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ABSTRACT+ 
XOM-based secure processor has recently been introduced as 

a mechanism to provide copy and tamper resistant execution. 
XOM provides support for encryption/decryption and integrity 
checking. However, neither XOM nor any other current approach 
adequately addresses the problem of information leakage via the 
address bus. This paper shows that without address bus protection, 
the XOM model is severely crippled. Two realistic attacks are 
shown and experiments show that 70% of the code might be 
cracked and sensitive data might be exposed leading to serious 
security breaches. 

Although the problem of address bus leakage has been 
widely acknowledged both in industry and academia, no practical 
solution has ever been proposed that can provide an adequate 
security guarantee. The main reason is that the problem is very 
difficult to solve in practice due to severe performance degradation 
which accompanies most of the solutions. This paper presents an 
infrastructure called HIDE (Hardware-support for leakage-Immune 
Dynamic Execution) which provides a solution consisting of 
chunk-level protection with hardware support and a flexible 
interface which can be orchestrated through the proposed compiler 
optimization and user specifications that allow utilizing underlying 
hardware solution more efficiently to provide better security 
guarantees.  

Our results show that protecting both data and code with a 
high level of security guarantee is possible with negligible 
performance penalty (1.3% slowdown). 

Categories and Subject Descriptors 
C.1 [Processor Architectures]: Miscellaneous;  
K6. [Management of Computing and Information Systems]: 
Security and Protection. 

General Terms: Security, Design, Performance. 

Keywords: Secure Processor, Address Bus Leakage Protection. 
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1. INTRODUCTION 
 XOM-based secure architecture [1,2] has recently emerged 

as a model architectural support for copy and tamper resistant 
software. Under the XOM model, everything outside the processor 
chip is assumed to be insecure. The latest research on XOM 
architecture proposes OTP (one-time-pad) encryption/decryption 
schemes [3,4] to protect software confidentiality and a Merkle tree 
based scheme [5] to guarantee software integrity. Both schemes 
achieve the above security goals within a reasonable performance 
spectrum (a small performance degradation). Although the XOM 
model is successful in protecting the off-chip code and data using 
the encryption techniques (block cipher or stream cipher), it fails 
to protect the addresses on the address bus. In other words, the 
address sequence generated by an application may be exposed 
under the current XOM protection [3,4,5]. 
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Figure 1.  Control flow snooping. 

In all previous XOM-based work, the following two 
questions are left unaddressed: 1) Even though off-chip memory 
contents are encrypted, can the exposed address sequence lead to 
security breaches? 2) If so, how should we prevent those at a 
reasonable cost?  

Although the problem has been noticed in [1] and [6], they 
both leave it open. [1] poses it as an open problem, and [6] largely 
ignores it. In [5] it is shown that the detection of loops through the 
information leakage on address bus can become a starting point for 
the replay attack. In this paper, we point out that address bus 
protection is critical; otherwise control flow information might be 
exposed and severe security breaches might occur. 
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In Figure 1, we illustrate how control flow can be snooped by 
the attacker. Under the current XOM model, all 5 blocks of 
instructions are stored in an encrypted form, however authentic 
addresses are readily available on the bus. The attacker has no idea 
what the instructions are due to the encryption, however he can 
snoop on the bus and obtain a sequence of addresses (refer to 
Figure 1.b). From the address sequence, he can infer that the code 
is in a loop since addresses 100,101,103,104 appear repeatedly. 
Also, it is exposed that there is a conditional branch at address 101 
because sometimes the control goes to 103 directly, sometimes it 
goes via 102 to 103. Therefore, by identifying recurring (block) 
addresses, the attacker can construct a block level control flow 
graph (CFG) as shown in Figure 1.c. Leakage of the control flow 
can severely jeopardize the encryption of code (it may be possible 
to crack as much as 70% of the encrypted code through a well 
devised attack – refer to Section 3) which is the basis of the XOM 
model. Apart from this, address sequence on the bus may lead to 
exposure of the critical data (such as the secret key) as well.  

Regarding the second question,  it may be noted  that address 
bus protection is a much tougher problem than it might first appear. 
Both industry and academia are aware of the severity of 
information leakage through the address bus and have proposed 
solutions. DS5000 and DS5002FP are chips produced by Dallas 
Semiconductors [11], which are among the most widely used 
security devices in credit-card terminals, pay-TVs access control 
systems etc. The processor incorporates bus-encryption (actually, 
fixed address reordering together with some random accesses) and 
was described as the most secure processor currently available for 
commercial users. However, such protection can be easily 
invalidated (refer to [7] and related work). The only solution that 
completely avoids such information leakage is called Oblivious 
RAM (ORAM), which was proposed by Goldreich [9,10]. In his 
papers and patent, three schemes are proposed to ensure that the 
addresses on the bus are independent of the addresses issued by the 
application. Unfortunately, all three schemes are infeasible on real 
machines due to either significant slowdowns or resulting memory 
explosion. Therefore a practical solution for protecting information 
leakage through address bus is highly desirable and valuable for 
the viability of XOM-based secure processors.  

This paper proposes such a solution with negligible overhead. 
Through hardware support and compiler optimizations, HIDE 
provides a very high level of security guarantee, which means that 
the information leakage via the address bus is largely prevented. 
Also, our infrastructure is highly flexible. It can easily incorporate 
programmers’ specification of sensitive sections as well as some 
compiler optimizations.  

The rest of the paper is organized as follows: Section 2 
discusses the XOM model and attack model; Section 3 depicts 
possible attacks through the address bus leakage; Section 4 
provides an overview of HIDE; Section 5 introduces basic 
concepts in HIDE; Section 6 presents chunk level protection; 
Section 7 shows how to protect more with HIDE plus; Section 8 
talk about other considerations; Section 9 shows results; Section 
10 and Section 11 provide related work and conclusion. 

2. MODELS 

XOM Model 
Before elaborating on the address bus security vulnerability, 

we briefly introduce the XOM model [1]. The XOM model 
assumes that the only trusted hardware entity is the processor itself. 

Any other hardware components including the system bus and 
main memory are non-trusted since they are vulnerable to security 
attacks. Data and code are encrypted when they leave the 
processor and decrypted after they are fetched into the processor. 
Moreover, the operating system is also considered non-tamper 
resistant. Therefore, the XOM model provides mutual protection 
among processes running on the same processor. Later work on 
XOM [3,4,5] added integrity checks and performance 
enhancements. In fact, XOM is similar to previous models 
proposed in [8,10] and we can find real implementations of these 
models such as the DS5000/DS5002FP, smartcard chips, etc. in 
which the processor core is physically shielded and code and data 
are maintained in the encrypted outside the chip.  

Attack Model 
Protecting information leakage implies stopping the attacker 

from getting any useful information related to the intellectual 
property of the software; such protection is more general than the 
copy protection (i.e., protecting someone from making illegal 
copies). For example, consider a scenario in which company A and 
company B are developing similar software. Company A succeeds 
first and releases the software in an encrypted format, which 
(presumably) is execute-only on XOM machines. However, 
company B now has complete access to the software bundled with 
the XOM machine on the market. Company B can experiment with 
it extensively, e.g., feed the program with different inputs, execute 
that software together with their own software on the same 
machine or even with a manipulated OS. Moreover, company B is 
already an expert in developing similar software, therefore it only 
wants to understand a few critical parts of company A’s software. 
As shown later, techniques such as CFG matching can distill 
important information from the unprotected address bus. Although 
this scenario is not as straightforward and prevalent as software 
piracy by end users, it has been a major concern of software 
companies (the recent Linux/SCO-Unix lawsuit is an example).  

