

HIDE: An Infrastructure for Efficiently Protecting
Information Leakage on the Address Bus

Xiaotong Zhuang Tao Zhang Santosh Pande

Georgia Institute of Technology
College of Computing

Atlanta, GA, 30332-0280
{xt2000, zhangtao, santosh}@cc.gatech.edu

ABSTRACT+
XOM-based secure processor has recently been introduced as

a mechanism to provide copy and tamper resistant execution.
XOM provides support for encryption/decryption and integrity
checking. However, neither XOM nor any other current approach
adequately addresses the problem of information leakage via the
address bus. This paper shows that without address bus protection,
the XOM model is severely crippled. Two realistic attacks are
shown and experiments show that 70% of the code might be
cracked and sensitive data might be exposed leading to serious
security breaches.

Although the problem of address bus leakage has been
widely acknowledged both in industry and academia, no practical
solution has ever been proposed that can provide an adequate
security guarantee. The main reason is that the problem is very
difficult to solve in practice due to severe performance degradation
which accompanies most of the solutions. This paper presents an
infrastructure called HIDE (Hardware-support for leakage-Immune
Dynamic Execution) which provides a solution consisting of
chunk-level protection with hardware support and a flexible
interface which can be orchestrated through the proposed compiler
optimization and user specifications that allow utilizing underlying
hardware solution more efficiently to provide better security
guarantees.

Our results show that protecting both data and code with a
high level of security guarantee is possible with negligible
performance penalty (1.3% slowdown).

Categories and Subject Descriptors
C.1 [Processor Architectures]: Miscellaneous;
K6. [Management of Computing and Information Systems]:
Security and Protection.

General Terms: Security, Design, Performance.

Keywords: Secure Processor, Address Bus Leakage Protection.

+ Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASPLOS’04, October 9–13, 2004, Boston, Massachusetts, USA.
Copyright 2004 ACM 1-58113-804-0/04/0010...$5.00.

1. INTRODUCTION
 XOM-based secure architecture [1,2] has recently emerged

as a model architectural support for copy and tamper resistant
software. Under the XOM model, everything outside the processor
chip is assumed to be insecure. The latest research on XOM
architecture proposes OTP (one-time-pad) encryption/decryption
schemes [3,4] to protect software confidentiality and a Merkle tree
based scheme [5] to guarantee software integrity. Both schemes
achieve the above security goals within a reasonable performance
spectrum (a small performance degradation). Although the XOM
model is successful in protecting the off-chip code and data using
the encryption techniques (block cipher or stream cipher), it fails
to protect the addresses on the address bus. In other words, the
address sequence generated by an application may be exposed
under the current XOM protection [3,4,5].

100,101,102,103,104,100,101,103,104,100…

Ekey(Inst. A)

100

100

(a)

(c)

Ekey(cbr 103)
Ekey(Inst. B)

Address

101
102

Ekey(Inst. C)
Ekey(br 100)

103
104

Memory Contents

101

102

104
103

BB1

BB3

BB2

(b)

Ekey(..)…
Ekey(..)…
Ekey(..)…
Ekey(..)…
Ekey(..)…

Figure 1. Control flow snooping.

In all previous XOM-based work, the following two
questions are left unaddressed: 1) Even though off-chip memory
contents are encrypted, can the exposed address sequence lead to
security breaches? 2) If so, how should we prevent those at a
reasonable cost?

Although the problem has been noticed in [1] and [6], they
both leave it open. [1] poses it as an open problem, and [6] largely
ignores it. In [5] it is shown that the detection of loops through the
information leakage on address bus can become a starting point for
the replay attack. In this paper, we point out that address bus
protection is critical; otherwise control flow information might be
exposed and severe security breaches might occur.

72

In Figure 1, we illustrate how control flow can be snooped by
the attacker. Under the current XOM model, all 5 blocks of
instructions are stored in an encrypted form, however authentic
addresses are readily available on the bus. The attacker has no idea
what the instructions are due to the encryption, however he can
snoop on the bus and obtain a sequence of addresses (refer to
Figure 1.b). From the address sequence, he can infer that the code
is in a loop since addresses 100,101,103,104 appear repeatedly.
Also, it is exposed that there is a conditional branch at address 101
because sometimes the control goes to 103 directly, sometimes it
goes via 102 to 103. Therefore, by identifying recurring (block)
addresses, the attacker can construct a block level control flow
graph (CFG) as shown in Figure 1.c. Leakage of the control flow
can severely jeopardize the encryption of code (it may be possible
to crack as much as 70% of the encrypted code through a well
devised attack – refer to Section 3) which is the basis of the XOM
model. Apart from this, address sequence on the bus may lead to
exposure of the critical data (such as the secret key) as well.

Regarding the second question, it may be noted that address
bus protection is a much tougher problem than it might first appear.
Both industry and academia are aware of the severity of
information leakage through the address bus and have proposed
solutions. DS5000 and DS5002FP are chips produced by Dallas
Semiconductors [11], which are among the most widely used
security devices in credit-card terminals, pay-TVs access control
systems etc. The processor incorporates bus-encryption (actually,
fixed address reordering together with some random accesses) and
was described as the most secure processor currently available for
commercial users. However, such protection can be easily
invalidated (refer to [7] and related work). The only solution that
completely avoids such information leakage is called Oblivious
RAM (ORAM), which was proposed by Goldreich [9,10]. In his
papers and patent, three schemes are proposed to ensure that the
addresses on the bus are independent of the addresses issued by the
application. Unfortunately, all three schemes are infeasible on real
machines due to either significant slowdowns or resulting memory
explosion. Therefore a practical solution for protecting information
leakage through address bus is highly desirable and valuable for
the viability of XOM-based secure processors.

This paper proposes such a solution with negligible overhead.
Through hardware support and compiler optimizations, HIDE
provides a very high level of security guarantee, which means that
the information leakage via the address bus is largely prevented.
Also, our infrastructure is highly flexible. It can easily incorporate
programmers’ specification of sensitive sections as well as some
compiler optimizations.

The rest of the paper is organized as follows: Section 2
discusses the XOM model and attack model; Section 3 depicts
possible attacks through the address bus leakage; Section 4
provides an overview of HIDE; Section 5 introduces basic
concepts in HIDE; Section 6 presents chunk level protection;
Section 7 shows how to protect more with HIDE plus; Section 8
talk about other considerations; Section 9 shows results; Section
10 and Section 11 provide related work and conclusion.

2. MODELS

XOM Model
Before elaborating on the address bus security vulnerability,

we briefly introduce the XOM model [1]. The XOM model
assumes that the only trusted hardware entity is the processor itself.

Any other hardware components including the system bus and
main memory are non-trusted since they are vulnerable to security
attacks. Data and code are encrypted when they leave the
processor and decrypted after they are fetched into the processor.
Moreover, the operating system is also considered non-tamper
resistant. Therefore, the XOM model provides mutual protection
among processes running on the same processor. Later work on
XOM [3,4,5] added integrity checks and performance
enhancements. In fact, XOM is similar to previous models
proposed in [8,10] and we can find real implementations of these
models such as the DS5000/DS5002FP, smartcard chips, etc. in
which the processor core is physically shielded and code and data
are maintained in the encrypted outside the chip.

Attack Model
Protecting information leakage implies stopping the attacker

from getting any useful information related to the intellectual
property of the software; such protection is more general than the
copy protection (i.e., protecting someone from making illegal
copies). For example, consider a scenario in which company A and
company B are developing similar software. Company A succeeds
first and releases the software in an encrypted format, which
(presumably) is execute-only on XOM machines. However,
company B now has complete access to the software bundled with
the XOM machine on the market. Company B can experiment with
it extensively, e.g., feed the program with different inputs, execute
that software together with their own software on the same
machine or even with a manipulated OS. Moreover, company B is
already an expert in developing similar software, therefore it only
wants to understand a few critical parts of company A’s software.
As shown later, techniques such as CFG matching can distill
important information from the unprotected address bus. Although
this scenario is not as straightforward and prevalent as software
piracy by end users, it has been a major concern of software
companies (the recent Linux/SCO-Unix lawsuit is an example).

As a matter of fact, these kinds of attacks, i.e., circumventing
the encryption scheme indirectly through information leakage are
well-known in the security domain as side-channel attacks. In
reality, there have been many successful stories [14,15,18,19] to
obtain critical information from a secure chip such as a smartcard,
by monitoring the timing [14], power [15] or electromagnetic
differences [16] from outside the chip.

