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Abstract 

A variety of expensive software maintenance and testing 
tasks require a comparison of the behaviors of program 
versions. Program spectra have recently been proposed 
as a heuristic for use in pcrforrning such comparisons. 
To assess t,lrc potential 11sefulness of spectra in this con- 
t,ext, we conducted an experiment that examined the 
relationship bct,wccn program spectra and program be- 
havior, and empirically compared several types of spec- 
tra. This paper reports the results of that experiment,. 

1 Introduction 

A variety of software testing and maintenance tasks re- 
quire us to compare the behaviors of multiple program 
versions. For example, when we rnodify a. program, WC 
use regression testing to compare the behavior of the 
modified version to the behavior of its previous version 
in the hope of detecting faults caused by the modifi- 
cations. Similarly, when prograrns exhibit “regression 
failures” (behavioral failures that did not occur in pre- 
cedir1g versions), we cornparti the behaviors of versions 
in the hope of pinpointing the cause of t,hosc failures. 
Tasks such as these constitute a significant percentage 
of the costs of software testing and maintenance; tech- 
niques that reduce these costs are valuable. 

Path spectra were recently proposed as a heuristic for 
understanding the magnitude of the behavioral changes 
between program versions [IO] .l A path spectrum is a dis- 
tribution of paths derived from an execution of a pro- 
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gram using program profiling. A path-spectra-compar- 
ison technique compares path spectra to gain insight 
into program behavior. Such a. technique rnay aid in 
addressing testing and maintenance tasks that require 
such understanding. For example, constructing expected 
011tp71ts for programs car1 be costly; the presence of 
spectra differences may serve as an indicator of cases in 
which t,hat const,ruction is unnecessary. Alternatively, 
spectra. comparison [lo] may help programmers locate 
points of divergence in computations, that may guide 
them in fault localization. 

For path spectra to be useful in these contexts, how- 
ever, they must, provide meaningful behavior signatures. 
An assessment of the potential usefulness of path-spectra 
comparisons requires an understanding of the correla- 
tion between spectra differences and program behavior. 

Program behavior car1 be measured in many ways; 
however, one measure - important, to uses of spectra 
such as those described above ~~~ considers whether par- 
ticular inputs cause a program to fail. Reference [lo] 
hypothesizes a strong correlation between spectra dif- 
ferences and faults, at least- in one direction, stating 
that given a faulty program and corrected version, one 
would expect, differences between spectra on an input 
that, produces the bug in the original program. One 
goal of this work is to empirically investigate this claim. 

If path spectra prove useful then other spectra such 
as branch spectra or complete-path spectra may also he 
useful, and may provide a range of techniques, varying 
in cost and effectiveness, for examining program behav- 
ior. Reference [lo] conjectures, however, that edge and 
node spectra will not be as useful as path spectra for dis- 
tinguishing program behavior. There is some empirical 

‘The primary use of spectra investigated in [lo] addresses the 

“Year 2000 problem,” and involves comparing spectra from two fun,s 

o,f the same program cm input data that differs only with respect to 

date. The intuition is that spectra differences may help programmers 

locate date-dependent computations. The alternative use of spectra 

that we investigate here, in which spectra are collected from runs of 

A program and a slightly different. version of the program on the same 

data, is briefly described in [lo], but not pursued in depth. The goal 

of this work is to empirically investigate this alternative suggestion. 
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Table 1: A catalog of program spectra. 

data [l] to support this conjecture: this data indicates 
that path profiling data may be superior to edge profil- 
ing data for certain applications. Another recent study 
[4], however, suggests the contrary. These studies have 
not directly investigated program spectra. A second 
goal of this work is to perform such an investigation. 

2 Program Spectra 

A program spectrum characterizes, or provides a sig- 
nature of, a program’s behavior [lo]. Path spectra use 
path profiling [l, 31 to track t,he execution of loop-free 
intraprocedural paths in a program. Path spectra can 
track the frequency of a path occurrence, or ignore fre- 
quency and track whether or not. the path occurred. 
Spectra can also be constructed based on node or edge 
profiling data. 

In addition to path, node, and edge spectra, many 
additional signatures of program behavior can be treated 
as spectra. To obtain a broader empirical view of the 
relationships among spectra, we consider nine distinct 
types of spectra. We next describe these spectra (Table 
l), and use an example to illustrate them. In the fol- 
lowing, let P be a program. 

