
An Empirical Investigation of Program Spectra*

Mary .Jean Harrold Gregg Rothermel

harrold@cis.ohio-state.edu grother@cs.orst.edu

Ohio State U. Oregon State U.

R.ui Wu

rwu@cis.ohio-state.edu

Ohio State U.

Abstract

A variety of expensive software maintenance and testing
tasks require a comparison of the behaviors of program
versions. Program spectra have recently been proposed
as a heuristic for use in pcrforrning such comparisons.
To assess t,lrc potential 11sefulness of spectra in this con-
t,ext, we conducted an experiment that examined the
relationship bct,wccn program spectra and program be-
havior, and empirically compared several types of spec-
tra. This paper reports the results of that experiment,.

1 Introduction

A variety of software testing and maintenance tasks re-
quire us to compare the behaviors of multiple program
versions. For example, when we rnodify a. program, WC
use regression testing to compare the behavior of the
modified version to the behavior of its previous version
in the hope of detecting faults caused by the modifi-
cations. Similarly, when prograrns exhibit “regression
failures” (behavioral failures that did not occur in pre-
cedir1g versions), we cornparti the behaviors of versions
in the hope of pinpointing the cause of t,hosc failures.
Tasks such as these constitute a significant percentage
of the costs of software testing and maintenance; tech-
niques that reduce these costs are valuable.

Path spectra were recently proposed as a heuristic for
understanding the magnitude of the behavioral changes
between program versions [IO] .l A path spectrum is a dis-
tribution of paths derived from an execution of a pro-

‘This work was supported iii part, by a grant from Microsoft
Inc., by NSF’ ~inrlw NY1 Award CCX-9696157 to Ohio State Univer-

sity, ESS Award CCR-9707792 to Ohio State University and Oregon

State 7Jniversity, and CAREER Award CCR-9703108 to Oregon State

University.

Permission to mak. diQit.1 or hsrd copies of .lI or p.rt of this work for
p.r.0n.l or cl...room us. is Qrsnted without 1.. providsd thst
copi.. .r. not msd. or dis1ribut.d for profit or comm.rci.l sdvsn-
t.QS snd that copiss besr this nofic. and th. full citation on th. first pans.
To copy otharwis., to republish. to po.1 on servers or to
rsdistribut. to lists, r.quir.s prior specific psrmission and/or . fee.
PASTE ‘96 Montrsal, Canada
0 1996 ACM l-561 13.055-4/96/0006..,$5.00

Liii Yi

liuyiQcs.orst.edu

Oregon State U

gram using program profiling. A path-spectra-compar-
ison technique compares path spectra to gain insight
into program behavior. Such a. technique rnay aid in
addressing testing and maintenance tasks that require
such understanding. For example, constructing expected
011tp71ts for programs car1 be costly; the presence of
spectra differences may serve as an indicator of cases in
which t,hat const,ruction is unnecessary. Alternatively,
spectra. comparison [lo] may help programmers locate
points of divergence in computations, that may guide
them in fault localization.

For path spectra to be useful in these contexts, how-
ever, they must, provide meaningful behavior signatures.
An assessment of the potential usefulness of path-spectra
comparisons requires an understanding of the correla-
tion between spectra differences and program behavior.

Program behavior car1 be measured in many ways;
however, one measure - important, to uses of spectra
such as those described above ~~~ considers whether par-
ticular inputs cause a program to fail. Reference [lo]
hypothesizes a strong correlation between spectra dif-
ferences and faults, at least- in one direction, stating
that given a faulty program and corrected version, one
would expect, differences between spectra on an input
that, produces the bug in the original program. One
goal of this work is to empirically investigate this claim.