3. ATTACKS VIA CONTROL FLOW
SNOOPING ON BUS

We now illustrate two attacks that are possible through the
control flow information leaked on the address bus. Notice that,
the example in Figure 1 assumes that there is no “noise” in the
addresses seen on the bus (i.e., all the addresses are leaked), but in
practice, branches within a block are hidden, a cache can hide
many accesses, etc. This might lead to less than full leakage but
could still be quite damaging. We first assume that there is no
noise, and in Section 3.3, we will address the noise issues.

3.1 Reuse Code Identification
Due to the following two facts, leaking the CFG information

can result in the complete exposure of reuse code and severely
disrupt code encryption.

73

Software Reuse and Binary-Level Similarity
With the ever-increasing amount of legacy code and time-to-

market pressure, software development relies more and more on
reusing existing modules or on pre-built libraries from other
companies or oftentimes from the public domain. For example,
many classic algorithms have their standard and/or non-standard
open-source implementations online ready for reuse. Moreover,
most compiler and development tool chains are provided by a few
3rd party name-brand vendors that can lead to a high binary-level
similarity once the source code is reused. We measured the full set
of SPEC 2000 Alpha binaries to find out the percentage of code
that is reused from the standard C library on Alpha. As shown in
Figure 2, the reuse percentage can be very high for some
benchmarks like mcf (88%) and bzip2 (66%). On average, 39% of
the code at binary level is due to libraries. A recent study [22]
shows that nowadays, up to 70% of the code in industry software
is reuse code. Given such a high amount of reuse code, the
question is: Can it be discovered? The answer is yes. Address bus
leakage allows building a CFG and CFGs serve as unique
fingerprints of underlying code leading to such a discovery. Once
such reuse is discovered, the attacker knows the key underlying
algorithm or the intellectual property (IP).

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

bz
ip2

cra
fty

eo

n
ga

p
gc

c
gz

ip mcf

pa
rse

r

pe
rlb

mk

tw
olf

vo
rte

x vp
r

av
era

geB
in

ar
y

R
eu

se
 P

er
ce

nt
ag

e Reused non-reused

Figure 2. Binary reuse percentage for SPEC2000.

10

100

1000

10000

100000

1000000

>=5 >=10 >=15
of Basic Blocks on CFG

of comparisons # of matches

0.1%

5%

0.05%

Figure 3. Isomorphic CFG pairs in the standard C library.

CFG-Fingerprint of Algorithm
In order to determine the uniqueness of CFGs we did another

study and found that they indeed serve as unique fingerprints due
to the following intuitive arguments. CFGs are made of a few
basic blocks. It is widely known that the average length of basic
blocks is only 6 to 10 instructions for integer programs and a large
number of instructions are branches (around 12%). Conceivably,
as long as the algorithms are reasonably complex, the chance of
forming the same CFG is slim since they would have a good
number of basic blocks and quite a few potential control flow
graphs are possible with a given number of basic blocks. As an
experiment, we built the CFGs for various block cipher algorithms
such as DES, MARS, Rijndael, RC6, and found out their CFGs are
significantly different. In Figure 3, we investigate the similarity of

CFGs in the standard C library of the Alpha compiler. There are
1334 procedures in the library file libc.a, with reasonable size (at
least 5 basic blocks). We built the CFGs for all these procedures in
which each basic block is abstracted as a node (which in fact
increases the chances of two CFGs being similar). We run the
famous graph isomorphism algorithm by Ullman [12] (we reuse
the graph matching library developed by Univ. of Naples [13])
between all possible pairs of graphs. In Figure 3, the results show
that only 5% of the comparisons find that the two graphs match. If
we ignore the CFGs with less than 10 basic blocks, only 0.1%
match. Finally, if we ignore the CFGs with less than 15 basic
blocks, only 0.05% match. This study shows that each CFG can
serve as a distinct fingerprint for a reasonable-sized code.
Therefore, if the programmer reuses a procedure in the library with
10 or more basic blocks, the reuse is almost doomed to be found
out by the attacker due to its distinctive fingerprint (assuming he
can construct the CFG using address bus leakage). Notice that, this
estimation is conservative due to our abstraction of the CFGs that
ignores sizes of individual basic blocks; otherwise the number of
matches would decrease further. Even if some matches occur, the
attacker can still narrow down his search to a few possible
procedures that might be reused.

Given sufficient amount time to experiment with the code,
most CFG edges could be exposed. Theoretically only dead code
is not executed. Even if only partial CFG can be identified with
subgraph matching algorithms [12,13], we can still largely detect
the reuses. It is easy to show that the number of legitimate CFG
graphs grows exponentially with the number of basic blocks in the
CFG; therefore hiding big reuse code is almost impossible. From
the prior discussion, the CFG, as a matter of fact, can be regarded
as an algorithm’s fingerprint.

Based on the two facts described above, it is quite possible
that an attacker can identify the reuse components in a program
given its CFG. He can collect the CFGs of all procedures in the
standard libraries, or for publicly available source code, compile
them with a name-brand 3rd party compiler and build the CFGs. By
graph matching the program’s CFGs with his collection, the
attacker can nail down the reuse parts. This not only exposes the
reuse code in its entirety, but also helps the attacker in other
aspects: 1) A bunch of plaintext/ciphertext pairs for the reuse code
are identified. If the hardware cannot afford integrity check due to
its prohibitive performance and memory space overhead [5], the
attacker might construct a program to read out other code such as
in [7]. 2) More critically, in some cases critical data could be
leaked due to the discovery of re-use code. In the next subsection,
we will show how critical data can be found out in some cases. 3)
By watching the interaction between reuse code and the
programmer’s own code like calling sequence, parameters, the
attacker can learn more about programmer's own code.

3.2 Critical Data Leakage via Value-dependent
Conditional Branches

Apart from the above potential problem of revealing IP, CFG
matching can also potentially compromise a secret key and leak
sensitive data.

All conditional branches (around 80% among all branches)
make comparison between two values and then decide which path
to take. Therefore the control flow information can leak important
information about the values being compared. The following
example assumes that the algorithm used is known beforehand

74

(most security systems assume the cryptographic algorithms used
are known to the attacker) or has been detected by CFG matching.
It demonstrates how the critical data (secret key in this case) is
revealed.

Example
Diffie-Hellman and RSA private-key operations consist of

computing R = yx mod n, where the attacker's goal is to find x, the
secret key. To show the problem easily, we assume that the
implementation uses the simple modular exponentiation algorithm
in Figure 4.a, which computes R = yx mod n, where x is w bits
long. The algorithm is widely used, therefore we can reasonably
assume the attacker has identified it through CFG matching.

Let S0 = 1.
For k = 0 to w-1:

If (bit k of x) is 1 then
Let Rk = (Sk*y)

mod n.
Else

Let Rk = Sk
Let Sk+1 = R2

k mod n.
EndFor.
Return (Rw-1).

Initialize

Return

Loop Entry

Else-branchIF-branch

Loop End

B1

B2 B3

B4

(a) (b)
Figure 4. Modular exponentiation algorithm.

The corresponding CFG for this small piece of code is shown
in Figure 4.b. From Figure 4.a, we can easily find that inside the
loop body if the current examined bit of x is 1, IF-branch is
executed, otherwise Else-branch is executed. We assume IF-
branch code resides at address B2 and Else-branch code resides at
address B3 (B2 and B3 are different). The secure processor must
behave as follows: if the current examined bit of x is 1, then fetch
the IF-branch code at B2, otherwise, fetch the Else-branch code at
B3. This results in a sequence of addresses for B2 or B3 showing up
on the address bus correspondingly. By monitoring the address bus
and capturing the addresses transmitted, the attacker can guess
whether the respective bits of x are 0’s or 1’s and get the secret
key x. Even if he cannot distinguish between IF-branch and Else-
branch, the information on the address bus leaves only two
possible values of x to guess (the correct key or its complement).

This example tells us that if the conditional branch is known
to the attacker, the direction of the execution path after the branch
can expose the outcome of the comparison which might be helpful
in determining or narrowing down the values involved. Such
security sensitive conditional branches are widely seen in
compression and encryption algorithms. Leakage similar to this
has led to timing attack [14] which is however more complicated.

Notice that missing several rounds of the for-loop can hide
part of the secret key, but still help the attacker substantially to
narrow down his search space. It is well known in the security
domain, 64-bit encryption has much less strength than 128-bit
encryption. If the attacker can capture half of the for loop, his
search space will be cut from 2|x| to 2|x|/2, which is 2|x|/2 times faster.