As a matter of fact, these kinds of attacks, i.e., circumventing 
the encryption scheme indirectly through information leakage are 
well-known in the security domain as side-channel attacks. In 
reality, there have been many successful stories [14,15,18,19] to 
obtain critical information from a secure chip such as a smartcard, 
by monitoring the timing [14], power [15] or electromagnetic 
differences [16] from outside the chip. 

 

3. ATTACKS VIA CONTROL FLOW 
SNOOPING ON BUS 

We now illustrate two attacks that are possible through the 
control flow information leaked on the address bus. Notice that, 
the example in Figure 1 assumes that there is no “noise” in the 
addresses seen on the bus (i.e., all the addresses are leaked), but in 
practice, branches within a block are hidden, a cache can hide 
many accesses, etc. This might lead to less than full leakage but 
could still be quite damaging. We first assume that there is no 
noise, and in Section 3.3, we will address the noise issues. 

 

3.1 Reuse Code Identification 
Due to the following two facts, leaking the CFG information 

can result in the complete exposure of reuse code and severely 
disrupt code encryption. 
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Software Reuse and Binary-Level Similarity  
With the ever-increasing amount of legacy code and time-to-

market pressure, software development relies more and more on 
reusing existing modules or on pre-built libraries from other 
companies or oftentimes from the public domain. For example, 
many classic algorithms have their standard and/or non-standard 
open-source implementations online ready for reuse. Moreover, 
most compiler and development tool chains are provided by a few 
3rd party name-brand vendors that can lead to a high binary-level 
similarity once the source code is reused. We measured the full set 
of  SPEC 2000 Alpha binaries to find out the percentage of code 
that is reused from the standard C library on Alpha. As shown in 
Figure 2, the reuse percentage can be very high for some 
benchmarks like mcf (88%) and bzip2 (66%). On average, 39% of 
the code at binary level is due to libraries. A recent study [22] 
shows that nowadays, up to 70% of the code in industry software 
is reuse code. Given such a high amount of reuse code, the 
question is: Can it be discovered? The answer is yes. Address bus 
leakage allows building a CFG and CFGs serve as unique 
fingerprints of underlying code leading to such a discovery. Once 
such reuse is discovered, the attacker knows the key underlying 
algorithm or the intellectual property (IP). 
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Figure 2. Binary reuse percentage for SPEC2000. 
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Figure 3. Isomorphic CFG pairs in the standard C library. 

CFG-Fingerprint of Algorithm 
In order to determine the uniqueness of CFGs we did another 

study and found that they indeed serve as unique fingerprints due 
to the following intuitive arguments. CFGs are made of a few 
basic blocks. It is widely known that the average length of basic 
blocks is only 6 to 10 instructions for integer programs and a large 
number of instructions are branches (around 12%). Conceivably, 
as long as the algorithms are reasonably complex, the chance of 
forming the same CFG is slim since they would have a good 
number of basic blocks and quite a few potential control flow 
graphs are possible with a given number of basic blocks. As an 
experiment, we built the CFGs for various block cipher algorithms 
such as DES, MARS, Rijndael, RC6, and found out their CFGs are 
significantly different. In Figure 3, we investigate the similarity of 

CFGs in the standard C library of the Alpha compiler. There are 
1334 procedures in the library file libc.a, with reasonable size (at 
least 5 basic blocks). We built the CFGs for all these procedures in 
which each basic block is abstracted as a node (which in fact 
increases the chances of two CFGs being similar). We run the 
famous graph isomorphism algorithm by Ullman [12] (we reuse 
the graph matching library developed by Univ. of Naples [13]) 
between all possible pairs of graphs. In Figure 3, the results show 
that only 5% of the comparisons find that the two graphs match. If 
we ignore the CFGs with less than 10 basic blocks, only 0.1% 
match. Finally, if we ignore the CFGs with less than 15 basic 
blocks, only 0.05% match. This study shows that each CFG can 
serve as a distinct fingerprint for a reasonable-sized code. 
Therefore, if the programmer reuses a procedure in the library with 
10 or more basic blocks, the reuse is almost doomed to be found 
out by the attacker due to its distinctive fingerprint (assuming he 
can construct the CFG using address bus leakage). Notice that, this 
estimation is conservative due to our abstraction of the CFGs that 
ignores sizes of individual basic blocks; otherwise the number of 
matches would decrease further. Even if some matches occur, the 
attacker can still narrow down his search to a few possible 
procedures that might be reused. 

Given sufficient amount time to experiment with the code, 
most CFG edges could be exposed. Theoretically only dead code 
is not executed. Even if only partial CFG can be identified with 
subgraph matching algorithms [12,13], we can still largely detect 
the reuses. It is easy to show that the number of legitimate CFG 
graphs grows exponentially with the number of basic blocks in the 
CFG; therefore hiding big reuse code is almost impossible. From 
the prior discussion, the CFG, as a matter of fact, can be regarded 
as an algorithm’s fingerprint. 

Based on the two facts described above, it is quite possible 
that an attacker can identify the reuse components in a program 
given its CFG. He can collect the CFGs of all procedures in the 
standard libraries, or for publicly available source code, compile 
them with a name-brand 3rd party compiler and build the CFGs. By 
graph matching the program’s CFGs with his collection, the 
attacker can nail down the reuse parts. This not only exposes the 
reuse code in its entirety, but also helps the attacker in other 
aspects: 1) A bunch of plaintext/ciphertext pairs for the reuse code 
are identified. If the hardware cannot afford integrity check due to 
its prohibitive performance and memory space overhead [5], the 
attacker might construct a program to read out other code such as 
in [7]. 2) More critically, in some cases critical data could be 
leaked due to the discovery of re-use code. In the next subsection, 
we will show how critical data can be found out in some cases. 3) 
By watching the interaction between reuse code and the 
programmer’s own code like calling sequence, parameters, the 
attacker can learn more about programmer's own code. 

3.2 Critical Data Leakage via Value-dependent 
Conditional Branches 

Apart from the above potential problem of revealing IP, CFG 
matching can also potentially compromise a secret key and leak 
sensitive data. 

All conditional branches (around 80% among all branches) 
make comparison between two values and then decide which path 
to take. Therefore the control flow information can leak important 
information about the values being compared. The following 
example assumes that the algorithm used is known beforehand 
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(most security systems assume the cryptographic algorithms used 
are known to the attacker) or has been detected by CFG matching. 
It demonstrates how the critical data (secret key in this case) is 
revealed. 

Example 
Diffie-Hellman and RSA private-key operations consist of 

computing R = yx mod n, where the attacker's goal is to find x, the 
secret key. To show the problem easily, we assume that the 
implementation uses the simple modular exponentiation algorithm 
in Figure 4.a, which computes R = yx mod n, where x is w bits 
long. The algorithm is widely used, therefore we can reasonably 
assume the attacker has identified it through CFG matching. 

 
Let S0 = 1. 
For k = 0 to w-1: 

If (bit k of x) is 1 then 
Let Rk = (Sk*y) 

mod n. 
Else 

Let Rk = Sk 
Let Sk+1 = R2

k mod n. 
EndFor. 
Return (Rw-1). 

Initialize 

Return 

Loop Entry 

Else-branchIF-branch 

Loop End 

B1 

B2 B3

B4 

(a) (b)  
Figure 4. Modular exponentiation algorithm. 

The corresponding CFG for this small piece of code is shown 
in Figure 4.b. From Figure 4.a, we can easily find that inside the 
loop body if the current examined bit of x is 1, IF-branch is 
executed, otherwise Else-branch is executed. We assume IF-
branch code resides at address B2 and Else-branch code resides at 
address B3 (B2 and B3 are different). The secure processor must 
behave as follows: if the current examined bit of x is 1, then fetch 
the IF-branch code at B2, otherwise, fetch the Else-branch code at 
B3. This results in a sequence of addresses for B2 or B3 showing up 
on the address bus correspondingly. By monitoring the address bus 
and capturing the addresses transmitted, the attacker can guess 
whether the respective bits of x are 0’s or 1’s and get the secret 
key x.  Even if he cannot distinguish between IF-branch and Else-
branch, the information on the address bus leaves only two 
possible values of x to guess (the correct key or its complement). 