If path spectra prove useful then other spectra such
as branch spectra or complete-path spectra may also he
useful, and may provide a range of techniques, varying
in cost and effectiveness, for examining program behav-
ior. Reference [lo] conjectures, however, that edge and
node spectra will not be as useful as path spectra for dis-
tinguishing program behavior. There is some empirical

‘The primary use of spectra investigated in [lo] addresses the

“Year 2000 problem,” and involves comparing spectra from two fun,s

o,f the same program cm input data that differs only with respect to

date. The intuition is that spectra differences may help programmers

locate date-dependent computations. The alternative use of spectra

that we investigate here, in which spectra are collected from runs of

A program and a slightly different. version of the program on the same

data, is briefly described in [lo], but not pursued in depth. The goal

of this work is to empirically investigate this alternative suggestion.

83

Table 1: A catalog of program spectra.

data [l] to support this conjecture: this data indicates
that path profiling data may be superior to edge profil-
ing data for certain applications. Another recent study
[4], however, suggests the contrary. These studies have
not directly investigated program spectra. A second
goal of this work is to perform such an investigation.

2 Program Spectra

A program spectrum characterizes, or provides a sig-
nature of, a program’s behavior [lo]. Path spectra use
path profiling [l, 31 to track t,he execution of loop-free
intraprocedural paths in a program. Path spectra can
track the frequency of a path occurrence, or ignore fre-
quency and track whether or not. the path occurred.
Spectra can also be constructed based on node or edge
profiling data.

In addition to path, node, and edge spectra, many
additional signatures of program behavior can be treated
as spectra. To obtain a broader empirical view of the
relationships among spectra, we consider nine distinct
types of spectra. We next describe these spectra (Table
l), and use an example to illustrate them. In the fol-
lowing, let P be a program.

Branch spectra. Branch spectra record the set of
conditional branches that are exercised as P executes.
We treat the entry to a procedure as a branch; under

this treatment, for inputs on which programs terminate,
branch spectra are functionally equivalent to edge spec-
tra. If, for each conditional branch in P, the spectrum
merely indicates whether or not that branch was ex-
ercised, the spectrum is a branch-hit spectrum (BHS).
If, for each conditional branch in P, the spectrum in-
dicates the number of times that branch was executed,
the spectrum is a branch-count spectrum (BCS).

Path spectra. Path spectra [IO] record the set of loop-
free intraprocedural paths that are traversed as P ex-

ecutes. If, for each such loop-free path in P, the spec-
trum merely indicates whether or not that path was
executed, the spectrum is a path-hit spectrum (PHS).

If, for each loop-free intraprocedural path in P, the
spectrum indicates the number of times that path was
executed, the spectrum is a path-count spectrum (PCS).

Complete-path spectrum. A complete path spec-

trum (CPS) records the complete path that is traversed
as P executes.

Data-dependence spectra. Data-dependence spec-
tra record the set of definition-use pairs that are exer-
cised as P executes. If, for each definition-use pair in
P, the spectrum merely indicates whether or not that
definition-use pair was exercised, the spectrum is a data-
dependence-hit spectrum (DHS). If, for each definition-
use pair in P, the spectrum indicates the number of
times that definition-use pair was exercised, the spec-
trum is a data-dependence-count spectrum (DCS).

Output spectrum. An output spectrum (OPS) records
the output produced by P as it executes.

Execution-trace spectrum. An execution trace spec-
trum (ETS) records the sequence of program statements
traversed as P executes.

At first glance, CPS and ETS may appear to be the
same, because they both record the complete control
flow path through P. They differ, however, in that CPS
does not record the actual instructions executed along
that path, whereas ETS does.

OPS and ETS are of interest in this context because
of their relationship to regression testing. One impor-
tant regression testing activity is the selection of a sub-
set of the test suite that was originally used to test the
program for use in testing the modified program; Ref-
erence [ll] provides details. In brief, given a program
P, test suite T for P, and modified version P’, we want
to identify the tests in T that reveal faults in P’. For
tests whose specified behavior has not changed, these
“fault-revealing” tests are exactly the tests that pro-
duce different output spectra on P and P’. In general,
there is no algorithm to precisely identify these tests,

84

program Sums
1 read i
2 sum= 0
3 while i < 10
4 read j
5 sum = sum + j
6 i = i + 1

endwhi le
7 print sum
end Sums

Figure 1: Sums and its control flow graph.

but under certain conditions, the tests that produce dif-
ferent execution trace spectra constitute a conservative
(safe) approximation. Several regression test selection
techniques [2, 5, 121 exploit this relationship to select
safe subsets of T for use in regression testing P’.