Branch spectra. Branch spectra record the set of 
conditional branches that are exercised as P executes. 
We treat the entry to a procedure as a branch; under 

this treatment, for inputs on which programs terminate, 
branch spectra are functionally equivalent to edge spec- 
tra. If, for each conditional branch in P, the spectrum 
merely indicates whether or not that branch was ex- 
ercised, the spectrum is a branch-hit spectrum (BHS). 
If, for each conditional branch in P, the spectrum in- 
dicates the number of times that branch was executed, 
the spectrum is a branch-count spectrum (BCS). 

Path spectra. Path spectra [IO] record the set of loop- 
free intraprocedural paths that are traversed as P ex- 

ecutes. If, for each such loop-free path in P, the spec- 
trum merely indicates whether or not that path was 
executed, the spectrum is a path-hit spectrum (PHS). 

If, for each loop-free intraprocedural path in P, the 
spectrum indicates the number of times that path was 
executed, the spectrum is a path-count spectrum (PCS). 

Complete-path spectrum. A complete path spec- 

trum (CPS) records the complete path that is traversed 
as P executes. 

Data-dependence spectra. Data-dependence spec- 
tra record the set of definition-use pairs that are exer- 
cised as P executes. If, for each definition-use pair in 
P, the spectrum merely indicates whether or not that 
definition-use pair was exercised, the spectrum is a data- 
dependence-hit spectrum (DHS). If, for each definition- 
use pair in P, the spectrum indicates the number of 
times that definition-use pair was exercised, the spec- 
trum is a data-dependence-count spectrum (DCS). 

Output spectrum. An output spectrum (OPS) records 
the output produced by P as it executes. 

Execution-trace spectrum. An execution trace spec- 
trum (ETS) records the sequence of program statements 
traversed as P executes. 

At first glance, CPS and ETS may appear to be the 
same, because they both record the complete control 
flow path through P. They differ, however, in that CPS 
does not record the actual instructions executed along 
that path, whereas ETS does. 

OPS and ETS are of interest in this context because 
of their relationship to regression testing. One impor- 
tant regression testing activity is the selection of a sub- 
set of the test suite that was originally used to test the 
program for use in testing the modified program; Ref- 
erence [ll] provides details. In brief, given a program 
P, test suite T for P, and modified version P’, we want 
to identify the tests in T that reveal faults in P’. For 
tests whose specified behavior has not changed, these 
“fault-revealing” tests are exactly the tests that pro- 
duce different output spectra on P and P’. In general, 
there is no algorithm to precisely identify these tests, 
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program Sums 
1 read i 
2 sum= 0 
3 while i < 10 
4 read j 
5 sum = sum + j 
6 i = i + 1 

endwhi le 
7 print sum 
end Sums 

Figure 1: Sums and its control flow graph. 

but under certain conditions, the tests that produce dif- 
ferent execution trace spectra constitute a conservative 
(safe) approximation. Several regression test selection 
techniques [2, 5, 121 exploit this relationship to select 
safe subsets of T for use in regression testing P’. 

To illustrate these spectra, we present program Sums 
and its control flow graph (Figure l), and the spectra for 
Sums on two executions (Table 2): execution 1 uses in- 
put IO and has expected output 0, and execution 2 uses 
inputs 8, 2, and 4 and has expected output 6. Where 
applicable, the two types of spectra in each category - 
hit and count_ ~~ are shown in columns on the right in the 
table; where the spectra category does not have these 
subtypes, “NA” is listed. Consider, for example, the 
branch spectra for Sums. There are three conditional 
branches in Sums, and the two executions exercise all 
of them: the BHS for execution 1 records Y for edges 
(1,2) and (3,7); the BHS for execution 2 records Y for 

edges (I?), (3,4), and (3,7); the BCS for execution 1 

records that edges (1,2) and (3,7) were each exercised 
once; and the BCS for execution 2 records that edges 
(1,2) and (3,7) were exercised once, and edge (3,4) was 
exercised twice. 

We can analytically compare types of spectra by de- 
termining a subsumption relationship between them. A 
spectra type S1 subsumes spectra type S2 if and only if, 
whenever the S2 spectra for program P, version P’, and 
input i differ, the S1 spectra for P, P’, and i differ. Ref- 
erence [IO] discusses the subsumption relationship that 
exists between path and edge (and thus branch) spec- 
tra; the following theorem establishes the subsumption 
relationship for all of the spectra we are considering. 