This example tells us that if the conditional branch is known 
to the attacker, the direction of the execution path after the branch 
can expose the outcome of the comparison which might be helpful 
in determining or narrowing down the values involved. Such 
security sensitive conditional branches are widely seen in 
compression and encryption algorithms. Leakage similar to this 
has led to timing attack [14] which is however more complicated. 

Notice that missing several rounds of the for-loop can hide 
part of the secret key, but still help the attacker substantially to 
narrow down his search space. It is well known in the security 
domain, 64-bit encryption has much less strength than 128-bit 
encryption. If the attacker can capture half of the for loop, his 
search space will be cut from 2|x| to 2|x|/2, which is 2|x|/2 times faster. 

 

3.3 Noise: Blocking, Caching 
Most side-channel attacks have to deal with noise that leads 

to inaccuracy: Timing attacks suffer from varied computation time 
of instructions, power attacks must count for the power 
consumption of other components inside the chip. However bus 
snooping is actually more accurate than other side-channel attacks 
and it is very easy to setup [7,21]. Here we discuss different types 

of “noises” that can affect control flow snooping and how the 
attacker may get around them. 

Blocking 
Cache misses are typically addressed (and accessed) at block 

boundaries; thus, the addresses on the bus are block addresses. 
Actually, both attacks we mentioned above only rely on the 
detection of branches. Given each block contains very few 
instructions (8 on Alpha), it does not affect the attacks much. For 
reuse code identification, we tried to build block-level CFG, i.e., 
every block becomes a node and edges indicate possible execution 
paths between blocks. We found that typically block-level CFGs 
contain about 25% lesser edges than the regular CFGs. Graph 
matching the block-level CFG shows results close to those in 
Figure 3 with negligible changes. To find out how block size 
affects CFG matching, we list in Table 1 the percentage of 
matched block level CFGs when the block size equals 32B, 64B 
and 128B. It is interesting to see that if we ignore block level 
CFGs with less than 10 or 15 nodes, the increase in block size does 
not necessarily reduce the number of matches. This is probably 
because most non-reuse procedures are larger than the reuse 
procedures in the library as we have observed. Thus, this 
experiment shows that larger block size does not affect CFG 
matching much. 

Table 1. Isomorphic block level CFGs with different 
block sizes. 

 32B 64B 128B
≥5 5% 4% 3.3%
≥10 0.1% 0.19% 0.1%
≥15 0.05% 0.04% 0.05%

 
Caches 

Modern processor typically consist of large on-chip caches 
which might lead to small miss ratios and very few addresses 
exposed on the address bus. However, it does not help due to the 
following reasons. (1) Since the cache is a shared resource among 
all processes running on the processor and as in the previous 
papers, XOM assumes that the OS is not secure. It is very easy for 
the attacker to manipulate the OS so that the cache gets flushed 
upon a context switch; alternatively the attacker can ascertain that 
his own process fills and occupies most cache space before 
switching to the process being attacked. In this manner, all 
memory accesses are exposed directly on the address bus due to 
compulsory misses. (2) Even if only one process is running, many 
processors have a unified L2 or L3 cache for both code and data. If 
the program’s working set can be affected by inputs, the attacker 
may intentionally increase the working set size causing more 
instruction misses. (3) Generally, caching is not predictable, 
especially in multi-tasking environment. Different parts of the 
control flow can be leaked during different runs. It is possible that 
the attacker can finally get the whole picture. (4) For low-end 
systems, on-chip caches are typically small. (5) The cache may be 
disabled on some machines. 

As an experiment, we tried to flush the cache at random 
moments, and collected 4 block addresses immediately after the 
flush. After sufficient number of runs, we found that over 95% of 
edges on the block-level CFG were exposed. In addition, as 
mentioned before, even if the control flow can be partly masked, 
information still leaks to some extent since subgraph matching can 
match partial CFGs. Partial execution path can still be used to 
prune the searching space for critical data. 
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The two attacks we showed above are very simple compared 
to some of the side-channel attacks, which involve sophisticated 
mathematical and statistical analyses. This indicates address bus 
information leakage is relatively easier to exploit as well as more 
damaging and is harder to prevent. With more advanced analyses, 
more information leakage could result. 

3.4 Data Address Protection 
Finally, accesses to the data segment can expose control flow 

as well. For example, in Figure 4.a, if y is accessed, we will know 
that the If-branch is taken. Therefore, data address protection is 
equally important. However, this could induce a big overhead 
since the size of the data segment can be much bigger than the 
code size.  

 

4. HIDE—PRELIMINARIES 
HIDE stands for Hardware-support for leakage-Immune 

Dynamic Execution. HIDE provides an infrastructure for 
preventing information leakage on the address bus involving both 
an micro-architecture as well as a compiler. The basic idea behind 
HIDE is to break the correlation between repeated memory 
addresses. This is achieved by permuting the address space at 
suitable intervals during the execution. 

In this section, we first introduce basic concepts and 
components of HIDE. We then talk about what kind of address 
sequence should appear on the address bus to avoid information 
leakage and the two hardware components: the hide cache and the 
permutation unit. 

4.1 Probabilistically Fixed Address sequence 
To hide the address sequence on the bus, a naïve but fully 

secure approach is to establish a fixed address sequence that does 
not change throughout the execution [10]. For example, the 
processor can read and write each block in the whole memory 
repeatedly from the lowest address to the highest address in a fixed 
order. If a block is required by the program or is to be written out, 
the processor must wait till the “repeated read/write sequence” 
reaches that block. Obviously, this naïve approach can cause 
significant slowdown, given the memory space is big and one 
round of accesses can take tremendous amount of time.  

As introduced by [10], we can also construct an address 
sequence with addresses conforming to a fixed probabilistic 
distribution. In other words, if the addresses seen on the bus are 
random variables conforming to a fixed distribution, it still 
exposes no information about which addresses are actually 
accessed by the processor. 

 
Original Address (Sequence): The address (sequence) issued by 
the processor. 
Actual Address (Sequence): The address (sequence) that actually 
appears on the address bus. 
Probabilistically Fixed Address Sequence: A kind of actual 
address sequence in which actual addresses follow a fixed 
probabilistic distribution. 

The following lemma gives one such probabilistically fixed 
address sequences. 
LEMMA 1: A memory space of size M is randomly permuted 
repeatedly; assume a block originally at address T is relocated to 

Pk(T) after the kth permutations. If between the kth and (k+1)th 
permutation, the processor accesses original addresses T1, 
T2,…Tn(k), and these addresses are all different, then the address 
sequence on the bus is probabilistically fixed.  

REMARK: Lemma 1 says that, between two permutations, all 
original addresses should be different, or we should randomly 
permute the memory space before the same original address is 
issued again. Notice that since different blocks cannot be permuted 
to the same location (mapping is one-to-one), all actual addresses 
between two permutations are different too. 

PROOF: Lemma 1 is derived from [10]. We can prove this lemma 
as follows. Since permutation Pk is completely random and one-to-
one, for two different original addresses Ti and Tj , Pk(Ti) and 
Pk(Tj) are different (two different addresses cannot be permuted to 
the same place) and are independent random variables. Therefore 
the addresses in the sequence based on the same permutation Pk, 
i.e. Pk(T1), Pk(T2)… Pk(Tn(k)) are independent to each other. 
Similarly, since any two permutations Pk and Pl are random and 
independent, Pk(Ti) and Pl(Tj) are always independently 
distributed. Thus the addresses on the bus are all independently 
distributed variables. Notice that, between two permutations, 
original addresses must be distinct, otherwise we will see the same 
actual address recurring on the bus (this is because the same 
permutation must permute the same original address to the same 
actual address). From control flow point of view as mentioned in 
Figure 1, recurring addresses help the attacker to identify loops 
and branches. For a better understanding of Lemma 1, we will give 
an example during the discussion of the hide cache. 