To illustrate these spectra, we present program Sums
and its control flow graph (Figure l), and the spectra for
Sums on two executions (Table 2): execution 1 uses in-
put IO and has expected output 0, and execution 2 uses
inputs 8, 2, and 4 and has expected output 6. Where
applicable, the two types of spectra in each category -
hit and count_ ~~ are shown in columns on the right in the
table; where the spectra category does not have these
subtypes, “NA” is listed. Consider, for example, the
branch spectra for Sums. There are three conditional
branches in Sums, and the two executions exercise all
of them: the BHS for execution 1 records Y for edges
(1,2) and (3,7); the BHS for execution 2 records Y for

edges (I?), (3,4), and (3,7); the BCS for execution 1

records that edges (1,2) and (3,7) were each exercised
once; and the BCS for execution 2 records that edges
(1,2) and (3,7) were exercised once, and edge (3,4) was
exercised twice.

We can analytically compare types of spectra by de-
termining a subsumption relationship between them. A
spectra type S1 subsumes spectra type S2 if and only if,
whenever the S2 spectra for program P, version P’, and
input i differ, the S1 spectra for P, P’, and i differ. Ref-
erence [IO] discusses the subsumption relationship that
exists between path and edge (and thus branch) spec-
tra; the following theorem establishes the subsumption
relationship for all of the spectra we are considering.

Theorem 1: The spectra listed in Table 1 form the
subsumption hierarchy shown in Figure 2, in which the
spectra type that is the source of an edge directly sub-
sumes the spectra type that is the target of that edge.

ETS

/i\
DCS CPS OPS

J +
DHS PCS

BC< >HS
\ J

BHS

Figure 2: Spectra subsumption hierarchy. The notation A + B

indicates that spectra type A subsumes spectra type B.

3 The Experiment

3.1 Objectives

The objectives of our experiment were to empirically
investigate the following questions:

1. Given program P, faulty version P’, and universe
of inputs U for P, what correlation exists between
inputs that cause P and P’ to produce different
spectra. More precisely:

(a) How often does an input i E U that causes P’

to fail produce different spectra for P and P’?

(b) How often does an input i E U that produces
different spectra for P and P’ cause P’ to fail?

2. What are the relationships between the various
spectra types, both in terms of their correlation
with program-failure behavior, and in terms of
their correlation with one another?

3.2 Measures

To quantify l(a) and 1 (b), we utilize two measures.
Given program P, faulty version P’, and universe of
inputs U for P, let FR(P, P’, U) be the set of inputs
in U that cause P’ to fail (i.e., FR(P, P’, U) are Fault
Revealing for P, P’, and U). For each spectra variety S,
let SR(P, P’, U) be the set of inputs in U that produce
spectra on P and P’ that differ (i.e., SR(P, P’, U) are

spectrum 3 Bevealing for P, P’, and U).

Degree of Imprecision. For spectra type S, any in-
put i in U that is in SR(P, P’, U) but not in FR(P, P’, U)

exhibits a spectra difference under S that is not corre-
lated with a failure. For such an input i, S-spectra-
comparison is “imprecise”. The degree of imprecision
of S with respect to P, P’ and U is given by the equa-
tion:

ISR(P, P’, u) - FR(f’, P’, U)l * 1oo
ISWE P’, U) I

(1)
Proof: See Reference [7].