Theorem 1: The spectra listed in Table 1 form the 
subsumption hierarchy shown in Figure 2, in which the 
spectra type that is the source of an edge directly sub- 
sumes the spectra type that is the target of that edge. 

ETS 

/i\ 
DCS CPS OPS 

J + 
DHS PCS 

BC< >HS 
\ J 

BHS 

Figure 2: Spectra subsumption hierarchy. The notation A + B 

indicates that spectra type A subsumes spectra type B. 

3 The Experiment 

3.1 Objectives 

The objectives of our experiment were to empirically 
investigate the following questions: 

1. Given program P, faulty version P’, and universe 
of inputs U for P, what correlation exists between 
inputs that cause P and P’ to produce different 
spectra. More precisely: 

(a) How often does an input i E U that causes P’ 

to fail produce different spectra for P and P’? 

(b) How often does an input i E U that produces 
different spectra for P and P’ cause P’ to fail? 

2. What are the relationships between the various 
spectra types, both in terms of their correlation 
with program-failure behavior, and in terms of 
their correlation with one another? 

3.2 Measures 

To quantify l(a) and 1 (b), we utilize two measures. 
Given program P, faulty version P’, and universe of 
inputs U for P, let FR(P, P’, U) be the set of inputs 
in U that cause P’ to fail (i.e., FR(P, P’, U) are Fault 
Revealing for P, P’, and U). For each spectra variety S, 
let SR(P, P’, U) be the set of inputs in U that produce 
spectra on P and P’ that differ (i.e., SR(P, P’, U) are 

spectrum 3 Bevealing for P, P’, and U). 

Degree of Imprecision. For spectra type S, any in- 
put i in U that is in SR(P, P’, U) but not in FR(P, P’, U) 

exhibits a spectra difference under S that is not corre- 
lated with a failure. For such an input i, S-spectra- 
comparison is “imprecise”. The degree of imprecision 
of S with respect to P, P’ and U is given by the equa- 
tion: 

ISR(P, P’, u) - FR(f’, P’, U)l * 1oo 
ISWE P’, U) I 

(1) 
Proof: See Reference [7]. 
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F:xrcution I Execution 2 

(input is 10) (input, is 8, 2, 4) 

spectrlrnr Profiled rn,thtzes Hit Count Hit Count, 
___- 

IIranch (I>“) Y 1 Y 1 

(3,4) N 0 Y 2 

(3,7) Y 1 Y I 

Path (1,2,3,7) Y 1 N 0 

(1,3,7), (1,2,3,4,5,6,7). (1,3,4,5,6,7) N 0 Y 1 

(:orrlpl&-pat 11 (I ,2,X7) Y NA N NA 

[l,2,3.(4,5,(i,n)“,?) N NA Y NA 

Uata~rleprnil~~lcc~ (1,(:1,7),i). (2,7,sum) Y I N 0 

(1.(3.4),i). (l,(i.i), (6,(3,7),i), (2, 5,sum). (5,7,sum).(6,6,i), (6,(3,4),i), (5,5,sum) N 0 Y 1 

(4,5,j) N 0 Y 2 

OutpLLt sum is 0 Y NA N N A 

sum 1s 6 N NA Y NA 

ISxecution-trace (Sl,SZ,S:i,S7) Y NA N NA 

(Sl,S2,S3,(S4,%,S6,S3)*,S7) N NA Y NA 

Table 2: Spectra for program Sums of Figure 1 

Degree of Unsafety. For spectra type S, any input 1: 
in U that is in FR( P, P’, U) but, not in SR(P, P’, U) ex- 
hibits a, failure that is not, correlat,ed with a spectra. dif- 

ference of type S. For such an i, S-spectra-comparison 
is “unsafe”. The degree of unsafety of S with respect 
to P, P’, and U is given by t,he equation: 

IFR(P, P’, U) - SR(I’, P’, U)( * loo 

IFR(P, P’, U) I 
(2) 

Note that, we can determine the degree of impreci- 

sion of S even though S is not safe. In this respect, 

our use of the term “imprecision” differs from its use 

in areas such as compiler optimization, where safe anal- 

yses are required. In the context of maintenance and 

testing, howtlver, safe analyses are not always necessary 

a technique t,hat identifies a sufficiently large subset 

of some set of f&ts can be useful, even though it omits 

some members of that set, of facts. However, we still 

wish to know, even of unsafe analyses, the degree to 

which they identify spurious results. Our use of “im- 
precision” supports this. 