4.2 Hide Cache 
To fulfill Lemma 1, intuitively we must “remember” the 

original addresses that have been issued by the processor after the 
previous permutation. Before an original address recurs, we need 
to permute the memory space again. In other words, we must 
remember the original address sequence to detect recurrence of an 
address.  It is clear that if we “remember” only a small number of 
original addresses, the memory space must be permuted more 
frequently. On the other hand, if we “remember” a lot of original 
addresses, extra space is required to store them and more latency is 
incurred to check if a new original address has been issued before. 

The square root algorithm in the ORAM paper [10] stores all 
such original addresses in an off chip memory called shelter buffer. 
The size of the shelter buffer is the square root of the memory 
space being protected. However, during each access, the processor 
must read the entire shelter buffer to check if the address has been 
accessed. Since the shelter buffer is in the insecure memory, the 
processor must read the entire shelter buffer such that the attacker 
cannot tell whether or where the access has hit in the shelter buffer. 

With large on-chip space available on modern processor, we 
may want to move the shelter buffer on-chip. However, it is still 
space inefficient to occupy a separate on-chip area for this purpose. 
Given caches are readily available to store memory blocks 
accessed before, in this work we propose the hide cache; which 
adds address bus protection on top of a normal cache to achieve a 
low space and performance overhead solution. 

 
 

Hide Cache: A cache same as a normal cache except that blocks 
fetched after the previous permutation are all locked i.e. they 
cannot be replaced until the memory space they belong to is 
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permuted again. Also, blocks that are dirty after the previous 
permutation must be held from the write back until the next 
permutation. 

 

How the Hide Cache Works 
In a hide cache, we intentionally lock all blocks that are 

fetched after the previous permutation. Therefore accesses to the 
same original address between two permutations always hit in the 
cache without going out to the memory. Similarly, blocks that 
become dirty after the previous permutation are locked as well. If 
such dirty blocks are allowed to be written back, there could be 
read accesses to the same address later causing the same address to 
appear on the bus again; thus, such blocks must be locked as well. 
If a block is locked, it cannot be evicted. When the memory space 
is permuted again, all blocks belonging to that memory space are 
unlocked. 

Next we show an example in Figure 5, which helps to 
understand Lemma 1 and the hide cache. In Figure 5.a, we assume 
that the cache is 2-set 2-way. Figure 5.b shows the original address 
sequence borrowed from Figure 1. The memory space contains 5 
blocks as shown in Figure 5.c. Notice that all blocks are initially 
permuted randomly after they are loaded from the disk to the 
memory. The initial random permutation prevents the attacker 
from correlating information across different runs (since random 
permutations are done before code and data are initially loaded). 
We also assume all accesses are read accesses in this example. If 
blocks are not locked and permuted after the initial permutation, 
we will observe the cache contents and actual access sequence as 
illustrated in Figure 5.d. On the left side of Figure 5.d, we show 
the status of the cache after 4 fetches. All addresses shown inside 
the blocks are the original addresses. Since the four addresses are 
all different, they are loaded from memory due to compulsory 
misses. Also, since blocks are already permuted, the actual address 
sequence on the bus is 102,100,104,101,103 instead of 
100,101,102,103,104 after 5 accesses. If the blocks were not 
locked (as in normal caches) we will see 102 (which corresponds 
to the original address 100) appearing again. This means that even 
if the block 100 is randomly permuted to address 102, its 
recurrence can still be detected on the bus. Thus, a normal cache 
cannot hide such recurrence. With hide cache—as shown in Figure 
5.e—the 2nd permutation is triggered before the 5th access, because 
all blocks in set 0 are locked and we cannot evict a locked block. 
Notice that if a locked block is evicted, we lose tracking of the 
block. It might be read in again causing the same address to appear 
on the bus; or if the block is locked because it is dirty, evicting the 
block will incur a writeback immediately causing re-appearance of 
its address on the bus. Thus, a permutation must be conducted to 
unlock blocks when all blocks are locked in a set. From the 
address sequence at the lower right part of Figure 5.e, we can 
observe that after the 2nd permutation, the original address 100 is 
now 104. Since the two permutations are random and independent, 
the attacker only observes random numbers on the bus. Also, 
recurring original addresses become different random numbers 
after the 2nd permutation. By locking the blocks, we are sure that 
the same address does not appear again on the bus before another 
permutation. For example, if we were to access block 104 again, it 
is in the cache; therefore no access goes out on the bus due to a hit. 
This scheme not only meets the requirement of Lemma 1, but also 
preserves the functionality of a cache. 

 Another observation in Figure 5.e is that in set 1, both 

blocks are unlocked after the second permutation. Now they 
behave like normal cache blocks and can be evicted if necessary. 
Since their mapping and addresses have been changed (their 
original address is now mapped to a different one) during the 
second permutation, they can be safely evicted. After the blocks 
are evicted, they will be locked the next time they are fetched in. 
Finally, in this example, we show how latency might be incurred. 
When all blocks are locked in a set, we must permute to unlock at 
least one block before a new block can get in and replace the 
unlocked one. Since permutation takes a long time, it is not wise to 
permute at the last minute. We thus permute and unlock some 
blocks before all entries are locked (this issue will be addressed in 
detail shortly). 
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Figure 5. Example for Lemma 1 and hide cache. 

Implementation of the Hide Cache 
We list all operations in Table 2, assuming LRU is the 

original replacement policy. Notice that blocks are still ordered 
and updated according to the LRU policy, except that when 
evicting a block, one should choose the least recent used block 
among the unlocked blocks. 

In our implementation, we use a bitmap (separately stored) to 
record whether a block is locked or not, i.e. each bit represents one 
block. After the permutation, the whole bitmap is cleared. 
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Latency Hiding via Fetch Buffer and Pre-permutation 
Notice that locking blocks, i.e. setting the bits in bitmap is 

not on the critical path since it can be conducted after the cache 
access. For cache misses, for each block in the set we need to 
determine whether it is locked or not. This involves reading 
several bits in the bitmap. Fortunately it is not on the critical path 
either. The missed block can be fetched in parallel when we access 
the bitmap. Even if the missed block is fetched faster than the 
bitmap accesses, we can simply put the block in a fetch buffer and 
let the cache access return first. Once we determine all unlocked 
blocks and find the LRU block among them, the block in the fetch 
buffer can now be moved into the cache to replace the LRU block. 
In this way, all the operations for the hide cache can have the same 
latency as a normal cache. 

Table 2. Operations on hide cache. 
 
 

 

Read and hit Update LRU order of blocks  
Write and hit Set dirty bit and lock the block, update LRU order 

of blocks 
Cache miss, 
fetch a new 
block into 
the cache 

Picked the LRU block among all unlocked blocks 
in the same set. Fetch and lock the new block. Set 
dirty bit for write access. If all blocks are locked, 
put it to fetch buffer. 

A memory 
space is 
permutated 

All blocks belonging to that memory space in 
cache are unlocked 

 
However, the performance of a hide cache could still be 

worse than a normal cache because 1) A locked block may 
otherwise be replaced when it becomes least recent used. 2) Once 
all blocks in a set are locked, a new block cannot be fetched into 
the set unless we permute and unlock some of the blocks. Due to 
the long latency of permutation, it may happen that a set is fully 
locked before the permutation releases a locked block in the set 
leading to stalls. 