3.3 Noise: Blocking, Caching
Most side-channel attacks have to deal with noise that leads

to inaccuracy: Timing attacks suffer from varied computation time
of instructions, power attacks must count for the power
consumption of other components inside the chip. However bus
snooping is actually more accurate than other side-channel attacks
and it is very easy to setup [7,21]. Here we discuss different types

of “noises” that can affect control flow snooping and how the
attacker may get around them.

Blocking
Cache misses are typically addressed (and accessed) at block

boundaries; thus, the addresses on the bus are block addresses.
Actually, both attacks we mentioned above only rely on the
detection of branches. Given each block contains very few
instructions (8 on Alpha), it does not affect the attacks much. For
reuse code identification, we tried to build block-level CFG, i.e.,
every block becomes a node and edges indicate possible execution
paths between blocks. We found that typically block-level CFGs
contain about 25% lesser edges than the regular CFGs. Graph
matching the block-level CFG shows results close to those in
Figure 3 with negligible changes. To find out how block size
affects CFG matching, we list in Table 1 the percentage of
matched block level CFGs when the block size equals 32B, 64B
and 128B. It is interesting to see that if we ignore block level
CFGs with less than 10 or 15 nodes, the increase in block size does
not necessarily reduce the number of matches. This is probably
because most non-reuse procedures are larger than the reuse
procedures in the library as we have observed. Thus, this
experiment shows that larger block size does not affect CFG
matching much.

Table 1. Isomorphic block level CFGs with different
block sizes.

 32B 64B 128B
≥5 5% 4% 3.3%
≥10 0.1% 0.19% 0.1%
≥15 0.05% 0.04% 0.05%

Caches

Modern processor typically consist of large on-chip caches
which might lead to small miss ratios and very few addresses
exposed on the address bus. However, it does not help due to the
following reasons. (1) Since the cache is a shared resource among
all processes running on the processor and as in the previous
papers, XOM assumes that the OS is not secure. It is very easy for
the attacker to manipulate the OS so that the cache gets flushed
upon a context switch; alternatively the attacker can ascertain that
his own process fills and occupies most cache space before
switching to the process being attacked. In this manner, all
memory accesses are exposed directly on the address bus due to
compulsory misses. (2) Even if only one process is running, many
processors have a unified L2 or L3 cache for both code and data. If
the program’s working set can be affected by inputs, the attacker
may intentionally increase the working set size causing more
instruction misses. (3) Generally, caching is not predictable,
especially in multi-tasking environment. Different parts of the
control flow can be leaked during different runs. It is possible that
the attacker can finally get the whole picture. (4) For low-end
systems, on-chip caches are typically small. (5) The cache may be
disabled on some machines.

As an experiment, we tried to flush the cache at random
moments, and collected 4 block addresses immediately after the
flush. After sufficient number of runs, we found that over 95% of
edges on the block-level CFG were exposed. In addition, as
mentioned before, even if the control flow can be partly masked,
information still leaks to some extent since subgraph matching can
match partial CFGs. Partial execution path can still be used to
prune the searching space for critical data.

75

The two attacks we showed above are very simple compared
to some of the side-channel attacks, which involve sophisticated
mathematical and statistical analyses. This indicates address bus
information leakage is relatively easier to exploit as well as more
damaging and is harder to prevent. With more advanced analyses,
more information leakage could result.

3.4 Data Address Protection
Finally, accesses to the data segment can expose control flow

as well. For example, in Figure 4.a, if y is accessed, we will know
that the If-branch is taken. Therefore, data address protection is
equally important. However, this could induce a big overhead
since the size of the data segment can be much bigger than the
code size.

4. HIDE—PRELIMINARIES
HIDE stands for Hardware-support for leakage-Immune

Dynamic Execution. HIDE provides an infrastructure for
preventing information leakage on the address bus involving both
an micro-architecture as well as a compiler. The basic idea behind
HIDE is to break the correlation between repeated memory
addresses. This is achieved by permuting the address space at
suitable intervals during the execution.

In this section, we first introduce basic concepts and
components of HIDE. We then talk about what kind of address
sequence should appear on the address bus to avoid information
leakage and the two hardware components: the hide cache and the
permutation unit.

4.1 Probabilistically Fixed Address sequence
To hide the address sequence on the bus, a naïve but fully

secure approach is to establish a fixed address sequence that does
not change throughout the execution [10]. For example, the
processor can read and write each block in the whole memory
repeatedly from the lowest address to the highest address in a fixed
order. If a block is required by the program or is to be written out,
the processor must wait till the “repeated read/write sequence”
reaches that block. Obviously, this naïve approach can cause
significant slowdown, given the memory space is big and one
round of accesses can take tremendous amount of time.

As introduced by [10], we can also construct an address
sequence with addresses conforming to a fixed probabilistic
distribution. In other words, if the addresses seen on the bus are
random variables conforming to a fixed distribution, it still
exposes no information about which addresses are actually
accessed by the processor.

Original Address (Sequence): The address (sequence) issued by
the processor.
Actual Address (Sequence): The address (sequence) that actually
appears on the address bus.
Probabilistically Fixed Address Sequence: A kind of actual
address sequence in which actual addresses follow a fixed
probabilistic distribution.

The following lemma gives one such probabilistically fixed
address sequences.
LEMMA 1: A memory space of size M is randomly permuted
repeatedly; assume a block originally at address T is relocated to

Pk(T) after the kth permutations. If between the kth and (k+1)th
permutation, the processor accesses original addresses T1,
T2,…Tn(k), and these addresses are all different, then the address
sequence on the bus is probabilistically fixed.

REMARK: Lemma 1 says that, between two permutations, all
original addresses should be different, or we should randomly
permute the memory space before the same original address is
issued again. Notice that since different blocks cannot be permuted
to the same location (mapping is one-to-one), all actual addresses
between two permutations are different too.

PROOF: Lemma 1 is derived from [10]. We can prove this lemma
as follows. Since permutation Pk is completely random and one-to-
one, for two different original addresses Ti and Tj , Pk(Ti) and
Pk(Tj) are different (two different addresses cannot be permuted to
the same place) and are independent random variables. Therefore
the addresses in the sequence based on the same permutation Pk,
i.e. Pk(T1), Pk(T2)… Pk(Tn(k)) are independent to each other.
Similarly, since any two permutations Pk and Pl are random and
independent, Pk(Ti) and Pl(Tj) are always independently
distributed. Thus the addresses on the bus are all independently
distributed variables. Notice that, between two permutations,
original addresses must be distinct, otherwise we will see the same
actual address recurring on the bus (this is because the same
permutation must permute the same original address to the same
actual address). From control flow point of view as mentioned in
Figure 1, recurring addresses help the attacker to identify loops
and branches. For a better understanding of Lemma 1, we will give
an example during the discussion of the hide cache.

4.2 Hide Cache
To fulfill Lemma 1, intuitively we must “remember” the

original addresses that have been issued by the processor after the
previous permutation. Before an original address recurs, we need
to permute the memory space again. In other words, we must
remember the original address sequence to detect recurrence of an
address. It is clear that if we “remember” only a small number of
original addresses, the memory space must be permuted more
frequently. On the other hand, if we “remember” a lot of original
addresses, extra space is required to store them and more latency is
incurred to check if a new original address has been issued before.

The square root algorithm in the ORAM paper [10] stores all
such original addresses in an off chip memory called shelter buffer.
The size of the shelter buffer is the square root of the memory
space being protected. However, during each access, the processor
must read the entire shelter buffer to check if the address has been
accessed. Since the shelter buffer is in the insecure memory, the
processor must read the entire shelter buffer such that the attacker
cannot tell whether or where the access has hit in the shelter buffer.

With large on-chip space available on modern processor, we
may want to move the shelter buffer on-chip. However, it is still
space inefficient to occupy a separate on-chip area for this purpose.
Given caches are readily available to store memory blocks
accessed before, in this work we propose the hide cache; which
adds address bus protection on top of a normal cache to achieve a
low space and performance overhead solution.

Hide Cache: A cache same as a normal cache except that blocks
fetched after the previous permutation are all locked i.e. they
cannot be replaced until the memory space they belong to is

76

permuted again. Also, blocks that are dirty after the previous
permutation must be held from the write back until the next
permutation.