85

F:xrcution I Execution 2

(input is 10) (input, is 8, 2, 4)

spectrlrnr Profiled rn,thtzes Hit Count Hit Count,
___-

IIranch (I>“) Y 1 Y 1

(3,4) N 0 Y 2

(3,7) Y 1 Y I

Path (1,2,3,7) Y 1 N 0

(1,3,7), (1,2,3,4,5,6,7). (1,3,4,5,6,7) N 0 Y 1

(:orrlpl&-pat 11 (I ,2,X7) Y NA N NA

[l,2,3.(4,5,(i,n)“,?) N NA Y NA

Uata~rleprnil~~lcc~ (1,(:1,7),i). (2,7,sum) Y I N 0

(1.(3.4),i). (l,(i.i), (6,(3,7),i), (2, 5,sum). (5,7,sum).(6,6,i), (6,(3,4),i), (5,5,sum) N 0 Y 1

(4,5,j) N 0 Y 2

OutpLLt sum is 0 Y NA N N A

sum 1s 6 N NA Y NA

ISxecution-trace (Sl,SZ,S:i,S7) Y NA N NA

(Sl,S2,S3,(S4,%,S6,S3)*,S7) N NA Y NA

Table 2: Spectra for program Sums of Figure 1

Degree of Unsafety. For spectra type S, any input 1:
in U that is in FR(P, P’, U) but, not in SR(P, P’, U) ex-
hibits a, failure that is not, correlat,ed with a spectra. dif-

ference of type S. For such an i, S-spectra-comparison
is “unsafe”. The degree of unsafety of S with respect
to P, P’, and U is given by t,he equation:

IFR(P, P’, U) - SR(I’, P’, U)(* loo

IFR(P, P’, U) I
(2)

Note that, we can determine the degree of impreci-

sion of S even though S is not safe. In this respect,

our use of the term “imprecision” differs from its use

in areas such as compiler optimization, where safe anal-

yses are required. In the context of maintenance and

testing, howtlver, safe analyses are not always necessary

a technique t,hat identifies a sufficiently large subset

of some set of f&ts can be useful, even though it omits

some members of that set, of facts. However, we still

wish to know, even of unsafe analyses, the degree to

which they identify spurious results. Our use of “im-
precision” supports this.

Note further that when P is correct for input i, and
when P’ is intended to have the same output for i as

P, then i is in FR(P, P’, U) if and only if P and P’
produce different output for i, or equivalently, if and
only if i is in OPSR(P, P’, U).

3.3 Experimental Instrumentation

We used seven C programs as experimental subjects
(Table 3). Each program has a variety of versions -
each containing one fault-inducing modification whose
cont,rol How graph structure is the same as that of the
original program. Each subject program also has a large

universe of inputs.2 By construction, for each of our
experimental programs P (with their universe U) arid

versions P’, FR(P, P’, U) = OPSR(P, P’, U).

Program

totinfo

schedule1

schedule2

teas

printtokl

printtok2

replace

Lines

Of

Code

431

416

309

238

584

513

569

Number 1 Input

20 5542

Description

information measure

priority scheduler

priority scheduler

altitude separation

lexical analyzer

lexical analyzer

pattern replacement

Table 3: Subject programs

We used a variety of tools and techniques to compute
and record the various types of spectra. For the output
spectra (OPS), we ran P and the P’s on the inputs in

U. For the execution trace spectra (ETS), we used our
test selection tool, DejaVu [12], to identify the inputs
in U that traverse modified statements in tbc P’s.~ For

the branch-hit spectra (BHS), the branch-count spec-
tra (BCS), the path-hit spectra (PHS), the path-count
spectra (PCS) the data-dependence-hit spectra (DHS),
the data-dependence-count spectra (DCS), and the com-
plete-path spectra (CPS) we used the various coverage

tools from the Aristotle analysis system [6] and the
FATE data-flow testing system [9] to record the enti-

‘These programs, versions, and inputs were assembled by re-

searchers at Siemens Corporate Research for a study of the f;tult-

detection abilities of control- and data-flow coverage criteria [8].

31n general this approach may identify a superset of the inputs that

produce different execution traces; however, in prart.ice we can deter-

mine when the approach incurs imprecision, and we know that, in all

the cases examined for our experimentation, the algorithm identified

precisely the inputs that produced different execution t,races.