Note further that when P is correct for input i, and 
when P’ is intended to have the same output for i as 

P, then i is in FR(P, P’, U) if and only if P and P’ 
produce different output for i, or equivalently, if and 
only if i is in OPSR(P, P’, U). 

3.3 Experimental Instrumentation 

We used seven C programs as experimental subjects 
(Table 3). Each program has a variety of versions - 
each containing one fault-inducing modification whose 
cont,rol How graph structure is the same as that of the 
original program. Each subject program also has a large 

universe of inputs.2 By construction, for each of our 
experimental programs P (with their universe U) arid 

versions P’, FR(P, P’, U) = OPSR(P, P’, U). 

Program 

totinfo 

schedule1 

schedule2 

teas 

printtokl 

printtok2 

replace 

Lines 

Of 

Code 

431 

416 

309 

238 

584 

513 

569 

Number 1 Input 

20 5542 

Description 

information measure 

priority scheduler 

priority scheduler 

altitude separation 

lexical analyzer 

lexical analyzer 

pattern replacement 

Table 3: Subject programs 

We used a variety of tools and techniques to compute 
and record the various types of spectra. For the output 
spectra (OPS), we ran P and the P’s on the inputs in 

U. For the execution trace spectra (ETS), we used our 
test selection tool, DejaVu [12], to identify the inputs 
in U that traverse modified statements in tbc P’s.~ For 

the branch-hit spectra (BHS), the branch-count spec- 
tra (BCS), the path-hit spectra (PHS), the path-count 
spectra (PCS) the data-dependence-hit spectra (DHS), 
the data-dependence-count spectra (DCS), and the com- 
plete-path spectra (CPS) we used the various coverage 

tools from the Aristotle analysis system [6] and the 
FATE data-flow testing system [9] to record the enti- 

‘These programs, versions, and inputs were assembled by re- 

searchers at Siemens Corporate Research for a study of the f;tult- 

detection abilities of control- and data-flow coverage criteria [8]. 

31n general this approach may identify a superset of the inputs that 

produce different execution traces; however, in prart.ice we can deter- 

mine when the approach incurs imprecision, and we know that, in all 

the cases examined for our experimentation, the algorithm identified 

precisely the inputs that produced different execution t,races. 
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ties (i.e., branches, paths, definition-use pairs, complete 

pat,hs) executed in P and the P’s, 

3.4 Experimental Design 

Variables. The experiment manipulated a single inde- 

pendent variable, namely, the spectra: OPS, ETS, BHS, 

BCS, CPS, PHS, PCS, DHS, and DCS. On each rurl 

(with P, I~‘; and U), we mea.sured a single dependent 
variable, narm~ly, the set. of inputs in (: that revealed 
spectra differr>nces between P and P’. We utilized this 

data to examine the degrees of imprecision and unsafety 

of thr various spectra, and t,o compa.re spectra, usirig an 

ana.lysis st,rat,eg,y dcscribcd later in this section. 

Design. This cxpc‘rirncnt, uses a n,ithi,n-subjects design: 

we applied Rich spectra calculation to each (base pro- 

gram. modified version) pair, for each input, in the uni- 
verse for that base program. We then examined the 
sptrct,ra with rclspett to the OPS results obtained or1 
that base program, version and universe, to measure 
the values of dependent, variables. 

Threats to Validity. The primary threats to validity 
for this experiment are external: these are conditions 
that limit our ability to generalize the results of our 
study to a larger population of subjects. First, the sub- 
ject programs are not large, and we cannot claim that 
they represent a random selection over the population 
of progranls as a whole. Second, the faulty program 
versions all involve simple, one- or two-line faults, man- 
ually seeded, with the intent of simulating “real” faults, 
but with no data to indicate that they represent a ran- 
dom selection over the population of faults as a whole. 
These threats can be reduced only by repeated applica- 
tion of the experiment on wider classes of subjects. 