How the Hide Cache Works
In a hide cache, we intentionally lock all blocks that are

fetched after the previous permutation. Therefore accesses to the
same original address between two permutations always hit in the
cache without going out to the memory. Similarly, blocks that
become dirty after the previous permutation are locked as well. If
such dirty blocks are allowed to be written back, there could be
read accesses to the same address later causing the same address to
appear on the bus again; thus, such blocks must be locked as well.
If a block is locked, it cannot be evicted. When the memory space
is permuted again, all blocks belonging to that memory space are
unlocked.

Next we show an example in Figure 5, which helps to
understand Lemma 1 and the hide cache. In Figure 5.a, we assume
that the cache is 2-set 2-way. Figure 5.b shows the original address
sequence borrowed from Figure 1. The memory space contains 5
blocks as shown in Figure 5.c. Notice that all blocks are initially
permuted randomly after they are loaded from the disk to the
memory. The initial random permutation prevents the attacker
from correlating information across different runs (since random
permutations are done before code and data are initially loaded).
We also assume all accesses are read accesses in this example. If
blocks are not locked and permuted after the initial permutation,
we will observe the cache contents and actual access sequence as
illustrated in Figure 5.d. On the left side of Figure 5.d, we show
the status of the cache after 4 fetches. All addresses shown inside
the blocks are the original addresses. Since the four addresses are
all different, they are loaded from memory due to compulsory
misses. Also, since blocks are already permuted, the actual address
sequence on the bus is 102,100,104,101,103 instead of
100,101,102,103,104 after 5 accesses. If the blocks were not
locked (as in normal caches) we will see 102 (which corresponds
to the original address 100) appearing again. This means that even
if the block 100 is randomly permuted to address 102, its
recurrence can still be detected on the bus. Thus, a normal cache
cannot hide such recurrence. With hide cache—as shown in Figure
5.e—the 2nd permutation is triggered before the 5th access, because
all blocks in set 0 are locked and we cannot evict a locked block.
Notice that if a locked block is evicted, we lose tracking of the
block. It might be read in again causing the same address to appear
on the bus; or if the block is locked because it is dirty, evicting the
block will incur a writeback immediately causing re-appearance of
its address on the bus. Thus, a permutation must be conducted to
unlock blocks when all blocks are locked in a set. From the
address sequence at the lower right part of Figure 5.e, we can
observe that after the 2nd permutation, the original address 100 is
now 104. Since the two permutations are random and independent,
the attacker only observes random numbers on the bus. Also,
recurring original addresses become different random numbers
after the 2nd permutation. By locking the blocks, we are sure that
the same address does not appear again on the bus before another
permutation. For example, if we were to access block 104 again, it
is in the cache; therefore no access goes out on the bus due to a hit.
This scheme not only meets the requirement of Lemma 1, but also
preserves the functionality of a cache.

 Another observation in Figure 5.e is that in set 1, both

blocks are unlocked after the second permutation. Now they
behave like normal cache blocks and can be evicted if necessary.
Since their mapping and addresses have been changed (their
original address is now mapped to a different one) during the
second permutation, they can be safely evicted. After the blocks
are evicted, they will be locked the next time they are fetched in.
Finally, in this example, we show how latency might be incurred.
When all blocks are locked in a set, we must permute to unlock at
least one block before a new block can get in and replace the
unlocked one. Since permutation takes a long time, it is not wise to
permute at the last minute. We thus permute and unlock some
blocks before all entries are locked (this issue will be addressed in
detail shortly).

100

2-set
2-way
cache

101
103
100
104
102

102
101

104
103

Set 0

Set 1

most recent
used

least recent
used

100,101,102,103,104,100,101

after initial permutation

102
100

103
101

100 102
104
101
103
100

102
101

104
103

after 2nd permutation

102,100,104,101,perm,101,104

102,100,104,101,103,102

100
104

101
103

(a) (b)

original
addresses (c)

(d)

After 4 accesses
without locking and 2nd permutation

original access sequence

After 7 accesses

actual access sequence on the bus:

102
100

103
101

L

L
L

L

After 4 accesses
100
104

101
103

After 7 accesses
L
L

actual access sequence on the bus:
(e)

with locking and 2nd permutation

Figure 5. Example for Lemma 1 and hide cache.

Implementation of the Hide Cache
We list all operations in Table 2, assuming LRU is the

original replacement policy. Notice that blocks are still ordered
and updated according to the LRU policy, except that when
evicting a block, one should choose the least recent used block
among the unlocked blocks.

In our implementation, we use a bitmap (separately stored) to
record whether a block is locked or not, i.e. each bit represents one
block. After the permutation, the whole bitmap is cleared.

77

Latency Hiding via Fetch Buffer and Pre-permutation
Notice that locking blocks, i.e. setting the bits in bitmap is

not on the critical path since it can be conducted after the cache
access. For cache misses, for each block in the set we need to
determine whether it is locked or not. This involves reading
several bits in the bitmap. Fortunately it is not on the critical path
either. The missed block can be fetched in parallel when we access
the bitmap. Even if the missed block is fetched faster than the
bitmap accesses, we can simply put the block in a fetch buffer and
let the cache access return first. Once we determine all unlocked
blocks and find the LRU block among them, the block in the fetch
buffer can now be moved into the cache to replace the LRU block.
In this way, all the operations for the hide cache can have the same
latency as a normal cache.

Table 2. Operations on hide cache.

Read and hit Update LRU order of blocks
Write and hit Set dirty bit and lock the block, update LRU order

of blocks
Cache miss,
fetch a new
block into
the cache

Picked the LRU block among all unlocked blocks
in the same set. Fetch and lock the new block. Set
dirty bit for write access. If all blocks are locked,
put it to fetch buffer.

A memory
space is
permutated

All blocks belonging to that memory space in
cache are unlocked

However, the performance of a hide cache could still be

worse than a normal cache because 1) A locked block may
otherwise be replaced when it becomes least recent used. 2) Once
all blocks in a set are locked, a new block cannot be fetched into
the set unless we permute and unlock some of the blocks. Due to
the long latency of permutation, it may happen that a set is fully
locked before the permutation releases a locked block in the set
leading to stalls.

We propose pre-permutation to solve the above two
problems. Pre-permutation attempts to start permutation before all
blocks are locked. In our design, we start permutation when half of
the blocks in a set are locked. Pre-permutation increases the
chance that a block is unlocked before it becomes LRU, and
greatly reduces the possibility that all the blocks in a set are locked
when new blocks need to be fetched in. Even if the permutation
does not complete in time, we can put newly fetched blocks in the
fetch buffer, until the permutation completes and unlocks blocks
for replacement. These latency hiding techniques successfully cut
down the performance loss as shown in our results.

4.3 The Permutation Unit
The permutation units randomly permutes the memory space.

It should avoid exposing the correlation between any block’s old
and new locations. We show its pseudo-code in Figure 6. A
memory space with M blocks is to be permuted using an on-chip
space with P blocks called out_buffer. In addition, a permutation
vector (pv) consisting of a random permutation of numbers from 1
to M is generated and stored on-chip.

CASE I: If M is less than or equal to P, we only need to
sequentially read the M blocks once. After reading in block
number s, we put it to out_buffer[pv[s]]. Finally, out_buffer is
written out sequentially to the original memory space. Since the
attacker only sees one sequential read and one sequential write to
all blocks and everything is re-encrypted, he cannot build any
correlation between blocks’ old and new locations.

CASE II: If M is larger than P, without loss of generality, let
M=k*P, where k is an integer larger than 1. We split the M block
memory into k equal-size partitions. During an iteration s, all
blocks destined to partition s are permuted and put in the
out_buffer. At the end of iteration s, the out_buffer is written out to
a temporary memory space as a new partition s. Upon finishing all
permutations, we overwrite the original memory space with blocks
in the temporary memory space. Overall, the M blocks are read
k+1 times and written 2 times. Alternatively, we can change the
page table such that the temporarily memory space is mapped as
the original memory space, which avoids copying from temp_mem
to mem.

Although the size of the out_buffer, i.e. P cannot be very
large, the permutation unit can permute very large memory space,
i.e. M can be large. In this algorithm, the size of pv still depends on
M, however pv is actually very small because it only stores a short
integer for each block (8 bits for 8K pages with 32B block).

The pseudo-code in Figure 6 does not show the algorithm to
generate a random permutation of numbers from 1 to M. We
follow the shuffle algorithm in [23], which requires M swaps to
generate a complete random permutation as long as a hardware-
based true random number generator is available. Finally the time
for random permutation generation can be completely masked
when the permutation unit reads the memory space.