86

ties (i.e., branches, paths, definition-use pairs, complete

pat,hs) executed in P and the P’s,

3.4 Experimental Design

Variables. The experiment manipulated a single inde-

pendent variable, namely, the spectra: OPS, ETS, BHS,

BCS, CPS, PHS, PCS, DHS, and DCS. On each rurl

(with P, I~‘; and U), we mea.sured a single dependent
variable, narm~ly, the set. of inputs in (: that revealed
spectra differr>nces between P and P’. We utilized this

data to examine the degrees of imprecision and unsafety

of thr various spectra, and t,o compa.re spectra, usirig an

ana.lysis st,rat,eg,y dcscribcd later in this section.

Design. This cxpc‘rirncnt, uses a n,ithi,n-subjects design:

we applied Rich spectra calculation to each (base pro-

gram. modified version) pair, for each input, in the uni-
verse for that base program. We then examined the
sptrct,ra with rclspett to the OPS results obtained or1
that base program, version and universe, to measure
the values of dependent, variables.

Threats to Validity. The primary threats to validity
for this experiment are external: these are conditions
that limit our ability to generalize the results of our
study to a larger population of subjects. First, the sub-
ject programs are not large, and we cannot claim that
they represent a random selection over the population
of progranls as a whole. Second, the faulty program
versions all involve simple, one- or two-line faults, man-
ually seeded, with the intent of simulating “real” faults,
but with no data to indicate that they represent a ran-
dom selection over the population of faults as a whole.
These threats can be reduced only by repeated applica-
tion of the experiment on wider classes of subjects.

A second source of threats to validity for this study
are internal: these are influences that can affect the de-
pendent variables without the researchers’ knowledge.
Our greatest concerns here involve instrumentation ef-
fects, which can bias our results. To control for such
effects, we utilized two types of cross-checks: (1) we
obtained certain results independently using different
instruments at different sites and examined them for
correlation; (2) we examined results for adherence to
the analytically det,ermined spectra hierarchy relation-
ship. We did not, however, control for the structure of
source prograrns or for the locality of program changes.

Analysis Strategy. We utilized the data gathered
from our experimental runs as follows. First, to ex-
amine the correlation between inputs that cause P’ to

fail and inputs t,hat cause P to produce different spectra
than P’ (objective l), for each program P and version

P’, with respect to universe U, and for each spectra
type S, we calculated:

1. The degree of imprecision of S with respect to P,
P’, and U.

2. The degree of unsafety of S with respect to P, I”,

and li.

Second, to compare spectra (objective 2), for each pro-
gram P and version P’, with respect to universe U, and

for each pair of spectra types S1 and S2, we calculated:

1.

2.

3.

4.

The number of inputs in U that cause spectra tlif-
ferences of type S1.

The number of inputs in U that cause spectra dif-
ferences of type S,.

The number of inputs in U that cause spectra dif-
ferences of type S1 but not, of type 5’2.

The number of inputs in U that cause spectra dif-
ferences of type S, but not of type S1.

We also summarized this data over the entire set of
(program, modified version) pairs, considering each for
the entire universe U of inputs (245,087 inputs). The
next section presents and analyzes this data.

4 Data and Analysis

Figure 3 uses boxplots to present the degrees of unsafety
and imprecision calculated for each spectra over the 88
different (program, rnodified program) pairs. (The cap-
tion provides an explanation of boxplots.) The data re-
veals several things relative to our first objective. First,
the unsafety data (left) supports the conjecture that we
can expect to see spectra differences on inputs that, elicit
faults. Every variety of spectra demonstrates a median
degree of unsafety of 0%. Furthermore, four varieties of
spectra (CPS, PCS, BCS, and DCS) demonstrate a 0%
degree of unsafety over their entire first, second, and

third quartiles; in other words, on over three quarters
of the (program, modified program) pairs, these spectra

demonstrated differences on efjery input that elicited a
fault. For the BHS and PHS spectra, the degrees of
unsafety demonstrate a greater interquartile range, re-
flecting greater diversity in results. Finally, all spectra
other than ETS displayed occasional extreme results,
represented by the outliers, and further reflected in the
fact that their means are noticeably higher than their
medians. Significantly, only ETS is safe: in all cases,
all inputs that reveal faults also reveal ETS spectra dif-
ferences, and no other spectra share this trait.