We propose pre-permutation to solve the above two 
problems. Pre-permutation attempts to start permutation before all 
blocks are locked. In our design, we start permutation when half of 
the blocks in a set are locked. Pre-permutation increases the 
chance that a block is unlocked before it becomes LRU, and 
greatly reduces the possibility that all the blocks in a set are locked  
when new blocks need to be fetched in. Even if the permutation 
does not complete in time, we can put newly fetched blocks in the 
fetch buffer, until the permutation completes and unlocks blocks 
for replacement. These latency hiding techniques successfully cut 
down the performance loss as shown in our results. 

4.3 The Permutation Unit 
The permutation units randomly permutes the memory space. 

It should avoid exposing the correlation between any block’s old 
and new locations. We show its pseudo-code in Figure 6. A 
memory space with M blocks is to be permuted using an on-chip 
space with P blocks called out_buffer. In addition, a permutation 
vector (pv) consisting of a random permutation of numbers from 1 
to M is generated and stored on-chip.  

CASE I: If M is less than or equal to P, we only need to 
sequentially read the M blocks once. After reading in block 
number s, we put it to out_buffer[pv[s]]. Finally, out_buffer is 
written out sequentially to the original memory space. Since the 
attacker only sees one sequential read and one sequential write to 
all blocks and everything is re-encrypted, he cannot build any 
correlation between blocks’ old and new locations.  

CASE II: If M is larger than P, without loss of generality, let 
M=k*P, where k is an integer larger than 1. We split the M block 
memory into k equal-size partitions. During an iteration s, all 
blocks destined to partition s are permuted and put in the 
out_buffer. At the end of iteration s, the out_buffer is written out to 
a temporary memory space as a new partition s. Upon finishing all 
permutations, we overwrite the original memory space with blocks 
in the temporary memory space. Overall, the M blocks are read 
k+1 times and written 2 times. Alternatively, we can change the 
page table such that the temporarily memory space is mapped as 
the original memory space, which avoids copying from temp_mem 
to mem. 

Although the size of the out_buffer, i.e. P cannot be very 
large, the permutation unit can permute very large memory space, 
i.e. M can be large. In this algorithm, the size of pv still depends on 
M, however pv is actually very small because it only stores a short 
integer for each block (8 bits for 8K pages with 32B block). 

The pseudo-code in Figure 6 does not show the algorithm to 
generate a random permutation of numbers from 1 to M. We 
follow the shuffle algorithm in [23], which requires M swaps to 
generate a complete random permutation as long as a hardware-
based true random number generator is available. Finally the time 
for random permutation generation can be completely masked 
when the permutation unit reads the memory space. 

DATA STRUCTURE: 
//memory space to be permuted 
block  mem[1..M] 
//temporary space in memory 
block  temp_mem[1..M] 
//permutation vector, on-chip 
Int      pv[1..M] 
//output buffer, on-chip 
block out_buffer[1..P] 

M≤P 
pv[1..M]⇐a random permutation of numbers from 1 to M; 
for s=1 to M do 
  out_buffer[pv[s]] ⇐mem[s] 
endfor 
mem[1..M] ⇐re-encrypt(out_buffer[1..M]) 

M=k*P
pv[1..M] ⇐a random permutation of numbers from 1 to M; 
for s=0 to k-1 do 
  for t=1 to M do 
    read mem[t]; 
    if s*P<pv[t] ≤(s+1)*P then out_buffer[pv[t]-s*P] ⇐mem[t] 
  endfor 
  temp_mem[(s*P+1)..(s+1)*P] ⇐re-encrypt(out_buffer[1..P]) 
endfor 
mem[1..M] ⇐temp_mem[1..M] 

 
Figure 6. Pseudo-code for the permutation unit. 
There might be pending accesses to the memory space being 

permuted. We can either issue the access to memory if the block 
has not been read-in (Lemma 1 is still enforced, because we do not 
unlock until the permutation finishes). If the block is in out_buffer, 
it is fetched immediately. If the block has been written out, we can 
still fetch it from the memory, but need to mark that it will remain 
locked after the permutation. 

Permutation Overhead 
With pre-permutation, permutation is normally not on the 

critical path; critical reads by the processor are always given 
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higher priority than the permutation traffic. Notice that although 
permutation is the main source of bus traffic increase, such traffic 
is very regular and predictable and therefore can be easily 
pipelined. In addition, we can take advantage of memory banking 
and parallelizing memory accesses to different banks. If a normal 
access is going to access the chunk that is being permutated (this 
should rarely happen, since a chunk only takes a small portion of 
the address space), we can first try to locate it in the out_buffer if 
that block has been read into the permutation chip. To amortize the 
initial overhead for each bus transaction (which could take the 
majority of the access time if only a small number of bytes are 
transferred in each transaction) we should read/write many 
consecutively located memory blocks during each transaction. 
Finally, we can completely offload the permutation traffic from the 
front-side bus with a separate permutation chip (or combined with 
the memory controller). There is communication between the 
processor chip and the permutation chip, e.g. the processor chip 
should send/receive data to the permutation chip if the address 
falls in the chunk that is being permuted. Also the permutation 
chip should return the new mapping once a permutation has 
finished. Obviously, such communication should be in encrypted 
form to be immune from bus tapping and the amount of traffic is 
actually much less. 

We now show how we put together the HIDE cache and 
permutation unit to offer chunk level protection. 

 

5. HIDE AT CHUNK-LEVEL 
This section gives the hardware infrastructure of HIDE, 

which provides chunk-level protection with simple interfaces. 
Here a chunk is defined as one or more pages that are protected 
and permuted together. 

Protecting a large piece of memory is prohibitive due to the 
high permutation cost, esp. when the out_buffer cannot hold the 
entire piece of memory, we must access the memory multiple 
times. The goal of chunk level protection is to limit the size of the 
permutation. At chunk-level the permutation unit only permutes all 
the blocks within a chunk. Once a chunk is permuted, all cache 
blocks in that chunk are unlocked. 

We can split an address sequence into a series of  transitions 
from address to address, e.g. the address sequence in Figure 1 has 
transitions like: 100 101, 101 102, 102 103…If the transition 
is between two addresses in the same chunk, we call it intra-chunk 
transition, otherwise it is inter-chunk transition. Since all intra-
chunk transitions are protected with chunk-level protection (blocks 
within a chunk undergo permutation), the percentage of intra-
chunk transition among all transitions is called transition coverage, 
which is a good indication of how well the address sequence is 
protected and the level of security guarantee we can provide. 

We found chunk-level protection is powerful. As observed 
from our benchmarks, even with the smallest chunk size i.e. a page, 
over 75% of the transitions are intra-chunk. Given that not all 
memory contents are security sensitive, protecting chunks of a 
reasonable size should suffice if we can slightly narrow down the 
protection domain with either compiler analyses or user 
specifications as shown in Section 6. Besides, chunk-level 
protection is flexible. Since our infrastructure supports chunks 
with different sizes, the user can choose to protect some memory 
space in big chunks and some in small chunks. Building chunks on 
top of pages facilitates the implementation, since pages are 
supported by both the hardware and OS. 

Figure 7 shows the overall hardware structure to provide 
chunk level protection. The L2 cache is now a hide cache. The 
fetch buffer and the permutation unit were introduced in Sections 
4.2 and 4.3. The controller coordinates all components. 

Controller Permution
Unit

Memory

Page Info
Caches

Fetch Buffer

L2 cache-hide cache

 
Figure 7. Hardware flowgraph. 

Before addressing the page info cache, we first describe the 
page info record, which contains 7 fields for each page. Page info 
records store extra information for the L2 cache so that it can 
function as a hide cache. As shown below, the if_hide field 
indicates whether this page should be protected. Blocks in a 
protected page are permuted together with other pages in the same 
chunk and accesses must go through address translation to reach 
the new locations. The second field is the page number in the 
virtual address space. The next two fields specify the chunk this 
page belongs to. Notice that each chunk must take a contiguous 
piece of memory in the virtual address space to facilitate compiler 
optimization and user specification. In other words, a chunk must 
take several consecutive pages in the virtual address space; 
begin_virtual_page# and chunk_size (number of pages in a chunk) 
uniquely define a chunk. 