DATA STRUCTURE:
//memory space to be permuted
block mem[1..M]
//temporary space in memory
block temp_mem[1..M]
//permutation vector, on-chip
Int pv[1..M]
//output buffer, on-chip
block out_buffer[1..P]

M≤P
pv[1..M]⇐a random permutation of numbers from 1 to M;
for s=1 to M do
 out_buffer[pv[s]] ⇐mem[s]
endfor
mem[1..M] ⇐re-encrypt(out_buffer[1..M])

M=k*P
pv[1..M] ⇐a random permutation of numbers from 1 to M;
for s=0 to k-1 do
 for t=1 to M do
 read mem[t];
 if s*P<pv[t] ≤(s+1)*P then out_buffer[pv[t]-s*P] ⇐mem[t]
 endfor
 temp_mem[(s*P+1)..(s+1)*P] ⇐re-encrypt(out_buffer[1..P])
endfor
mem[1..M] ⇐temp_mem[1..M]

Figure 6. Pseudo-code for the permutation unit.
There might be pending accesses to the memory space being

permuted. We can either issue the access to memory if the block
has not been read-in (Lemma 1 is still enforced, because we do not
unlock until the permutation finishes). If the block is in out_buffer,
it is fetched immediately. If the block has been written out, we can
still fetch it from the memory, but need to mark that it will remain
locked after the permutation.

Permutation Overhead
With pre-permutation, permutation is normally not on the

critical path; critical reads by the processor are always given

78

higher priority than the permutation traffic. Notice that although
permutation is the main source of bus traffic increase, such traffic
is very regular and predictable and therefore can be easily
pipelined. In addition, we can take advantage of memory banking
and parallelizing memory accesses to different banks. If a normal
access is going to access the chunk that is being permutated (this
should rarely happen, since a chunk only takes a small portion of
the address space), we can first try to locate it in the out_buffer if
that block has been read into the permutation chip. To amortize the
initial overhead for each bus transaction (which could take the
majority of the access time if only a small number of bytes are
transferred in each transaction) we should read/write many
consecutively located memory blocks during each transaction.
Finally, we can completely offload the permutation traffic from the
front-side bus with a separate permutation chip (or combined with
the memory controller). There is communication between the
processor chip and the permutation chip, e.g. the processor chip
should send/receive data to the permutation chip if the address
falls in the chunk that is being permuted. Also the permutation
chip should return the new mapping once a permutation has
finished. Obviously, such communication should be in encrypted
form to be immune from bus tapping and the amount of traffic is
actually much less.

We now show how we put together the HIDE cache and
permutation unit to offer chunk level protection.

5. HIDE AT CHUNK-LEVEL
This section gives the hardware infrastructure of HIDE,

which provides chunk-level protection with simple interfaces.
Here a chunk is defined as one or more pages that are protected
and permuted together.

Protecting a large piece of memory is prohibitive due to the
high permutation cost, esp. when the out_buffer cannot hold the
entire piece of memory, we must access the memory multiple
times. The goal of chunk level protection is to limit the size of the
permutation. At chunk-level the permutation unit only permutes all
the blocks within a chunk. Once a chunk is permuted, all cache
blocks in that chunk are unlocked.

We can split an address sequence into a series of transitions
from address to address, e.g. the address sequence in Figure 1 has
transitions like: 100 101, 101 102, 102 103…If the transition
is between two addresses in the same chunk, we call it intra-chunk
transition, otherwise it is inter-chunk transition. Since all intra-
chunk transitions are protected with chunk-level protection (blocks
within a chunk undergo permutation), the percentage of intra-
chunk transition among all transitions is called transition coverage,
which is a good indication of how well the address sequence is
protected and the level of security guarantee we can provide.

We found chunk-level protection is powerful. As observed
from our benchmarks, even with the smallest chunk size i.e. a page,
over 75% of the transitions are intra-chunk. Given that not all
memory contents are security sensitive, protecting chunks of a
reasonable size should suffice if we can slightly narrow down the
protection domain with either compiler analyses or user
specifications as shown in Section 6. Besides, chunk-level
protection is flexible. Since our infrastructure supports chunks
with different sizes, the user can choose to protect some memory
space in big chunks and some in small chunks. Building chunks on
top of pages facilitates the implementation, since pages are
supported by both the hardware and OS.

Figure 7 shows the overall hardware structure to provide
chunk level protection. The L2 cache is now a hide cache. The
fetch buffer and the permutation unit were introduced in Sections
4.2 and 4.3. The controller coordinates all components.

Controller Permution
Unit

Memory

Page Info
Caches

Fetch Buffer

L2 cache-hide cache

Figure 7. Hardware flowgraph.

Before addressing the page info cache, we first describe the
page info record, which contains 7 fields for each page. Page info
records store extra information for the L2 cache so that it can
function as a hide cache. As shown below, the if_hide field
indicates whether this page should be protected. Blocks in a
protected page are permuted together with other pages in the same
chunk and accesses must go through address translation to reach
the new locations. The second field is the page number in the
virtual address space. The next two fields specify the chunk this
page belongs to. Notice that each chunk must take a contiguous
piece of memory in the virtual address space to facilitate compiler
optimization and user specification. In other words, a chunk must
take several consecutive pages in the virtual address space;
begin_virtual_page# and chunk_size (number of pages in a chunk)
uniquely define a chunk.

Page Info Record:
boolean if_hide;
int virtual_page#
int begin_virtual_page#;
int chunk_size;
int num_in_cache;
boolean lock_bitmap[num_blk];
blk_addr_t translation_table[num_blk];

num_in_cache counts the number of blocks of the chunk that

are locked in the hide cache. For chunks with multiple pages, only
the first page’s info record stores such information. This field is
used for pre-permutation described in Section 4.2. When half of
the blocks in a set are locked, for each locked block we find out
the percentage of locked blocks in their chunks. The one with the
highest percentage is chosen to be permuted. The lock_bitmap
field contains num_blk bits, where num_blk is the number of
blocks in a page. Each bit indicates if the block is in the cache and
is locked. Finally, the translation table translates each block to its
new block address after a permutation. The translation table is
updated by the permutation unit after each permutation. For
chunks with multiple pages, the blk_addr_t includes a page_ID
∈[0,chunk_size) to indicate which page in the chunk this block is
permuted to i.e. begin_virtual_page# +page_ID.

The size of the page info record is small compared with the
size of a page. For 8KB page size on Alpha, it only adds 3.5%
space overhead in memory. However, for big chunks, the
translation table takes more space due to the bigger page_ID field.

Page info records are stored separately in a dedicated
memory space that can only be accessed by the hardware. There is

79

one page info record for each physical page and the page info
record accompanies the page even when it is swapped out. For
each block, the hardware can find the corresponding page info
record via its physical page number. To speedup the access to the
page info records, we put a page info cache on chip. Due to the
small size of the page info records, a cache of 8~16KB is typically
enough to achieve very high hit rate. However, since page info
records are stored in memory, accesses to this data may leak
information on the address bus although they are encrypted under
the XOM model. Perceivably, such information leakage is indirect
and also very limited (only 3.5% in size). For complete security,
we can build several layers of protection, i.e., the first layer page
info cache becomes a hide cache which protects the first layer
page info records for pages used by the program. Since the first
layer page info cache is a hide cache, we need second layer page
info records for this hide cache and the pages taken by the first
layer page info records. Obviously, the sizes of the page info cache
and page info records decrease exponentially. At layer 3, the page
info records are typically small enough to be stored on-chip.

All pages in a chunk should be permuted together; thus they
must be swapped in and out together to avoid disk access latency.
In our implementation, these requirements are conveyed to the OS
when a chunk is created. Even if the OS is malicious, it cannot
change the page info records, and while it may violate the
swapping requirements, these violations will be detected by
hardware. Swapping pages at the level of chunks can have the
same effect as increasing the page size, causing extra memory
pressure when some pages are swapped without real accesses to
them. However, we conjecture that a chunk contains pages among
which there are many transitions. These pages very likely in the
same working set and are accessed in the same period. Thus,
swapping the pages together should have minor performance
penalties. In fact, it may even have the effect of improving
performance because of prefetching.

Finally context switches should not affect the hide cache,
since it works at physical page level, i.e., page info records are
designed for physical pages and are addressed with physical page
numbers. It works in tandem with a L2 hide cache where all
addresses are physical addresses.