A second source of threats to validity for this study 
are internal: these are influences that can affect the de- 
pendent variables without the researchers’ knowledge. 
Our greatest concerns here involve instrumentation ef- 
fects, which can bias our results. To control for such 
effects, we utilized two types of cross-checks: (1) we 
obtained certain results independently using different 
instruments at different sites and examined them for 
correlation; (2) we examined results for adherence to 
the analytically det,ermined spectra hierarchy relation- 
ship. We did not, however, control for the structure of 
source prograrns or for the locality of program changes. 

Analysis Strategy. We utilized the data gathered 
from our experimental runs as follows. First, to ex- 
amine the correlation between inputs that cause P’ to 

fail and inputs t,hat cause P to produce different spectra 
than P’ (objective l), for each program P and version 

P’, with respect to universe U, and for each spectra 
type S, we calculated: 

1. The degree of imprecision of S with respect to P, 
P’, and U. 

2. The degree of unsafety of S with respect to P, I”, 

and li. 

Second, to compare spectra (objective 2), for each pro- 
gram P and version P’, with respect to universe U, and 

for each pair of spectra types S1 and S2, we calculated: 

1. 

2. 

3. 

4. 

The number of inputs in U that cause spectra tlif- 
ferences of type S1. 

The number of inputs in U that cause spectra dif- 
ferences of type S,. 

The number of inputs in U that cause spectra dif- 
ferences of type S1 but not, of type 5’2. 

The number of inputs in U that cause spectra dif- 
ferences of type S, but not of type S1. 

We also summarized this data over the entire set of 
(program, modified version) pairs, considering each for 
the entire universe U of inputs (245,087 inputs). The 
next section presents and analyzes this data. 

4 Data and Analysis 

Figure 3 uses boxplots to present the degrees of unsafety 
and imprecision calculated for each spectra over the 88 
different (program, rnodified program) pairs. (The cap- 
tion provides an explanation of boxplots.) The data re- 
veals several things relative to our first objective. First, 
the unsafety data (left) supports the conjecture that we 
can expect to see spectra differences on inputs that, elicit 
faults. Every variety of spectra demonstrates a median 
degree of unsafety of 0%. Furthermore, four varieties of 
spectra (CPS, PCS, BCS, and DCS) demonstrate a 0% 
degree of unsafety over their entire first, second, and 

third quartiles; in other words, on over three quarters 
of the (program, modified program) pairs, these spectra 

demonstrated differences on efjery input that elicited a 
fault. For the BHS and PHS spectra, the degrees of 
unsafety demonstrate a greater interquartile range, re- 
flecting greater diversity in results. Finally, all spectra 
other than ETS displayed occasional extreme results, 
represented by the outliers, and further reflected in the 
fact that their means are noticeably higher than their 
medians. Significantly, only ETS is safe: in all cases, 
all inputs that reveal faults also reveal ETS spectra dif- 
ferences, and no other spectra share this trait. 
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BHS BCS PHS PCS CPS DHS DCS MTS 

spectra type 

80 

/I X 

X 

1 

X 

- 

- 

BHS BCS PHS PCS CPS DHS DCS MTS 

spectra type 

Figure 3: Graphs showing the degrees of unsafety and imprecision of spectra. The vertical axes list degrees of unsafety and imprecision, 
respectively; the horizontal axes list spectra types. In each boxplot, the dashed line represents the median, and the “X” mark represents 
the mean, of the degree of imprecision or unsafety that occurred for that spectra. The box indicates the interquartile range the range 
in which the middle half of the data falls -. and also indicates where that data falls with respect to the median. The whiskers above 
and/or below boxes indicate the percentages at which data above or below the interquartile range fell; however, data points at a distance 
of greater than I .5 times the interquartile range are considered outliers, and represented by small circles. 

The imprecision data presented in Figure 3 (right) 
illustrates that not all inputs that elicit spectra differ- 
ences also produce failures: all varieties of spectra incur 
imprecision. Significantly, ETS incurs a much higher 
median degree of imprecision (95%) than the other vari- 
eties of spectra, for which median degree of imprecision 
ranges from 3% to 17%. Thus, the cost of the safety 
achieved by ETS, in terms of degree of imprecision, is 
high. However, imprecision results for all spectra other 
than ETS display a large interquartile range; thus, de- 
gree of imprecision varies a great deal more, overall, 

than degree of unsafety. 
One additional significant result is that in terms of 

both degrees of imprecision and unsafety the CPS, PCS, 
and BCS spectra display nearly identical behavior. 
These results do not support the conjecture that path 
spectra will be more sensitive indicators of different be- 
havior than branch spectra, where behavior is measured 
in terms of program failure behavior. 