Page Info Record: 
boolean        if_hide; 
int                 virtual_page# 
int                 begin_virtual_page#; 
int                 chunk_size; 
int                 num_in_cache; 
boolean         lock_bitmap[num_blk]; 
blk_addr_t    translation_table[num_blk];

 
num_in_cache counts the number of blocks of the chunk that 

are locked in the hide cache. For chunks with multiple pages, only 
the first page’s info record stores such information. This field is 
used for pre-permutation described in Section 4.2. When half of 
the blocks in a set are locked, for each locked block we find out 
the percentage of locked blocks in their chunks. The one with the 
highest percentage is chosen to be permuted. The lock_bitmap 
field contains num_blk bits, where num_blk is the number of 
blocks in a page. Each bit indicates if the block is in the cache and 
is locked. Finally, the translation table translates each block to its 
new block address after a permutation. The translation table is 
updated by the permutation unit after each permutation. For 
chunks with multiple pages, the blk_addr_t includes a page_ID 
∈[0,chunk_size) to indicate which page in the chunk this block is 
permuted to i.e. begin_virtual_page# +page_ID. 

The size of the page info record is small compared with the 
size of a page. For 8KB page size on Alpha, it only adds 3.5% 
space overhead in memory. However, for big chunks, the 
translation table takes more space due to the bigger page_ID field. 

Page info records are stored separately in a dedicated 
memory space that can only be accessed by the hardware. There is 
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one page info record for each physical page and the page info 
record accompanies the page even when it is swapped out. For 
each block, the hardware can find the corresponding page info 
record via its physical page number. To speedup the access to the 
page info records, we put a page info cache on chip. Due to the 
small size of the page info records, a cache of 8~16KB is typically 
enough to achieve very high hit rate. However, since page info 
records are stored in memory, accesses to this data may leak 
information on the address bus although they are encrypted under 
the XOM model. Perceivably, such information leakage is indirect 
and also very limited (only 3.5% in size). For complete security, 
we can build several layers of protection, i.e., the first layer page 
info cache becomes a hide cache which protects the first layer 
page info records for pages used by the program. Since the first 
layer page info cache is a hide cache, we need second layer page 
info records for this hide cache and the pages taken by the first 
layer page info records. Obviously, the sizes of the page info cache 
and page info records decrease exponentially. At layer 3, the page 
info records are typically small enough to be stored on-chip. 

All pages in a chunk should be permuted together; thus they 
must be swapped in and out together to avoid disk access latency. 
In our implementation, these requirements are conveyed to the OS 
when a chunk is created. Even if the OS is malicious, it cannot 
change the page info records, and while it may violate the 
swapping requirements, these violations will be detected by 
hardware. Swapping pages at the level of chunks can have the 
same effect as increasing the page size, causing extra memory 
pressure when some pages are swapped without real accesses to 
them. However, we conjecture that a chunk contains pages among 
which there are many transitions. These pages very likely in the 
same working set and are accessed in the same period. Thus, 
swapping the pages together should have minor performance 
penalties. In fact, it may even have the effect of improving 
performance because of prefetching. 

Finally context switches should not affect the hide cache, 
since it works at physical page level, i.e., page info records are 
designed for physical pages and are addressed with physical page 
numbers. It works in tandem with a L2 hide cache where all 
addresses are physical addresses. 

Interface to the Application 
Chunks can be specified statically in the code or at runtime 

with special instructions. In the former case, such information is 
inserted in the header of the binary code telling which chunks 
should be created initially. Upon loading a chunk, the hardware 
initializes the fields in the page info record and performs a 
permutation before loading it into the memory. The initial 
permutation prevents the attacker from gaining information across 
different runs of the program. At run time, we can use 3 
instructions to manage chunks; their syntax and operational 
semantics are as follows: 
♦hide_chunk (begin_virtual_page#, chunk_size) 
Operational semantics: For all pages in the chunk, set the if_hide 
and other fields accordingly. Get a new translation table from the 
permutation unit without performing real permutation and clear the 
lock bitmap. Later accesses to the chunk must go through the 
address translation. This instruction can be used when a new 
memory space is allocated. Since all old contents will be 
overwritten, no real permutation is needed. 

♦unhide_chunk (begin_virtual_page#) 

Operational semantics: Clear the if_hide fields of all pages in the 
chunk such that the later accesses will go to memory directly. The 
old contents are discarded. 

♦unlock_block (virtual_page#, start_block_num, num_block) 
Operational semantics: Clear num_block consecutive bits in the 
lock_bitmap of a virtual page, starting from start_block_num. 

 
Next we discuss some optimizations developed to boost the 

level of security guarantee offered as well as the performance.  

6. HIDE PLUS 
This section talks about techniques to achieve a higher level 

of security guarantee based on the hardware infrastructure and 
interface proposed earlier. Through compiler analyses and user 
specifications, we can effectively improve transition coverage and 
reduce address bus leakage, esp. for sensitive contents with very 
small overhead. 

6.1 Compiler Directed Layout Optimization to 
Minimize Inter-Chunk Transitions 

As mentioned in Section 5, chunk-level protection still 
exposes inter-chunk transitions since permutations are confined to 
the blocks only within a chunk. To minimize such exposure, we 
should put functions that frequently call each other in the same 
chunk. Similarly, consecutive data accesses that are frequent 
should be put in the same chunk. We present a compiler 
optimization that attempts to properly layout code and static data 
to minimize inter-chunk transitions. This approach is also 
applicable to heap space that is redistributed to a program – refer 
to Section 6.2. 

For static data, we assume arrays and structures are laid out 
as a whole. For code, functions are laid out as a whole. 
Occasionally, we may encounter huge functions1 or arrays, which 
can cause big overheads if they are covered with big pages. In 
such cases we assume that the compiler or the programmer is able 
to divide them into smaller pieces that are unlikely to transit 
frequently from one to another. Next we introduce the transition 
graph. 
Transition Graph: undirected graph with weighted nodes and 
edges. 

For code, each node represents a function. The weight of the 
node is the size of the function. Edge weights between nodes 
represent the call/return frequency between the two functions. If 
function A calls B or returns from B once, the weight of the edge 
between node A and B is increased by 1. For static data, each node 
represents a data unit, i.e. a scalar variable, a structure or an array, 
etc. The weight of the node is the size of the data unit. The weight 
of the edge is the number of times the two data units are accessed 
consecutively. For example, if we find a path on which data unit A 
is accessed immediately after data unit B, the edge weight between 
them is incremented by 1. 

The transition graph is a rough estimation of how frequently 
nodes transit from one to another, because some transitions can be 
hidden by the cache. Also, it would be more accurate if we have 
profile information available. Figure 8 shows the layout algorithm. 

                                                                 
1  In our benchmark, we only observe several functions that exceed page 

size. 
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Our goal is to assign nodes to chunks, so that with minimal total 
chunk cost we can cover most edge weights. At this point, we need 
to clarify two things: 1) The total chunk cost is the sum of all 
chunks’ cost, and a chunk’s cost is empirically calculated as 
proportional to its size, since the time to permute grows with the 
chunk size. 2) If two nodes are in the same chunk, then the edge 
weight between them is covered. 

Initially, each node is 
assigned a minimal chunk, 

i.e. a single page 

Pick a pair of chunks to merge, such that: 
(increase of total chunk cost)/(increase of 

covered edge weights) is minimal. 

Edge weight 
covered>95%?