Interface to the Application
Chunks can be specified statically in the code or at runtime

with special instructions. In the former case, such information is
inserted in the header of the binary code telling which chunks
should be created initially. Upon loading a chunk, the hardware
initializes the fields in the page info record and performs a
permutation before loading it into the memory. The initial
permutation prevents the attacker from gaining information across
different runs of the program. At run time, we can use 3
instructions to manage chunks; their syntax and operational
semantics are as follows:
♦hide_chunk (begin_virtual_page#, chunk_size)
Operational semantics: For all pages in the chunk, set the if_hide
and other fields accordingly. Get a new translation table from the
permutation unit without performing real permutation and clear the
lock bitmap. Later accesses to the chunk must go through the
address translation. This instruction can be used when a new
memory space is allocated. Since all old contents will be
overwritten, no real permutation is needed.

♦unhide_chunk (begin_virtual_page#)

Operational semantics: Clear the if_hide fields of all pages in the
chunk such that the later accesses will go to memory directly. The
old contents are discarded.

♦unlock_block (virtual_page#, start_block_num, num_block)
Operational semantics: Clear num_block consecutive bits in the
lock_bitmap of a virtual page, starting from start_block_num.

Next we discuss some optimizations developed to boost the

level of security guarantee offered as well as the performance.

6. HIDE PLUS
This section talks about techniques to achieve a higher level

of security guarantee based on the hardware infrastructure and
interface proposed earlier. Through compiler analyses and user
specifications, we can effectively improve transition coverage and
reduce address bus leakage, esp. for sensitive contents with very
small overhead.

6.1 Compiler Directed Layout Optimization to
Minimize Inter-Chunk Transitions

As mentioned in Section 5, chunk-level protection still
exposes inter-chunk transitions since permutations are confined to
the blocks only within a chunk. To minimize such exposure, we
should put functions that frequently call each other in the same
chunk. Similarly, consecutive data accesses that are frequent
should be put in the same chunk. We present a compiler
optimization that attempts to properly layout code and static data
to minimize inter-chunk transitions. This approach is also
applicable to heap space that is redistributed to a program – refer
to Section 6.2.

For static data, we assume arrays and structures are laid out
as a whole. For code, functions are laid out as a whole.
Occasionally, we may encounter huge functions1 or arrays, which
can cause big overheads if they are covered with big pages. In
such cases we assume that the compiler or the programmer is able
to divide them into smaller pieces that are unlikely to transit
frequently from one to another. Next we introduce the transition
graph.
Transition Graph: undirected graph with weighted nodes and
edges.

For code, each node represents a function. The weight of the
node is the size of the function. Edge weights between nodes
represent the call/return frequency between the two functions. If
function A calls B or returns from B once, the weight of the edge
between node A and B is increased by 1. For static data, each node
represents a data unit, i.e. a scalar variable, a structure or an array,
etc. The weight of the node is the size of the data unit. The weight
of the edge is the number of times the two data units are accessed
consecutively. For example, if we find a path on which data unit A
is accessed immediately after data unit B, the edge weight between
them is incremented by 1.

The transition graph is a rough estimation of how frequently
nodes transit from one to another, because some transitions can be
hidden by the cache. Also, it would be more accurate if we have
profile information available. Figure 8 shows the layout algorithm.

1 In our benchmark, we only observe several functions that exceed page

size.

80

Our goal is to assign nodes to chunks, so that with minimal total
chunk cost we can cover most edge weights. At this point, we need
to clarify two things: 1) The total chunk cost is the sum of all
chunks’ cost, and a chunk’s cost is empirically calculated as
proportional to its size, since the time to permute grows with the
chunk size. 2) If two nodes are in the same chunk, then the edge
weight between them is covered.

Initially, each node is
assigned a minimal chunk,

i.e. a single page

Pick a pair of chunks to merge, such that:
(increase of total chunk cost)/(increase of

covered edge weights) is minimal.

Edge weight
covered>95%?

Y

N

Done

Figure 8. Algorithm to layout code and data.

Initially, each node is assigned to a distinct chunk with

minimal size, i.e. a single page. Empirically we loop until over
95% of edge weights are covered. During each iteration, we find a
pair of chunks to merge with minimal (increase of total chunk
costs)/(increase of covered edge weights) ratio. Notice that, if we
merge two chunks, all nodes in the two chunks are now assigned to
a new chunk that can hold all nodes and its size is minimal.

6.2 Other Support for Managing Stack and
Heap

Stack and heap are dynamically managed memory spaces
that must be tackled at runtime. We now discuss several
optimizations for protecting stack and heap accesses.

Since stack size is typically small and most activities occur at
the top of the stack, we should always try to put the top of the
stack inside a chunk boundary. To avoid the exposure of accesses
to the top of the stack, the application should check if the callee’s
frame will cross chunk boundary. If so, it should set the frame
pointer to the boundary of the next chunk. Figure 9 shows that
when lesser space is available in a chunk than the stack frame size
of the callee function, we allocate the callee’s stack frame at the
start of the next chunk. In this way, we can avoid callee’s stack
frame from crossing the chunk boundary which might lead to
information leakage. Since the parameters have to be passed from
caller to callee, this might still lead to some inter-chunk leakage.
We suggest parameters are put on the callee’s chunk. Although
this might still cause several inter-chunk transitions at the
beginning of a call, we believe the amount of leakage introduced
should be small. On the other hand, the accesses within a stack
frame are more frequent and thus, we choose the above solution. In
cases where there are accesses across stack frames (such as
indirect reference through a pointer to caller’s data etc.), we
attempt to put the two functions’ stack frames in the same chunk.

end of last
stack frame

actual start of the
callee’s stack frame

chunk
boundary

stack grows
downwards

Figure 9. Example for stack.

Since the location and size of the chunk as well as the end of
the stack frame are all known at runtime, the compiler simply
inserts comparison instructions at the function call site and

advances the stack frame accordingly. The new chunk is protected
with the hide_chunk instruction. Given the stack frame size is
typically small, space loss due to this is negligible compared with
all memory space taken by a program.

On the other hand, heaps can be huge; therefore more
specifications by the programmer are desirable. Next we give the
unlock rule, which has been found very useful to reduce the
number of locked blocks and save unnecessary permutations.

Unlock Rule: If a block will not be referenced after certain point
and it is not dirty in the cache, we can directly unlock it.

If a block will no longer be referenced and is not dirty, there
is no need to lock it in cache, because its addresses will not appear
on the bus any more. The unlock rule suggests that data can be
unlocked in the cache as soon as we are sure it will not be
referenced later. Especially when only a few blocks in a chunk are
locked in the cache, the controller will be reluctant to force a
permutation of the entire chunk. Thus, unlocking these blocks
without incurring permutation is most desired in this situation.

To unlock a set of blocks, we can use the unlock_block
instruction. This instruction simply clears the lock bits for those
blocks if they are not dirty. unlock_block instruction can be put
together with code by the compiler or the programmer after data
values are determined to be dead through offline analysis. Some
heap allocation schemes grab large pieces of memory from heap
then redistribute them to the application. Thus, techniques
presented in Section 6.1 might be similarly applied to minimize
inter-chunk transitions during the above heap allocations.

7. OTHER CONSIDERATIONS
Information leakage prevention is a broad topic, whereas this

paper only tackles a particular problem. For instance, system calls
can somewhat leak control flow information, however the
interaction between application and operating system is
unavoidable. This problem is actually left to the programmer to
not to put system calls at sensitive points of the code. Also,
execution time cannot be hidden due to its tight association with
performance. It is normally unreasonable to require the program to
run for the same amount of time regardless of inputs. Under our
scheme, the attacker observing the address bus still gains some
information, such as the moments when permutations take place,
the number of accesses between two permutations, etc. However
such leakage is much less than that from unprotected address bus.
So far we cannot conceive of any valid attacks that might benefit
from this type of information leakage.

In a multi-processor system, one block may be present in the
caches of other processors, therefore locking and permutation
information must be shared and consistent across multiple
processors. However the communications among processors are on
the bus that is subject to attack. Therefore our scheme cannot work
without major modifications. Currently, we regard address bus
information leakage prevention in a multiprocessor environment as
our future work.

8. EVALUATION AND RESULTS
We evaluate our schemes on a processor model with default

parameters in Table 3, in which all 8K chunks are protected. The
entire SPEC2000int benchmark suite is used as representative

81

applications. Implementation is done with the Simplescalar toolset
[17] and experiments are based on SimPoint [20]. Each benchmark
is fast-forwarded according to SimPoint then simulated by 100M
instructions. The 200M Memory bus is 8B wide and fully
pipelined.