Toward our second objective, Table 4 lists data per- 
taining to the relationship between various spectra. Fig- 
ure 4 provides a graphical view of the portion of that 
data that compares the various spectra with OPS, within 
the context of the entire universe of inputs as applied to 
all (program, modified program) pairs (see the caption 
for further description.) A notion of the relationship 

among the spectra can be obtained by comparing the 
sizes of shaded areas in Figure 4. In particular, it is 
easy to see the relationship between ETS, DCS, DHS, 
and CPS from this figure. 

Figure 5 provides a closer view of the relationship be- 
tween CPS, PCS, PHS, BCS, and BHS that shows, for 
each of these spectra types, the number of inputs for 
which spectra differences occurred. Like the impreci- 

sion and unsafety results, this figure illustrates the near 
equivalence, over our programs, modified versions, and 
input universes, of the CPS, PCS, and BCS spectra, as 
well as the relative closeness of the PHS and BHS spec- 
tra. Furthermore, where analytical results foretell that 
neither PHS nor BCS subsumes the other, in practice 
BCS subsumes PHS: BCS spectra differences occurred 
in 5836 cases in which PHS spectra differences did not 
occur, but in all cases in which PHS spectra differences 
occurred, BCS spectra differences also occurred. 

These results do not support the conjecture that 
path spectra will be more sensitive indicators of differ- 
ent behavior than branch spectra. For the 245,087 in- 
puts, PCS is never more sensitive than BCS, and CPS is 
more sensitive than PCS on only 7 inputs. Essentially, 
despite the analytical differences between spectra de- 
picted by our subsumption hierarchy, in the cases we 
studied, the CPS, PCS and BCS spectra collapse into 

88 



OPSBHS 

-I 
OPS-BCS 

OPS-PHS 

OPS-PCS 

OPS-DHS 

OPS-DCS 

OPS-CPS 

q 
OPS-ETS 

Figure 4: C+raphical comparison of OF’S with t,he other spectra. The eight outer squares represent the comparison of the Of S spect,ra 
to thr other eight spectra, rrspect,ively, as labeled. Each such square represents the entire universe of input points over all (program, 
modified version) pairs. Within t,hc outer squares, the lightly shaded areas indicate the percentages of input points that caused only 
XS-spectra differences (X.5’ # OF’S), the medium shaded areas represent the percentages of input points that caused only OPS-spectra 
differences, and the darkly shaded areas represent the percentages of input points under both XS and OPS. 

one another. The three spectra have nearly equivalent 
abilities to distinguish differences in program behaviors. 

BHS PHS BCS PCS CPS 

spectra type 

Figure 5: Comparison of CPS, BCS, PCS, PHS, and BHS, show- 

ing, for each spectra type (horizontal axis), the number of inputs 

for which spectra differences occurred (vertical axis). 

5 Conclusions 

We have described an empirical investigation of the cor- 
relation betweerl spectra and program failure behavior, 
and the relationships between various types of spectra. 

We emphasize that our study has considered only 
one scenario in which the usefulness of program spectra 
has been postulated: the scenario in which spectra from 
a program and modified version, run on the same input, 

are compared. Our results do not provide data applica- 
ble to the use of spectra when a single program is run 
on two slightly different inputs. However, given the de- 
gree to which spectra types produced nearly equivalent 
results for our subjects, further empirical study of the 
relationship between spectra types in the latter scenario 
would be appropriate. 

We also stress that our study has focused on just 
one indicator of program behavior fault-revealingness. 
This indicator is important, and the fact, that spectra 
do correlate with it at least in one direction - is signif- 
icant. Whether spectra will correlate with other rnea- 
sures of behavior, such as measures based on sequences 
of execution states [IO], is a subject, for future inves- 
tigation. Our comparisons of spectra to each other, 
however, are not restricted to fault-revealing behavior. 

Finally, as discussed earlier, there are some threats 
to validity for this experiment, primarily concerning 
representativeness of subjects. Additional experimen- 
tation with a variety of subjects is necessary to lessen 
these threats. 