87

BHS BCS PHS PCS CPS DHS DCS MTS

spectra type

80

/I X

X

1

X

-

-

BHS BCS PHS PCS CPS DHS DCS MTS

spectra type

Figure 3: Graphs showing the degrees of unsafety and imprecision of spectra. The vertical axes list degrees of unsafety and imprecision,
respectively; the horizontal axes list spectra types. In each boxplot, the dashed line represents the median, and the “X” mark represents
the mean, of the degree of imprecision or unsafety that occurred for that spectra. The box indicates the interquartile range the range
in which the middle half of the data falls -. and also indicates where that data falls with respect to the median. The whiskers above
and/or below boxes indicate the percentages at which data above or below the interquartile range fell; however, data points at a distance
of greater than I .5 times the interquartile range are considered outliers, and represented by small circles.

The imprecision data presented in Figure 3 (right)
illustrates that not all inputs that elicit spectra differ-
ences also produce failures: all varieties of spectra incur
imprecision. Significantly, ETS incurs a much higher
median degree of imprecision (95%) than the other vari-
eties of spectra, for which median degree of imprecision
ranges from 3% to 17%. Thus, the cost of the safety
achieved by ETS, in terms of degree of imprecision, is
high. However, imprecision results for all spectra other
than ETS display a large interquartile range; thus, de-
gree of imprecision varies a great deal more, overall,

than degree of unsafety.
One additional significant result is that in terms of

both degrees of imprecision and unsafety the CPS, PCS,
and BCS spectra display nearly identical behavior.
These results do not support the conjecture that path
spectra will be more sensitive indicators of different be-
havior than branch spectra, where behavior is measured
in terms of program failure behavior.

Toward our second objective, Table 4 lists data per-
taining to the relationship between various spectra. Fig-
ure 4 provides a graphical view of the portion of that
data that compares the various spectra with OPS, within
the context of the entire universe of inputs as applied to
all (program, modified program) pairs (see the caption
for further description.) A notion of the relationship

among the spectra can be obtained by comparing the
sizes of shaded areas in Figure 4. In particular, it is
easy to see the relationship between ETS, DCS, DHS,
and CPS from this figure.

Figure 5 provides a closer view of the relationship be-
tween CPS, PCS, PHS, BCS, and BHS that shows, for
each of these spectra types, the number of inputs for
which spectra differences occurred. Like the impreci-

sion and unsafety results, this figure illustrates the near
equivalence, over our programs, modified versions, and
input universes, of the CPS, PCS, and BCS spectra, as
well as the relative closeness of the PHS and BHS spec-
tra. Furthermore, where analytical results foretell that
neither PHS nor BCS subsumes the other, in practice
BCS subsumes PHS: BCS spectra differences occurred
in 5836 cases in which PHS spectra differences did not
occur, but in all cases in which PHS spectra differences
occurred, BCS spectra differences also occurred.

These results do not support the conjecture that
path spectra will be more sensitive indicators of differ-
ent behavior than branch spectra. For the 245,087 in-
puts, PCS is never more sensitive than BCS, and CPS is
more sensitive than PCS on only 7 inputs. Essentially,
despite the analytical differences between spectra de-
picted by our subsumption hierarchy, in the cases we
studied, the CPS, PCS and BCS spectra collapse into

88

OPSBHS

-I
OPS-BCS

OPS-PHS

OPS-PCS

OPS-DHS

OPS-DCS

OPS-CPS

q
OPS-ETS

Figure 4: C+raphical comparison of OF’S with t,he other spectra. The eight outer squares represent the comparison of the Of S spect,ra
to thr other eight spectra, rrspect,ively, as labeled. Each such square represents the entire universe of input points over all (program,
modified version) pairs. Within t,hc outer squares, the lightly shaded areas indicate the percentages of input points that caused only
XS-spectra differences (X.5’ # OF’S), the medium shaded areas represent the percentages of input points that caused only OPS-spectra
differences, and the darkly shaded areas represent the percentages of input points under both XS and OPS.

one another. The three spectra have nearly equivalent
abilities to distinguish differences in program behaviors.