Y 

N 

Done 

 
Figure 8. Algorithm to layout code and data. 

 
Initially, each node is assigned to a distinct chunk with 

minimal size, i.e. a single page. Empirically we loop until over 
95% of edge weights are covered. During each iteration, we find a 
pair of chunks to merge with minimal (increase of total chunk 
costs)/(increase of covered edge weights) ratio. Notice that, if we 
merge two chunks, all nodes in the two chunks are now assigned to 
a new chunk that can hold all nodes and its size is minimal. 

6.2 Other Support for Managing Stack and 
Heap 

Stack and heap are dynamically managed memory spaces 
that must be tackled at runtime. We now discuss several 
optimizations for protecting stack and heap accesses. 

Since stack size is typically small and most activities occur at 
the top of the stack, we should always try to put the top of the 
stack inside a chunk boundary. To avoid the exposure of accesses 
to the top of the stack, the application should check if the callee’s 
frame will cross chunk boundary. If so, it should set the frame 
pointer to the boundary of the next chunk. Figure 9 shows that 
when lesser space is available in a chunk than the stack frame size 
of the callee function, we allocate the callee’s stack frame at the 
start of the next chunk. In this way, we can avoid callee’s stack 
frame from crossing the chunk boundary which might lead to 
information leakage. Since the parameters have to be passed from 
caller to callee, this might still lead to some inter-chunk leakage. 
We suggest parameters are put on the callee’s chunk. Although 
this might still cause several inter-chunk transitions at the 
beginning of a call, we believe the amount of leakage introduced 
should be small. On the other hand, the accesses within a stack 
frame are more frequent and thus, we choose the above solution. In 
cases where there are accesses across stack frames (such as 
indirect reference through a pointer to caller’s data etc.), we 
attempt to put the two functions’ stack frames in the same chunk. 

 
 

end of last 
stack  frame 

actual start of the 
callee’s stack frame 

chunk 
boundary 

stack grows 
downwards 

 
Figure 9. Example for stack. 

Since the location and size of the chunk as well as the end of 
the stack frame are all known at runtime, the compiler simply 
inserts comparison instructions at the function call site and 

advances the stack frame accordingly. The new chunk is protected 
with the hide_chunk instruction. Given the stack frame size is 
typically small, space loss due to this is negligible compared with 
all memory space taken by a program. 

On the other hand, heaps can be huge; therefore more 
specifications by the programmer are desirable. Next we give the 
unlock rule, which has been found very useful to reduce the 
number of locked blocks and save unnecessary permutations. 

 
Unlock Rule: If a block will not be referenced after certain point 
and it is not dirty in the cache, we can directly unlock it. 

If a block will no longer be referenced and is not dirty, there 
is no need to lock it in cache, because  its addresses will not appear 
on the bus any more. The unlock rule suggests that data can be 
unlocked in the cache as soon as we are sure it will not be 
referenced later. Especially when only a few blocks in a chunk are 
locked in the cache, the controller will be reluctant to force a 
permutation of the entire chunk. Thus, unlocking these blocks 
without incurring permutation is most desired in this situation.  

To unlock a set of blocks, we can use the unlock_block 
instruction. This instruction simply clears the lock bits for those 
blocks if they are not dirty. unlock_block instruction can be put 
together with code by the compiler or the programmer after data 
values are determined to be dead through offline analysis. Some 
heap allocation schemes grab large pieces of memory from heap 
then redistribute them to the application. Thus, techniques 
presented in Section 6.1 might be similarly applied to minimize 
inter-chunk transitions during the above heap allocations. 

 

7. OTHER CONSIDERATIONS 
Information leakage prevention is a broad topic, whereas this 

paper only tackles a particular problem. For instance, system calls 
can somewhat leak control flow information, however the 
interaction between application and operating system is 
unavoidable. This problem is actually left to the programmer to 
not to put system calls at sensitive points of the code.  Also, 
execution time cannot be hidden due to its tight association with 
performance. It is normally unreasonable to require the program to 
run for the same amount of time regardless of inputs. Under our 
scheme, the attacker observing the address bus still gains some 
information, such as the moments when permutations take place, 
the number of accesses between two permutations, etc. However 
such leakage is much less than that from unprotected address bus. 
So far we cannot conceive of any valid attacks that might benefit 
from this type of information leakage. 

In a multi-processor system, one block may be present in the 
caches of other processors, therefore locking and permutation 
information must be shared and consistent across multiple 
processors. However the communications among processors are on 
the bus that is subject to attack. Therefore our scheme cannot work 
without major modifications. Currently, we regard address bus 
information leakage prevention in a multiprocessor environment as 
our future work. 

 

8. EVALUATION AND RESULTS 
We evaluate our schemes on a processor model with default 

parameters in Table 3, in which all 8K chunks are protected. The 
entire SPEC2000int benchmark suite is used as representative 
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applications. Implementation is done with the Simplescalar toolset 
[17] and experiments are based on SimPoint [20]. Each benchmark 
is fast-forwarded according to SimPoint then simulated by 100M 
instructions. The 200M Memory bus is 8B wide and fully 
pipelined. 

In Figure 10, we compare IPC, bandwidth usage and 
transition coverage (i.e. percentage of intra-chunk transitions—
Section 5) for 3 models: 1) the one with off-chip shelter buffer in 
the ORAM paper [9,10]; 2) default model with parameters as listed 
in Table 3, 8KB chunk, no layout optimizations; 3) a more secure 
model with 64KB chunk and compiler layout optimizations 
described in Section 6. For IPC comparison, we normalize all IPC 
to the original. We also list absolute values of the original IPC. 
The ORAM model incurs significant slowdown (73%), although 
we only implemented it at the smallest chunk, i.e. single-page 
level with 16-block shelter buffer for a fair comparison with the 
default model. Both default model and the “64K chunk+layout” 
model shows little slowdown: 0.3% and 1.5% on average. 

Table 3. Default architectural parameters. 
 
 

 

Clock frequency 1 GHz L1 I/D 8K DM 1 cycle 32B block
Fetch queue 32 entries Memory bus 200M, 8 Byte wide 
Decode/issue/ 
commit width 

8/8/8 Unified L2 4way, 32B block 
1M (12 cycles) 

RUU/LSQ size 128/64 Memory latency 80(1st), 5(inter) cycles 
TLB miss 30 cycle Chunk size 8 K, all chunks protected 
Permutator 
Outbuf 

64K Fetch buffer 
Page info caches 

8 blocks 
8K/1K 

 
Next, we look at the bandwidth usage. We show the 

percentage of overall bandwidth (i.e. 1.6GB/s) being taken. 
ORAM  uses over 60% of the bandwidth due to its scanning of the 
whole shelter buffer during each access, the default model and 
64K chunk one only use 9% and 15% of the bandwidth. For most 
benchmarks in SPEC2K, the memory traffic is not a big issue 
since they take only about 5% of the bandwidth to begin with. To 
get an idea of the worst-case bandwidth consumption, we reduce 
the L2 cache size to 512KB and 256KB (due to the nature of SPEC 
benchmarks, we cannot find one that experiences memory problem 
with 1MB L2). For 512KB L2, the bandwidth consumption 
increases by 130% from the default model, whereas 256KB L2 
leads to 529% memory traffic increase. As mentioned in earlier 
sections, the majority of the memory traffic comes from 
permutations and  therefore can be properly pipelined and 
parallelized with memory banking. For memory-bound 
applications, it is recommended to use a separate permutation chip 
to offload the traffic from the front-side bus—Section 4.3. 

The bottom graph in Figure 10 gives transition coverage of 
the 3 models, which is an indication of the level of security 
guarantee that is achieved (Section 5). The first two models show 
the same 75% transition coverage on average, because they both 
protect at 8K chunk level. With 64K chunk and layout 
optimization, 87% transition coverage is achieved. Several 
benchmarks get lower transition coverage like gap, vpr mainly 
because their data layout on the heap is not well organized, which 
tends to jump among several places with long distances. This also 
causes more permutations, since the number of blocks each 
permutation can unlock is lower. 

