation.

LIANG, D. AND HARROLD, M. 2001. Efficient computation of parameterized pointer information for
interprocedural analysis. In Proceedings of the 8th Static Analysis Symposium.

MOSKEWICZ, M., MADIGAN, C., ZHAO, Y., ZHANG, L., AND MALIK, S. 2001. Chaff: Engineering an
efficient sat solver. In Proceedings of the 39th Conference on Design Automation Conference.

RUF, E. 2000. Effective synchronization removal for Java. In Proceedings of the ACM SIGPLAN
2000 Conference on Programming Language Design and Implementation.

WHALEY, J. AND RINARD, M. 1999. Compositional pointer and escape analysis for Java programs.
In Proceedings of the 14th ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications.

WILSON, R. AND LAM, M. 1995. Efficient context-sensitive pointer analysis for C programs. In
Proceedings of the ACM SIGPLAN 1995 Conference on Programming Language Design and Im-
plementation.

XIE, Y. AND CHOU, A. 2002. Path sensitive analysis using Boolean satisfiability. Tech. rep. Stanford
University, Stanford, CA.

ZHANG, L., MADIGAN, C., MOSKEWICZ, M., AND MALIK, S. 2001. Efficient conflict driven learning in a
Boolean satisfiability solver. In Proceedings of the International Conference on Computer-Aided
Design (San Jose, CA).

Received June 2005; revised January 2006; accepted August 2006

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 16, Publication date: May 2007.