In Figure 10, we compare IPC, bandwidth usage and
transition coverage (i.e. percentage of intra-chunk transitions—
Section 5) for 3 models: 1) the one with off-chip shelter buffer in
the ORAM paper [9,10]; 2) default model with parameters as listed
in Table 3, 8KB chunk, no layout optimizations; 3) a more secure
model with 64KB chunk and compiler layout optimizations
described in Section 6. For IPC comparison, we normalize all IPC
to the original. We also list absolute values of the original IPC.
The ORAM model incurs significant slowdown (73%), although
we only implemented it at the smallest chunk, i.e. single-page
level with 16-block shelter buffer for a fair comparison with the
default model. Both default model and the “64K chunk+layout”
model shows little slowdown: 0.3% and 1.5% on average.

Table 3. Default architectural parameters.

Clock frequency 1 GHz L1 I/D 8K DM 1 cycle 32B block
Fetch queue 32 entries Memory bus 200M, 8 Byte wide
Decode/issue/
commit width

8/8/8 Unified L2 4way, 32B block
1M (12 cycles)

RUU/LSQ size 128/64 Memory latency 80(1st), 5(inter) cycles
TLB miss 30 cycle Chunk size 8 K, all chunks protected
Permutator
Outbuf

64K Fetch buffer
Page info caches

8 blocks
8K/1K

Next, we look at the bandwidth usage. We show the

percentage of overall bandwidth (i.e. 1.6GB/s) being taken.
ORAM uses over 60% of the bandwidth due to its scanning of the
whole shelter buffer during each access, the default model and
64K chunk one only use 9% and 15% of the bandwidth. For most
benchmarks in SPEC2K, the memory traffic is not a big issue
since they take only about 5% of the bandwidth to begin with. To
get an idea of the worst-case bandwidth consumption, we reduce
the L2 cache size to 512KB and 256KB (due to the nature of SPEC
benchmarks, we cannot find one that experiences memory problem
with 1MB L2). For 512KB L2, the bandwidth consumption
increases by 130% from the default model, whereas 256KB L2
leads to 529% memory traffic increase. As mentioned in earlier
sections, the majority of the memory traffic comes from
permutations and therefore can be properly pipelined and
parallelized with memory banking. For memory-bound
applications, it is recommended to use a separate permutation chip
to offload the traffic from the front-side bus—Section 4.3.

The bottom graph in Figure 10 gives transition coverage of
the 3 models, which is an indication of the level of security
guarantee that is achieved (Section 5). The first two models show
the same 75% transition coverage on average, because they both
protect at 8K chunk level. With 64K chunk and layout
optimization, 87% transition coverage is achieved. Several
benchmarks get lower transition coverage like gap, vpr mainly
because their data layout on the heap is not well organized, which
tends to jump among several places with long distances. This also
causes more permutations, since the number of blocks each
permutation can unlock is lower.

Thus, one can see that a significantly higher transition
coverage can be achieved in the 3rd model with almost
insignificant performance degradation. The layout optimization
provides around 95% transition coverage for code and static data,
while it only causes negligible slowdown due to the small size of

that part. The rest of the slowdown is due to large chunk-size and
overall transition coverage is much higher with little performance
penalty.

N
or

m
al

iz
ed

 IP
C

0.0

.2

.4

.6

.8

1.0

1.2

B
an

dw
id

th
U

sa
ge

 (%
)

0
20
40
60
80

100

8K Chunk ORAM default model 64K Chunk+Layout

2.94 0.87 1.14 2.26 0.77 3.89 1.28 2.81 0.97 1.34 0.91 2.32

bzip
2

cra
fty eon

gap
gcc gzip

mcf
parse

r

perlbmk
twolf

vorte
x vpr

Tr
an

si
tio

n
C

ov
er

ag
e

(%
)

40

60

80

100

Figure 10. Comparison for 3 representative models.

It is important to understand if the user can provide
specifications to exclude a small percentage of code and data as
non-security-sensitive, our scheme will eliminate almost all the
leakage on the address bus with negligible slowdown. For the
default model, the user needs to identify roughly 25% such code
and data, while under the “64K Chunk+Layout” model, he only
needs to exclude about 5% of the code and static data (Figure 8)
and 13% of the data on the heap, assuming stack is protected as in
Section 6.2. This means the user specification can be very rough or
in same cases, a nice compiler approach will probably do the work
too, making our scheme practical to achieve a good level of
security guarantee.

In Figure 11, we vary the size of L2 cache under the default
model to see how slowdown changes. From Figure 11, only some
benchmarks have observable slowdown, typically those with
relatively large working sets. Small cache leads to bigger
slowdown due to more L2 misses causing more permutations. On
average, the slowdown for 512K, 1M, 2M L2 is 1.5%, 0.3%,
0.03% respectively. Our results show that the slowdown is within
20% even for 64K caches, making it applicable to low-end systems
with smaller caches where information leakage might be more
severe.

In Figure 12, we do sensitivity study for chunk sizes under
the default model. All comparisons are against the 8K default
model. As protection granularity increases, more slowdown and
bandwidth consumption occur. On average, the slowdowns for
16K, 32K, 64K chunk are 0.13%, 0.55%, 1.05% respectively, and
the bandwidth increases are 18%, 40%, 73% respectively. Again, a
permutation chip could offload this bandwidth increase from front-
side bus.

bzip2
crafty eon

gap
gcc

gzip

mcf
parser

perlbmk
twolf

vorte
x vpr

S
lo

w
do

w
n

(%
)

0
1
2
3
4
5
6
7

512K
1M
2M

Figure 11. Slowdown comparison for 3 L2 cache sizes.

82

IP
C

 d
eg

ra
da

tio
n

(%
)

0

1

2

3

4

5

16k
32k
64k

bzip
2

cra
fty eon

gap
gcc

gzip
mcf

parser

perlbmk
twolf

vorte
x vpr

BW
 In

cr
ea

se
 (%

)

0
50

100
150
200

Figure 12. IPC and bandwidth sensitivity to chunk sizes.

bzip
2

cra
fty eon

gap
gcc

gzip

mcf
parse

r

perlbmk
twolf

vorte
x vpr

IP
C

 d
eg

ra
da

tio
n

(%
)

0

1

2

3

4

5

6

16k
32k
64k

Figure 13.IPC degradation with layout optimization.

bzip
2

cra
fty eon

gap
gcc gzip

mcf

parse
r

perlbmk
twolf

vortex vpr

N
or

m
al

iz
ed

 IP
C

0.0

0.2

0.4

0.6

0.8

1.0

1.2 no fetch buffer no pre-permutation

Figure 14. Evaluation of latency hiding techniques.

Figure 13 shows how layout optimization affects the
performance. For chunk sizes of 16K, 32K and 64K, the slowdown
due to layout optimization is calculated for each benchmark. This
figure tells us that with larger chunk size layout optimization
causes less slowdown. This is perhaps because with larger chunk
size, most code chunks are already covered. In other words, more
chunks generated by the layout algorithm are automatically
covered without extra performance loss. On average, the
slowdowns are 1.38%, 0.68%, 0.19% for 16K, 32K, 64K chunk
sizes respectively.

Finally, Figure 14 shows a number of other experiments that
slightly change the default model, including 1) remove the fetch
buffer; 2) permute when all blocks are locked instead of half way.
IPC numbers are normalized to the default model. It suggests the
fetch buffer contributes about 6.3% reduction in slowdown
whereas pre-permutation contributes 44% on average. Fetch buffer
and pre-permutation avoids latencies to be on the critical path.
Especially, pre-permutation reduces cascaded permutations when
fetches to the same set come before the previous one finishes.

We have also tried to change the L2 cache to 8 way, however
it contributed marginally to pre-permutation as 4 way is almost
enough. On the contrary, making the L2 8-way can cause more

accesses to the same set (due to fewer number of sets). Also, we
tried pre-permutation when ¼ of the ways are locked, which shows
more traffic due to lesser number of blocks unlocked by each
permutation, while changing to ¾ way pre-permutation causes
more slowdown due to later permutations causing more stalls.
Finally we increase the cache block size to see how slowdown gets
affected by it. However it turns out that larger block size has
negligible impact on performance.