Thus, one can see that a significantly higher transition 
coverage can be achieved in the 3rd model with almost 
insignificant performance degradation. The layout optimization 
provides around 95% transition coverage for code and static data, 
while it only causes negligible slowdown due to the small size of 

that part. The rest of the slowdown is due to large chunk-size and 
overall transition coverage is much higher with little performance 
penalty. 
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Figure 10. Comparison for 3 representative models. 

It is important to understand if the user can provide 
specifications to exclude a small percentage of code and data as 
non-security-sensitive, our scheme will eliminate almost all the 
leakage on the address bus with negligible slowdown. For the 
default model, the user needs to identify roughly 25% such code 
and data, while under the “64K Chunk+Layout” model, he only 
needs to exclude about 5% of the code and static data (Figure 8) 
and 13% of the data on the heap, assuming stack is protected as in 
Section 6.2. This means the user specification can be very rough or 
in same cases, a nice compiler approach will probably do the work 
too, making our scheme practical to achieve a good level of 
security guarantee. 

In Figure 11, we vary the size of L2 cache under the default 
model to see how slowdown changes. From Figure 11, only some 
benchmarks have observable slowdown, typically those with 
relatively large working sets. Small cache leads to bigger 
slowdown due to more L2 misses causing more permutations. On 
average, the slowdown for 512K, 1M, 2M L2 is 1.5%, 0.3%, 
0.03% respectively. Our results show that the slowdown is within 
20% even for 64K caches, making it applicable to low-end systems 
with smaller caches where information leakage might be more 
severe. 

In Figure 12, we do sensitivity study for chunk sizes under 
the default model. All comparisons are against the 8K default 
model. As protection granularity increases, more slowdown and 
bandwidth consumption occur. On average, the slowdowns for 
16K, 32K, 64K chunk are 0.13%, 0.55%, 1.05% respectively, and 
the bandwidth increases are 18%, 40%, 73% respectively. Again, a 
permutation chip could offload this bandwidth increase from front-
side bus. 
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Figure 11. Slowdown comparison for 3 L2 cache sizes. 
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Figure 12. IPC and bandwidth sensitivity to chunk sizes. 
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Figure 13.IPC degradation with layout optimization. 
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Figure 14. Evaluation of latency hiding techniques. 

Figure 13 shows how layout optimization affects the 
performance. For chunk sizes of 16K, 32K and 64K, the slowdown 
due to layout optimization is calculated for each benchmark. This 
figure tells us that with larger chunk size layout optimization 
causes less slowdown. This is perhaps because with larger chunk 
size, most code chunks are already covered. In other words, more 
chunks generated by the layout algorithm are automatically 
covered without extra performance loss. On average, the 
slowdowns are 1.38%, 0.68%, 0.19% for 16K, 32K, 64K chunk 
sizes respectively. 

Finally, Figure 14 shows a number of other experiments that 
slightly change the default model, including 1) remove the fetch 
buffer; 2) permute when all blocks are locked instead of half way. 
IPC numbers are normalized to the default model. It suggests the 
fetch buffer contributes about 6.3% reduction in slowdown   
whereas pre-permutation contributes 44% on average. Fetch buffer 
and pre-permutation avoids latencies to be on the critical path. 
Especially, pre-permutation reduces cascaded permutations when 
fetches to the same set come before the previous one finishes. 

We have also tried to change the L2 cache to 8 way, however 
it contributed marginally to pre-permutation as 4 way is almost 
enough. On the contrary, making the L2 8-way can cause more 

accesses to the same set (due to fewer number of sets). Also, we 
tried pre-permutation when ¼ of the ways are locked, which shows 
more traffic due to lesser number of blocks unlocked by each 
permutation, while changing to ¾ way pre-permutation causes 
more slowdown due to later permutations causing more stalls. 
Finally we increase the cache block size to see how slowdown gets 
affected by it. However it turns out that larger block size has 
negligible impact on performance. 

 

9. RELATED WORK 
It is important to distinguish between “security guarantee” 

and  “seemingly secure”. For the latter, there are many ways such 
as reordering the blocks at runtime, reading blocks to a buffer then 
writing out after some time to new places, obfuscating the code, 
issuing random accesses etc.;  however all these approaches 
provide no guarantee on how much information can be leaked. A 
“seemingly secure” approach should not be taken as serious work 
in the security domain because it is hard to fathom how powerful 
(smart) the attacker might be. Only security guarantees establish 
the security strength of a system without making assumptions 
about the attacker, which is the essence of this work. 

Code obfuscation techniques are only “seemingly secure”, 
but it only makes cracking relatively harder. No security guarantee 
is provided as such. 

The DS5000 series processor supports so-called address bus 
encryption, which is equivalent to the initial permutation in Figure 
5.c. However, it does not permute repeatedly at runtime, therefore 
the attacker can still construct the CFG in the same way as 
mentioned in Section 1. The DS5000 also issues random fetches in 
order to confuse the attacker (seemingly secure). However, 
random fetches can be easily discerned from true accesses in loops, 
which repeat more frequently. Actually, DS5002FP has been 
completely cracked [7]. 

Goldreich [9,10] proposed three approaches to guarantee no 
information leakage on the address bus, however all of them can 
incur big slowdown. For example, the “square-root solution” needs 
to read the entire shelter buffer before each access; the 
“hierarchical solution” takes O(t*log(t)*log(t)) memory space after 
t accesses, causing memory explosion. 

The leakage-proof program partitioning work done by Zhang 
et al. [24,25] tackles a similar problem. Their work focuses on 
combating control flow information leakage due to the dynamic 
sequences of program partitions transmitted through network in a 
networked embedded systems environment. On the other hand, 
this work focuses on eliminating the control flow information 
leakage due to code/data blocks transmitted through system 
address bus. Both the assumption and the solution of their work 
are fundamentally different from this one. 

 

10. CONCLUSION 
In this work, we provide a lightweight solution to the 

problem of information leakage on the address bus due to both 
data and code accesses. We show that this problem is critical for 
XOM-based secure architecture to solve software IP protection 
issues and stop side channel attacks in encryption based 
approaches. However, all known solutions with enough security 
guarantee [10] suffer from very high performance degradation. 

In this work, we propose the HIDE infrastructure including 
the hide cache with block locking and permutation mechanisms. 
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HIDE provides chunk-level protection and interface for compiler 
optimizations. Then we propose compiler optimizations for code 
and data layouts and other runtime optimizations to reduce 
overheads and improve level of security guarantee. 

 Our results show with 64K chunk protection and the layout 
optimization, we can guarantee 87% of the address sequence is 
protected, in which 95% of the accesses to code and static data are 
hidden. With the HIDE infrastructure, interfaces are provided for 
the compiler or user to further improve the level of security 
guarantee or to narrow down the protection domain to achieve 
almost complete protection. In this way, all security sensitive 
code/data could be identified and effectively protected in terms of 
the leakage on the address bus. The performance overhead is at 
most 1.5% in our experiments. The increase of the bus traffic takes 
a very small part of the total bandwidth available in our 
benchmarks. The majority of the traffic increase is due to 
permutations. Such traffic is very regular therefore we can reduce 
its overhead in multiple ways as suggested in the paper. Finally, 
most on-chip hardware components for HIDE are small. The 
largest component, i.e. the permutation unit with 64KB out_buffer 
can be shifted to the permutation chip as well. Due to the low 
overhead of the HIDE infrastructure, it is possible to apply it to 
low-end systems with smaller cache where leakage on the address 
bus might be more severe. 
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