Keeping the foregoing in mind, however, our results 
support several conclusions. First, although the execu- 
tion trace spectra emerged as the only spectra to neces- 
sarily exhibit differences for inputs that exhibit faults, 
certain other types of spectra differences (i.e., CPS, 
PCS, and BCS) also correlate with high frequency (at 
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A I3 C 

Spectra Size of Size of 

(.Sl-S2) Sl(’ * U) 
3 > S’L( , > * * U) 

oPs-Bns 8076 10536 

OPS-I3cs 8076 17956 

OPS-PIIS 8076 12120 

OPS-PC’S I , 8076 17956 

OPS-DHS 8076 37881 

OPS-DCS 8076 40372 

OPS-CPS 807fi L7963 

OPS-ETS 8076 13015J 

r3lIs-u<:s I (I:,36 17956 

HIIS-PHS 10536 12120 

HHS-PCS IO536 17956 

HHS-DHS 10536 37881 

RHS-DC’S 10536 40372 

BHS-CPS 10536 117963 

HHS-ETS 10536 130151 

BCs-Pns 17956 12120 

HC’S-PCS I. 17956 17956 

IK’S-DHS >. . 17956 37881 

HCS-DCS 17956 40372 

rK:s-CPS 17956 17!163 

RCS-ETS 17956 130151 

F’HS-PC’S 12120 17956 

PHS-DHS 12120 37881 

PHS-DCS 12120 40372 

PHS-(‘F’S 12120 17963 

PHS-ETS 12120 1301Rl 

PCS-DHS 17956 37881 

PC’?-DC!S I. 17956 40372 

PCS-CPS 17956 17963 

PCS-ETS 19191 136226 

DHS-DCS 37881 40372 

DHS-CIPS 3788 1 17963 

LJHS-ETS :3788 1 130151 

DCS-CPS I - 40372 17963 

DCS-ETS 40372 13 0 15 1 

CPS-ETS 17963 130151 

Table 4: Comparison of spectra summarized over all (program, 

modified version) pairs, considering each for the entire input uni- 

verse (245,087 inputs). Column A lists the spectra compared; 

Column B lists the total number of inputs that cause spectra dif- 

ferences of type Sl; Column C lists the total number of inputs 

that cause spectra differences of type S2; Column D lists the to- 

tal number of inputs that cause spectra differences of type Sl but 

not of type 52; Column E lists the total number of inputs that 

cause spectra differences of type S2 but not of type Sl. 

D 
sl(*,*.Ii) ^ 
s2(*,*,ri) 

1868 

469 

1266 

469 

743 

44x 

469 

0 

0 

0 

0 

16 

12 

0 

0 

5836 

0 

2502 

12 

0 

0 

0 

29 

12 

0 

0 

2502 

12 

0 

0 

0 

22426 

0 

22427 

0 
” 

E 
S’L( , *** U) 
Sl( , , * * U) 

4328 

10349 

5310 

10349 

30548 

32744 

10356 

1‘22075 

7420 

1584 

7420 

27361 

29848 

7427 

119615 

0 

0 

22427 

22428 

7 

112195 

5836 

25790 

28264 

5843 

718031 

22427 

22428 

7 

117035 

2491 

2508 

92‘270 

18 

89779 

112188 

least in one direction) with fault occurrences. When 

failures exist on particular inputs, spectra differences 

are likely also to exist on those inputs. Moreover, with 

these spectra, the degree of imprecision -- the frequency 

with which spectra differences exist but faults do not ~ 

is much lower than with the execution trace spectra. 

Another conclusion involves the near equivalence of 

the CPS, PCS, and BCS spectra in terms of their ability 

to distinguish program behaviors. Program instrumen- 

tation has a cost,, and in practice we must balance that 

cost against the potential savings, white also consid- 

ering the criticality of the application. In many situa- 

tions, it may not be cost,-effective to collect the complet,e 

traces required for CPS spectra.; however, if our results 

generalize, PCS and BCS spectra possess power almost, 

equivalent to that of CPS, and may be cost-effective 

alternatives. Furthermore, estimates suggest that the 

profiling necessary to collect BCS spectra incurs a 16% 

run-time overhead whereas the profiling necessary to 

collect PCS spectra incurs a 30% run-time overhead [4]. 

In the absence of a gain in sensitivity, use of the PCS 
spectra instead of the BCS spectra would riot be worth 

the added overhead required to collect, the more sensi- 
tive Spectra. 
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