9. RELATED WORK
It is important to distinguish between “security guarantee”

and “seemingly secure”. For the latter, there are many ways such
as reordering the blocks at runtime, reading blocks to a buffer then
writing out after some time to new places, obfuscating the code,
issuing random accesses etc.; however all these approaches
provide no guarantee on how much information can be leaked. A
“seemingly secure” approach should not be taken as serious work
in the security domain because it is hard to fathom how powerful
(smart) the attacker might be. Only security guarantees establish
the security strength of a system without making assumptions
about the attacker, which is the essence of this work.

Code obfuscation techniques are only “seemingly secure”,
but it only makes cracking relatively harder. No security guarantee
is provided as such.

The DS5000 series processor supports so-called address bus
encryption, which is equivalent to the initial permutation in Figure
5.c. However, it does not permute repeatedly at runtime, therefore
the attacker can still construct the CFG in the same way as
mentioned in Section 1. The DS5000 also issues random fetches in
order to confuse the attacker (seemingly secure). However,
random fetches can be easily discerned from true accesses in loops,
which repeat more frequently. Actually, DS5002FP has been
completely cracked [7].

Goldreich [9,10] proposed three approaches to guarantee no
information leakage on the address bus, however all of them can
incur big slowdown. For example, the “square-root solution” needs
to read the entire shelter buffer before each access; the
“hierarchical solution” takes O(t*log(t)*log(t)) memory space after
t accesses, causing memory explosion.

The leakage-proof program partitioning work done by Zhang
et al. [24,25] tackles a similar problem. Their work focuses on
combating control flow information leakage due to the dynamic
sequences of program partitions transmitted through network in a
networked embedded systems environment. On the other hand,
this work focuses on eliminating the control flow information
leakage due to code/data blocks transmitted through system
address bus. Both the assumption and the solution of their work
are fundamentally different from this one.

10. CONCLUSION
In this work, we provide a lightweight solution to the

problem of information leakage on the address bus due to both
data and code accesses. We show that this problem is critical for
XOM-based secure architecture to solve software IP protection
issues and stop side channel attacks in encryption based
approaches. However, all known solutions with enough security
guarantee [10] suffer from very high performance degradation.

In this work, we propose the HIDE infrastructure including
the hide cache with block locking and permutation mechanisms.

83

HIDE provides chunk-level protection and interface for compiler
optimizations. Then we propose compiler optimizations for code
and data layouts and other runtime optimizations to reduce
overheads and improve level of security guarantee.

 Our results show with 64K chunk protection and the layout
optimization, we can guarantee 87% of the address sequence is
protected, in which 95% of the accesses to code and static data are
hidden. With the HIDE infrastructure, interfaces are provided for
the compiler or user to further improve the level of security
guarantee or to narrow down the protection domain to achieve
almost complete protection. In this way, all security sensitive
code/data could be identified and effectively protected in terms of
the leakage on the address bus. The performance overhead is at
most 1.5% in our experiments. The increase of the bus traffic takes
a very small part of the total bandwidth available in our
benchmarks. The majority of the traffic increase is due to
permutations. Such traffic is very regular therefore we can reduce
its overhead in multiple ways as suggested in the paper. Finally,
most on-chip hardware components for HIDE are small. The
largest component, i.e. the permutation unit with 64KB out_buffer
can be shifted to the permutation chip as well. Due to the low
overhead of the HIDE infrastructure, it is possible to apply it to
low-end systems with smaller cache where leakage on the address
bus might be more severe.

11. ACKNOWLEDGEMENTS
This work was supported in part by NSF grants CCR-

0220262, CCR-0208953 and CCR-0326396. The authors would
like to sincerely thank all reviewers esp. our shepherd Dr.
Chandramohan Thekkath (Microsoft Research) for their critical
comments and help in revising the manuscript. Also, the authors
would like to thank Dr. Hsien-Hsin Lee (ECE Dept., Georgia Tech)
for some initial discussions on this topic.

REFERENCES
[1] D.Lie, C.Thekkath, M.Mitchell, P.Lincoln, D.Boneh,

J.Mitchell, M.Horowitz, “Architectural Support for Copy and
Tamper Resistant Software,” International Conference on
Architectural Support for Programming Languages and
Operating Systems, Nov. 2000.

[2] D.Lie, C.Thekkath, M.Horowitz, “Implementing an Untrusted
Operating System on Trusted Hardware,” 19th ACM
Symposium on Operating Systems Principles (SOSP 2003),
Oct. 2003.

[3] J.Yang, Y.Zhang, L.Gao, “Fast Secure Processor for
Inhibiting Software Piracy and Tampering,” International
Symposium on Microarchitecture, Dec. 2003.

[4] E.Suh, D.Clarke, B.Gassend, M.v.Dijk, S.Devadas, "Efficient
Memory Integrity Verification and Encryption for Secure
Processors", International Symposium on Microarchitecture,
Dec. 2003.

[5] B.Gassend, G.E.Suh, D.Clarke, M.v.Dijk, S.Devadas,
“Caches and Hash Trees for Efficient Memory Integrity
Verification”, International Symposium on High Performance
Computer Architecture, Feb. 2003.

[6] G.E.Suh, D.Clarke, B.Gassend, M.v.Dijk, S.Devadas,
“AEGIS: Architecture for Tamper-Evident and Tamper-
Resistant Processing,” International Conference on
Supercomputing, Jun. 2003.

[7] M.G.Kuhn, “Cipher Instruction Search Attack on the Bus-

Encryption Security Microcontroller DS5002FP,” IEEE
Transaction on Computers, Vol.47, No.10, pp.1153-1157,
1998.

[8] M.Kuhn, “The TrustNo 1 Cryptoprocessor Concept,” CS555
Report, Purdue Univ. 1997.

[9] O.Goldreich, “Towards a Theory of Software Protection and
Simulation by Oblivious RAMs,” The 19th Annual ACM
Symposium on Theory of Computing (STOC), 1987.

[10] O.Goldreich, R. Ostrovsky, “Software Protection and
Simulation on Oblivious RAMs,” Journal of the ACM,
Vol.43, No.3, 1996.

[11] “DS5002FP secure microprocessor chip data sheet,” Dallas
Semiconductor.

[12] J.R.Ullman, “An Algorithm for subgraph Isomorphism,”
Journal of the ACM, Vol.23, pp.31-42, 1976.

[13] VFLib Graph Matching Library, http://amalfi.dis.unina.it/
graph/db/vflib-2.0/doc/vflib-1.html

[14] P.C.Kocher, “Timing attacks on implementations of Die-
Hellman, RSA, DSS, and other systems,” International
Cryptology Conference, 1996.

[15] P.Kocher, J.Jaffe, B.Jun, “Differential Power Analysis”,
International Cryptology Conference, 1999.

[16] K.Gandolfi, C.Mourtel, F.Olivier, “Electromagnetic Analysis:
Concrete Cresults,” In Workshop on Cryptographic hardware
and Embedded Systems, 2001.

[17] D.Burger, T.M.Austin. “The SimpleScalar Tool Set Version
2.0,” TR. 1342, Univ. of Wisconsin--Madison, May 1997.

[18] R.Anderson, M.Kuhn, “Low Cost Attacks on Tamper
Resistant Devices,” Security Protocols Workshop, 1997.

[19] J. Kelsey, B. Schneier, D.Wagner, and C. Hall, “Side channel
cryptanalysis of product ciphers,” European Symposium
on Research in Computer Security, Sep. 1998

[20] T.Sherwood, E.Perelman, G.Hamerly, B.Calder, “Auto-
matically Characterizing Large Scale Program Behavior,”
International Conference on Architectural Support for
Programming Languages and Operating Systems Oct. 2002.

[21] A.Huang, “Keeping Secrets in Hardware: the Microsoft Xbox
(TM) Case Study,” MIT TR. AIM-2002-008, May 26, 2002.

[22] C. McClure, “Software Reuse Planning by Way of Domain
Analysis,” Technical Paper, Extended Intelligence, Inc.
http://www.reusability.com.

[23] D.E.Knuth, “Seminumerical Algorithms,” The Art of
Computer Programming, Vol. 3, Addison Wesley 1981.

[24] T.Zhang, S.Pande, A.D.Santos, F.Bruecklmayer, "Leakage-
proof Program Partitioning," International Conference on
Compiler, Architecture and Synthesis for Embedded Systems,
Oct. 2002.

[25] T.Zhang, S.Pande, A.Valverde, "Tamper-resistant Whole
Program Partitioning," International Conference on
Languages, Compilers, and Tools for Embedded Systems,
Jun. 2003.

84