BHS PHS BCS PCS CPS

spectra type

Figure 5: Comparison of CPS, BCS, PCS, PHS, and BHS, show-

ing, for each spectra type (horizontal axis), the number of inputs

for which spectra differences occurred (vertical axis).

5 Conclusions

We have described an empirical investigation of the cor-
relation betweerl spectra and program failure behavior,
and the relationships between various types of spectra.

We emphasize that our study has considered only
one scenario in which the usefulness of program spectra
has been postulated: the scenario in which spectra from
a program and modified version, run on the same input,

are compared. Our results do not provide data applica-
ble to the use of spectra when a single program is run
on two slightly different inputs. However, given the de-
gree to which spectra types produced nearly equivalent
results for our subjects, further empirical study of the
relationship between spectra types in the latter scenario
would be appropriate.

We also stress that our study has focused on just
one indicator of program behavior fault-revealingness.
This indicator is important, and the fact, that spectra
do correlate with it at least in one direction - is signif-
icant. Whether spectra will correlate with other rnea-
sures of behavior, such as measures based on sequences
of execution states [IO], is a subject, for future inves-
tigation. Our comparisons of spectra to each other,
however, are not restricted to fault-revealing behavior.

Finally, as discussed earlier, there are some threats
to validity for this experiment, primarily concerning
representativeness of subjects. Additional experimen-
tation with a variety of subjects is necessary to lessen
these threats.

Keeping the foregoing in mind, however, our results
support several conclusions. First, although the execu-
tion trace spectra emerged as the only spectra to neces-
sarily exhibit differences for inputs that exhibit faults,
certain other types of spectra differences (i.e., CPS,
PCS, and BCS) also correlate with high frequency (at

89

A I3 C

Spectra Size of Size of

(.Sl-S2) Sl(’ * U)
3 > S’L(, > * * U)

oPs-Bns 8076 10536

OPS-I3cs 8076 17956

OPS-PIIS 8076 12120

OPS-PC’S I , 8076 17956

OPS-DHS 8076 37881

OPS-DCS 8076 40372

OPS-CPS 807fi L7963

OPS-ETS 8076 13015J

r3lIs-u<:s I (I:,36 17956

HIIS-PHS 10536 12120

HHS-PCS IO536 17956

HHS-DHS 10536 37881

RHS-DC’S 10536 40372

BHS-CPS 10536 117963

HHS-ETS 10536 130151

BCs-Pns 17956 12120

HC’S-PCS I. 17956 17956

IK’S-DHS >. . 17956 37881

HCS-DCS 17956 40372

rK:s-CPS 17956 17!163

RCS-ETS 17956 130151

F’HS-PC’S 12120 17956

PHS-DHS 12120 37881

PHS-DCS 12120 40372

PHS-(‘F’S 12120 17963

PHS-ETS 12120 1301Rl

PCS-DHS 17956 37881

PC’?-DC!S I. 17956 40372

PCS-CPS 17956 17963

PCS-ETS 19191 136226

DHS-DCS 37881 40372

DHS-CIPS 3788 1 17963

LJHS-ETS :3788 1 130151

DCS-CPS I - 40372 17963

DCS-ETS 40372 13 0 15 1

CPS-ETS 17963 130151

Table 4: Comparison of spectra summarized over all (program,

modified version) pairs, considering each for the entire input uni-

verse (245,087 inputs). Column A lists the spectra compared;

Column B lists the total number of inputs that cause spectra dif-

ferences of type Sl; Column C lists the total number of inputs

that cause spectra differences of type S2; Column D lists the to-

tal number of inputs that cause spectra differences of type Sl but

not of type 52; Column E lists the total number of inputs that

cause spectra differences of type S2 but not of type Sl.

D
sl(*,*.Ii) ^
s2(*,*,ri)

1868

469

1266

469

743

44x

469

0

0

0

0

16

12

0

0

5836

0

2502

12

0

0

0

29

12

0

0

2502

12

0

0

0

22426

0

22427

0
”

E
S’L(, *** U)
Sl(, , * * U)

4328

10349

5310

10349

30548

32744

10356

1‘22075

7420

1584

7420

27361

29848

7427

119615

0

0

22427

22428

7

112195

5836

25790

28264

5843

718031

22427

22428

7

117035

2491

2508

92‘270

18

89779

112188

least in one direction) with fault occurrences. When

failures exist on particular inputs, spectra differences

are likely also to exist on those inputs. Moreover, with

these spectra, the degree of imprecision -- the frequency

with which spectra differences exist but faults do not ~

is much lower than with the execution trace spectra.

Another conclusion involves the near equivalence of

the CPS, PCS, and BCS spectra in terms of their ability

to distinguish program behaviors. Program instrumen-

tation has a cost,, and in practice we must balance that

cost against the potential savings, white also consid-

ering the criticality of the application. In many situa-

tions, it may not be cost,-effective to collect the complet,e

traces required for CPS spectra.; however, if our results

generalize, PCS and BCS spectra possess power almost,

equivalent to that of CPS, and may be cost-effective

alternatives. Furthermore, estimates suggest that the

profiling necessary to collect BCS spectra incurs a 16%

run-time overhead whereas the profiling necessary to

collect PCS spectra incurs a 30% run-time overhead [4].

In the absence of a gain in sensitivity, use of the PCS
spectra instead of the BCS spectra would riot be worth

the added overhead required to collect, the more sensi-
tive Spectra.

References

111

VI

131

[41

[51

iSI

[71

[81

G. Ammons, 7’. Ball, and .J. R. Larus. Exploit.ing hardwarcs
performance counters with flow and context sensitive profi-
ing. ACM Sigplan Notires, 32(5):85-~96, June 1997.

‘I’. Hall. On the limit of control-flow analysis for regression
testing. In froc. of the ACM Int’l. Symp. 071 Softw. Testing

and Analysis, Mar. 1998.

T. Ball and J. R. Larus. Efficient path profiling. In Prvc. of
Micro 96, pages 46-57, Dec. 1996.

T. Ball, P. Mataga, and M. Sagiv. Edge profiling versus path
profiling: The showdown. In Proc. of 25th ACM Symp. ou

Prin. of Prog. Lang., pages 134 148, <Jan. 1998.

Y. Chen, D. Rosenblum, and K. Vo. TestTube: A system for
selective regression testing. In Proc. of the 16th Int’1. CmJ

on Softw. Eng., pages 211-222, May 1994.

M. J. Harrold and G. Rothermel. Aristotle: A system for rc-
search on and development of program-analysis-based tools.
Technical Report OSU-ClSRC-3/97-TR17, ‘I’he Ohio State
University, Mar. 1997.

M. .J. Harrold, G. Rothermel, R. Wu, and L. Yi. An empirical
investigation and comparison of program spectra. Technical
Report OSU-CISRC-11/97-TR55, The Ohio State Univer-
sity, Nov. 1997.

M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experi-
ments on the effectiveness of dataflow- and controlflow-based
test adequacy criteria. In Proc. of the 16th Int ‘1. on Softw.

Eng., pages 191-200, May 1994.

J. Lloyd and M. Harrold. Implementing an interprocedural
dataflow tester using abstract execution. Technical Report
95-111, Clemson University, Clemson, SC, May 1995.

T. Reps, T. Ball, M. Das, and .J. Larus. The use of pro-
gram profiling for software maintenance with applications to
the year 2000 problem. ACM Software Engineering Notes,

22(6):432-439, Nov. 1997.

G. Rothermel and M. Harrold. Analyzing regression test se-
lection techniques. IEEE ‘Trans. on Softw. Eng., 22(8):529-
551, Aug. 1996.

G. Rothermel and M. J. Harrold. A safe, efficient regression
test selection technique. ACM Trans. on Softw. Eng. and

Methodology, 6(2):173-210, Apr. 1997.

90

